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Abstract

Photosensitive reflex epilepsy is caused by the combination of an individual’s enhanced sensitivity with relevant light
stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized
by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by
intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a
mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing
photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the
neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and
significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug,
is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The
Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these
animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the
role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance.
The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with
induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of
both mono- and polygenic generalized epilepsies in humans.
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Introduction

Genetic reflex epilepsy (GRE), which was first described by

Morgan and Morgan (1939) [1], is a type of idiopathic epilepsy in

which a stimulus of any sensory modality evokes paroxysmal

manifestations only in genetically predisposed subjects. This may

occur in humans and animals: the epileptic manifestations are

similar among various species, and range from a simple

paroxysmal electrical discharge to generalized seizures (see [2]).

Photosensitive epilepsy is the most common reflex epilepsy in

humans; it occurs in 1 per 4000 individuals, with a higher

incidence between 7 and 19 years of age [3]. Several studies have

strongly supported the notion that there is a genetic etiology for

photosensitive epilepsy, but no causative gene or mutation has yet

been identified [4–7]. Two genetic animal models of photosensi-

tive epilepsy have been extensively studied (see [2]): one is the

primate, Papio papio [8], and the other is the Fepi strain of the

Fayoumi chicken [9].

The Fepi chicken was shown to be a reliable model of the

corresponding human disease [10,11]. It carries a recessive

autosomal mutation, epi, which affects homozygous individuals

with both photosensitive and audiogenic reflex epilepsies. The

generated seizures consist of stimulus-locked motor symptoms

(myoclonus) followed by generalized, self-sustaining convulsions.

Electroencephalographic (EEG) recordings normally show spikes

and spike and waves at rest, but these patterns are suppressed

during seizures and are instead replaced by desynchronized

activity patterns [12]. Neurons of the prosencephalon show burst

discharges at rest while those of the mesencephalon show bursts

during seizures, suggesting that each of these brain areas is

responsible for an intrinsic dysfunction [13]. Other investigations,

including studies involving the construction and analysis of chicken

embryonic brain chimeras support these conclusions [11,14–16].

Here, we report the mapping of the epi mutation on a chicken

microchromosome. In this region, the SV2A gene, which encodes a

multifunctional, non-ion-channel protein, was found to harbor a
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nucleotide substitution. This substitution, suggested to be the

causative mutation, leads to aberrant splicing of the SV2A gene,

and is responsible for a dosage effect explaining the phenotype

observed in the Fepi strain.

Results and Discussion

The genomic scan and initial mapped interval
To gain new insight into the molecular mechanisms underlying

photosensitive epilepsy, we sought to identify the mutation

responsible for the photosensitive epilepsy in the Fepi chicken.

We performed a genome-wide linkage analysis on the first

generation of a dedicated pedigree (Fig. S1). Our first genome

scan, which used all available microsatellite markers found to be

informative in our mapping population, excluded the known

genetic map and the first generation of the chicken genome

sequence assembly (February 2004) when we used a recessive

model for the epi mutation. However, this first version of the

chicken genome sequence lacked information for 10 microchro-

mosomes, and the genetic map was incomplete. Subsequently, our

work on completing the chicken genome sequence enabled us to

develop new SNP markers. Genotyping of our populations using

these markers allowed us to find the first evidence of linkage

between the epi mutation and marker SEQ1009, mapped to

linkage group E26C13. This led us to identify microchromosome

GGA25, and develop RH (Radiation Hybrid) and genetic maps

for this microchromosome [17], that was largely under-represent-

ed in the sequence assembly (Fig. 1, Fig. S2). The addition of more

markers allowed us to identify an initial 11.6-cM linked genetic

region falling between markers SEQ1285 and 100A3M13 (Fig. 1).

However, despite the inclusion of GGA25 in the second chicken

genome assembly (May 2006), very little sequence information was

available; only about 1.5 Mb of gapped sequence was available for

this chromosome, which has an estimated size of 11.4 Mb [17].

Candidate genes and the refined interval
Comparative mapping suggested that this region was syntenic

with human chromosome HSA1q21.1-21.2 [17], and additional

markers were developed from chicken chrUn_random sequences

(sequence contigs that could not be placed on a specific

chromosome with any degree of confidence) showing similarities

to this region of the human genome. Linkage analysis with these

additional markers narrowed the interval to a 6.6-cM region for

which relatively few genomic sequences were available from the

chicken assembly (Fig. 1b, Fig. S2, S3, S4). In this region, a single

gene, SV2A (synaptic vesicle glycoprotein 2A), appeared to be a

very strong candidate for the epi mutation based on its potential

involvement in neurotransmission [18] (Fig. S3). Because most of

the SV2A gene sequence was not found in the chicken sequence

assembly (http://genome.ucsc.edu/cgi-bin/hgGateway) nor

among the published chicken genes or EST (http://www.ncbi.

nlm.nih.gov/), we aligned chicken chrUn_random sequences to

those from other model organisms and identified new genomic

chicken SV2A fragments homologous to the mouse sequence (Fig.

