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MicroRNA Expression Signature in Degenerative Aortic Stenosis
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Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common
valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative
AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals
(𝑛 = 4) and patients with degenerative AS (𝑛 = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-
194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p,
hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-
34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used
to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and
microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed
to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially
expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways
associated with this morbidity.This study describes the miRNA expression signature in degenerative AS and provides an improved
understanding of the molecular pathobiology of this disease.

1. Introduction

Degenerative aortic stenosis (AS), themost common valvular
heart disease in the elderly, has become a leading cause for
surgical valve replacement in industrialized countries. As a
result of rising life expectancy and ageing populations, the
global prevalence of AS is increasing and is expected to
surpass 10 billion by 2100 [1–3].

Degenerative AS has long been considered a chronic
process with gradual deposition of calcium phosphate in the
valve occurring with age. However, emerging evidence has
indicated that this condition is mediated by the interplay
of complex biological processes that include the follow-
ing: inflammation, cell apoptosis, lipids deposition, renin-
angiotensin systemactivation, remodeling of the extracellular
matrix, and bone formation [4–11]. However, the underly-
ing mechanisms that regulate this process remain largely
unknown [12, 13].

MicroRNAs (miRNAs) are small, 21–25-nucleotide, endog-
enous, single-stranded noncoding RNAs that regulate target
gene expression by binding messenger RNAs (mRNAs) and

inhibiting or reducing translation. A single miRNA can
regulate numerous genes, while a single gene can be regulated
by multiple miRNAs [14]. miRNAs play a critical role in
many physiological processes, and there is a growing body
of studies indicating that distinct patterns of altered miRNA
expression are associated with specific disease processes [15–
19]. In the present study, we explore the miRNA expression
signature of degenerative AS to improve our understanding
of the molecular alternations in this disease.

2. Methods

2.1. Tissue Samples Collection and RNA Isolation. Written
informed consent was obtained from all participants of age
and/or via their parents. All procedures in this study were
approved by the Ethics Committees of the First Affiliated
Hospital of Nanjing Medical University and conformed
to the principles outlined in the Declaration of Helsinki.
Tissue samples from four healthy controls were obtained
from prospective multiorgan donors without cardiovascular
pathology in cases in which technical reasons prevented
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Table 1: Characteristics of the participants.

Control AS 𝑝 value
Number 4 4 ns
Male 4 4 ns
Age 41.5 ± 10.4 58.3 ± 4.6 0.0429
LVEF < 50% 0 0 ns
Coronary disease 0 0 ns
Diabetes mellitus 0 0 ns
Medications 0 0 ns
Values are displayed as mean ± standard deviation.
LVEF: left ventricular ejection fraction.

transplantation. Aortic valves from patients with degenera-
tive AS were obtained from four patients who underwent
surgical valve replacement. General characteristics of these
participants are displayed in Table 1. Gross and histological
examination was performed to confirm the presence/absence
of AS in each sample. Valve samples were immediately snap-
frozen in liquid nitrogen upon collection. Total RNA was
extracted using an RNeasy Mini Kit in accordance with the
manufacturer’s protocol (Qiagen, Hilden, Germany).

2.2. RNA Labeling and Array Hybridization. miRNA expres-
sion was evaluated using Agilent miRNA arrays (V2), which
included 723 human and 76 human viral miRNAs from the
Sanger database v.10.1 (Agilent Technologies, Foster City,
CA). Total RNAwas dephosphorylated and ligated with pCp-
Cy3 and subsequently hybridized to the arrays. After samples
were washed and scanned, using Agilent Scan Control soft-
ware, the Agilent Feature Extract software v9.5.3 was used to
analyze the arrays. Each sample was evaluated in triplicate.
miRNA expression data were normalized using a bead-based
assay and the locally weighted smooth spline (LOWESS)
method. After normalization, all expression values were
transformed to a linear scale for statistical analysis.

2.3. Bioinformatic Analysis. GeneSpring 13.1 was used to
identify potential human miRNA target genes, which com-
pared TargetScan, PITA, and microRNAorg databases and
created a Venn diagram to demonstrate relations among the
databases. Gene Ontology (GO) analysis was performed to
investigate the biological processes, cellular components, and
specific molecular function of differentially expressed coding
genes identified. Pathway analysis was used to determine
the involvement of coexpressed genes in different biological
pathways according to Kyoto Encyclopedia of Genes and
Genomes (KEGG).

2.4. Statistical Analysis. Independent Student’s 𝑡-test was
used to determine whether there were any significant differ-
ences between the miRNA expression profiles between two
groups. 𝑝 values less than 0.05 (𝑝 < 0.05) were considered
to be statistically significant. Significant data were further
analyzed by cluster analysis, and the expression profiles were
visualized with GeneSpring 10.0 (Agilent Technologies).
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Figure 1: Unsupervised hierarchical clustering identified two dis-
tinct groups (control versus AS) based on their miRNA expression
profile. Sample names are listed at the top. The names of the
significantly (𝑝 < 0.05) differentially expressed miRNAs are shown
on the right. Twenty miRNAs were expressed differently in target
genes analysis.