S4). Combining this with partial cloning and sequencing of

chicken SV2A provided new SNP markers that were used to

narrow the genetic mapping interval to within a 13-kb portion of

SV2A in the fourth generation of our pedigree, and determined

that the causative mutation laid between markers GCT1888 and

GCT2123 (Fig. 1b and 1c).

Identification of the mutation by sequencing
To examine possible polymorphisms within the coding sequence

of SV2A, we sequenced cDNA from the brains of adult epileptic

animals (i.e., homozygotes), heterozygous carriers, and wild-type

chickens using four overlapping primer pairs (see Methods). No

polymorphism was detected, but we found that the SV2A

transcripts of epileptic chickens showed abnormal alternative

splicing events in exon 3 leading to the presence of an abnormal

splice variant in epi/epi animals (Fig. 2). Sequencing of PCR

products showed that the first 106 base pairs (bp) of SV2A exon 3

were missing in the alternatively spliced variant (Fig. 2); this caused

a frameshift that introduced a premature termination codon 75 bp

before the junction of exons 4 and 5. This could result in decreased

levels of functional SV2A protein, either due to the synthesis of a

truncated protein of 244 amino acids (versus 742 amino acids in

the wild-type mammalian protein [19]), or degradation of the

alternative mRNA via the nonsense-mediated pathway of mRNA

decay [20].

Our results indicated that the mutation was likely to be located

within the intronic sequence, so we sequenced five long-range

PCR products from two heterozygous carrier sires. We identified a

dinucleotide mutation in the acceptor site of intron 2 (c581-

4CC.TG) that could explain the abnormal splicing observed in

the mRNA samples from epileptic chicken brains. To confirm this

candidate mutation, the relevant fragment of SV2A intron 2 was

sequenced from 185 wild-type chickens from 16 different lines, 40

heterozygous carriers, and 145 epileptic chickens. Our results

revealed that all of the wild-type individuals carried the CC allele,

whereas the carriers were heterozygous (CC/TG) and the

epileptics were homozygous for the TG allele (Fig. 3a). We further

found that the candidate mutation is located in a region that is

conserved across species (Fig. 3b), and further noted that while a

CRT mutation was often observed in other species, no other

instance of the CRG mutation was found. We thus propose that

the CRG mutation is the causative mutation for photosensitive

epilepsy in the Fepi chicken. The obtained sequence is available at

NCBI (Accession Number JN232407).

Characterization of the mutation by expression and in
silico analyses

The identified abnormal splicing event is fully associated with

the epileptic phenotype (Fig. 2a). Interestingly, homozygous epi

mutants express the wild-type mRNA, and both heterozygous

carriers in this study and mice hemizygous for SV2A [18] fail to

display epilepsy. This suggests that a half dose of the wild-type

transcript is sufficient to avoid seizure. Notably, however, SV2A

knock-out mice experience severe seizures and die by three weeks

of age, showing that the total absence of the transcript is lethal

[18]. Although the level of normal SV2A transcripts is much lower

in homozygous epi mutants as compared to epi/+ chickens, this low

level is sufficient to circumvent lethality. Indeed analyses of SV2A

expression levels by relative real-time PCR showed that there was

a genotype-dependent differential expression of the gene (Fig. 4a

and b). Heterozygous carriers displayed two-fold lower expression

compared to the wild type (0.017+/20.006 versus 0.035+/

20.009), while epileptic chicken brains showed a very low level

of SV2A mRNA (0.0019+/20.0005), i.e., 25-fold lower than that

of the wild type and 12.5-fold lower than that of the heterozygous

carriers. Consistent with our relative real-time PCR analysis,

Northern blot analysis showed a weak signal for the normal 4.1-kb

mRNA and no minor band in epi/epi chickens (Fig. 4c). In situ

hybridization analyses performed on brain cross sections con-

firmed that the level of SV2A transcripts was reduced in epi/epi

versus wild-type chickens (Fig. 4d).

The use of human splicing finder software [21] for in silico

analysis of the acceptor site (3’ss, splice site) of intron 2 of SV2A

showed that, consistent with our experimental data, the mutant

Causative Gene for Chicken Photosensitive Epilepsy

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e26932



(TG) allele had significantly lower constitutional 3’ss strength

compared to the wild-type (CC) allele (Fig. 4). Furthermore,

substitution of the first C nucleotide with a T to create the

hypothetical TC allele did not decrease the strength of the

constitutional 3’ss, whereas substitution of the second C with a G

to create the hypothetical CG allele yielded a result similar to that

generated by the candidate mutation, regardless of whether we

were using the HSF matrix [21] or the MaxEnt matrix [22] (Fig.

S5). This supports the hypothesis that the CRG mutation is the

real causative mutation of the epi phenotype, resulting in an

abnormal splice variant.