3. Results

3.1. Unsupervised Hierarchical Cluster Analysis of miRNA
Microarray Data. miRNA microarray identified 20 miRNAs
with significantly differential expression (>2.0-fold) in AS
samples relative to normal controls. SixmiRNAswere overex-
pressed (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-
5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p)
and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-
5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-
5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-
636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-
5p) were downregulated in aortic tissue from AS patients
(Table 2). Unsupervised hierarchic clustering was performed
based on the 20 differentially expressed miRNAs and dis-
played as heat map (Figure 1).

microRNAorg, TargetScan, and PITA were used to pre-
dict the targets of differentially expressed miRNAs in CAVD
samples using software GeneSpring 13.1. A Venn diagramwas
generated to highlight the relations among the 3 databases.
There are 1010 overlapping genes identified by all 3 programs,
which aremost likely to be targets ofmiRNAs in patients with
AS (Figure 2).

3.2. GO and Pathway Analysis. Gene Ontology (http://gene-
ontology.org/) was used to classify the function of up- and
downregulated genes from 3 structured networks: biological
processes, cellular components, and molecular function.

In this study, differentially expressed mRNAs were
enriched in numerous biological processes including the
following: cell adhesion, homophilic cell adhesion, positive
regulation of transcription, negative regulation of JAK-STAT
cascade, and positive regulation of G1/S transition of mitotic
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Table 2: Six overexpressed and 14 downregulated miRNAs in aortic tissue from AS patients compared to the control group.

Systematic name 𝑝 value FC (abs) Regulation
hsa-miR-193a-3p 0.020637 2.067236 Up
hsa-miR-29b-1-5p 0.0222 11.56757 Up
hsa-miR-505-5p 0.030211 13.22606 Up
hsa-miR-194-5p 0.036807 14.95685 Up
hsa-miR-99b-3p 0.029772 15.98001 Up
hsa-miR-200b-3p 0.021638 20.1747 Up
hsa-miR-3663-3p 0.042986 2.063909 Down
hsa-miR-513a-5p 0.01703 2.238355 Down
hsa-miR-146b-5p 0.040094 2.244855 Down
hsa-miR-1972 0.033015 2.432029 Down
hsa-miR-718 0.033461 2.559791 Down
hsa-miR-3138 0.002648 2.69498 Down
hsa-miR-21-5p 0.004216 3.334316 Down
hsa-miR-630 0.020492 3.564175 Down
hsa-miR-575 0.029949 5.137385 Down
hsa-miR-301a-3p 0.011849 20.77046 Down
hsa-miR-636 0.010177 25.1902 Down
hsa-miR-34a-3p 0.013993 25.44595 Down
hsa-miR-21-3p 0.02304 32.11932 Down
hsa-miR-516a-5p 0.022169 41.76603 Down

TargetScan

microRNAorg PITA

TargetScan

microRNAorg
PITA

7140

12385

1010

285

33575 463 1458

Figure 2: The red, green, and blue sets stand for target genes pre-
dicted by databases microRNAorg, TargetScan, and PITA, respec-
tively.

cell cycle associated with biological processes (Figure 3(a)).
Similarly, the following cellular components were affected:
nucleus, nucleoplasm, and cytoplasm linked with cellular
components (Figure 3(b)), while affectedmolecular functions
include the following: protein binding, zinc ion binding,
and transcriptional activator activity involved in molecular
functions (Figure 3(c)). Moreover, KEGG pathway analy-
sis identified significantly (𝑝 < 0.05) affected pathways

including the following: cAMP signaling pathway, vascular
smooth muscle contraction, regulation of actin cytoskeleton,
neurotrophin signaling pathway, and cGMP-PKG signaling
pathway (Figure 4).

4. Discussion
Recent studies have improved our understanding of the
mechanisms underlying AS [12, 20]. However, there are not
many reports that have investigated the function of miRNAs
as they relate to the pathobiology of AS [21–26].

A microRNA expression signature provides a better
understanding of the mechanisms of a disease [27]. In the
present study, we explored miRNA expression signatures
associated with degenerative AS using miRNA microarray
analysis. Six overexpressed miRNAs (hsa-miR-193a-3p, hsa-
miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-
99b-3p, and hsa-miR-200b-3p) and 14 downregulated miR-
NAs (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p,
hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p,
hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636,
hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were
identified in patients withAS, relative to normal controls, and
their general characteristics and functional annotations were
analyzed using bioinformatic tools.

There were other miRNA microarrays performed about
AS before, and, in these studies, the main cause of AS
is calcification of the aortic valves [20, 22]. However, as
rheumatic fever remains to be the most important etiological
factor in calcific aortic valve disease (CAVD) in China, we
do not choose CAVD patients to reduce confounding factors
when exploring the mechanisms that underlie degenerative
AS.
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Figure 3: GO analysis for differentially expressed mRNAs. (a)–(c) GO analysis according to biological process, cellular component, and
molecular function, respectively, ranked by enrichment score (−log

10
(𝑝 value)).
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Figure 4: Pathway analysis based on the KEGG database. Ranked by enrichment score (−log
10
(𝑝 value)).

As a limitation of our study, the specific pathways affected
by miRNAs and which cause AS remain elusive. Further
studies are required to functionally characterize the role of
specific candidate miRNAs.

In conclusion, the present study improved our under-
standing of the role of miRNAs in degenerative AS. Our
findings provide improved understanding of the molecular
alterations in this disease and may provide potential targets
for future clinical applications.
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