The proportion of disease-causing mutations involving splicing

defects has been estimated in different studies, ranging from 10 to

60% [23,24]. Two recent analyses estimate to about one-third the

percentage of mutations of this type [25,26], being involved in a wide

range of disorders [27]. Among them, mutations inducing seizure

have already been observed, for example in the ALDH7A1 [28] or

MTHFR genes [29]. Beyond nucleotide mutations causing abnormal

Figure 1. Fine mapping of the mutation that causes epileptic seizures in the Fepi chicken. (a) Genetic map of GGA25. (b) Haplotype
analysis of animals from generation 1, i.e., the offspring of epi/epi dams crossed with carrier sires. The colors represent the origins of the chromosome
haplotypes, as determined by SNP genotyping: red, epileptic line (Fepi); green, other line; gray, unknown origin (non-informative markers). An initial
interval of 11.6 cM was defined between markers SEQ1285 (individuals 1 and 2) and 100A3M13 (individuals 3 and 4). Individual 5 alone restricted the
interval to a 6.6-cM region having an estimated size of 650 kb based on radiation hybrid mapping data [17]. (c) Two recombinant animals obtained in
the fourth generation restricted the interval to 0.5 cM (two-point genetic distance calculation based on the pedigree data). (d) This distance
corresponded to 13 kb on the sequence assembly; the linked region fell between exons 2 and 9 of the SV2A gene. Exons 12 and 13 and intron 12
(dotted lines) were not sequenced. The vertical double lines indicate introns that were only partially sequenced.
doi:10.1371/journal.pone.0026932.g001
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splicing, an increasing number of studies highlight the implication of

splicing variations in gene expression regulation. This is manifest for

neuronal physiology: several studies underline the importance of

alternative splicing in the development of neurological disorders such

as epilepsy by affecting different genes, like GPHN, encoding the post-

synaptic protein gephyrin [30], SCN1A (type 1 sodium channels) [31],

or the bromodomain-containing BRD2 gene [32]. The recent analysis

of a mouse with a central nervous system-specific deletion of the

splicing-regulator Rbfox1 confirms the importance of splicing

regulation in neuronal physiology [33].

Figure 2. Identification of an abnormal splicing event in the SV2A cDNA of the Fepi chicken. (a) RT-PCR of SV2A in wild-type, carriers and
epi/epi individuals using primers GCT1964U and GCT2146L showed the presence of an additional, smaller band in individuals homozygous for the epi
mutation. (b) Direct sequencing of the PCR products (using primers GCT1964Lrev and GCT2044L) from animals of the three genotypes showed
identical sequences up to the end of exon 2. Thereafter, a mixture of sequences was observed only in the homozygous epi/epi individuals. (c)
Separate sequencing of the two bands confirmed that both corresponded to the SV2A cDNA, but the shorter fragment had a 106-bp deletion starting
at the beginning of exon 3. The presence of an (AG) dinucleotide (red highlight) at the 39 end of the deleted fragment suggested the possibility of a
mis-splicing event.
doi:10.1371/journal.pone.0026932.g002
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Testing the effect of levetiracetam
The SV2A protein is the binding site for levetiracetam

(KeppraH; UCB Pharma S.A). This antiepileptic drug [34] has

documented effects on seizures in the photosensitivity model [35].

Our present data suggest that epi/epi chickens survive because

they still express low levels of normal SV2A yet not high enough to

protect against seizure. If this statement is true we expect that epi/

epi chicken will still be sensitive to levetiracetam and that the

antiepileptic drug will at least partially rescue the phenotype. We

tested the antiepileptic effect of levetiracetam in our chicken model

and found that it reduced the number of seizures (odds ratio 0.03,

p = 9e-07), delayed the appearance of myoclonus (from 22.8 s to

25.1 s on average, p = 2e-03) and reduced the duration of seizures

(from 16.2 s to 10.7 s on average, p = 2e-08) when we compared

epi/epi chickens treated with 50, 100 or 200 mg/kg versus those

receiving a placebo. We further found that the effect partially

persisted for a few days after the injection period. These findings

indicate that levetiracetam has an anticonvulsant effect in the

chicken model supporting our proposal that a low level of SV2A

allows survival but is not sufficient to protect against seizure, or

suggesting another pathway of action of this drug. Thus, the

sensitivity of the Fepi chicken to levetiracetam reinforces the

interest of this model, as other studies have shown lower effects of

levetiracetam in mice expressing only one copy of SV2A [36] and

in chronic-treated epileptic rats [37] or humans [38,39]. As

previously noted [40], the mechanism of action of SV2A and its

interaction with levetiracetam have not yet been fully elucidated

[41] and the Fepi chicken model could be used for such studies. A

recently developed mouse model for epilepsy exhibits a triple

knock-out of synapsin genes [42] and shows indeed a relationship

between the efficiency of the levetiracetam treatment and the level

of SV2A receptor. The Fepi chicken brings a unique opportunity

to focus on the role of SV2A alone and to study quantitative effects

of SV2A expression in a fully viable vertebrate.

In sum, we herein show that photosensitive epilepsy in the Fepi

chicken is associated with an abnormal splicing event affecting the

SV2A gene, which leads to significantly decreased expression in

epileptic (homozygous) chickens. We suggest that the IVS2-

4CC.TG substitution in SV2A (most likely the IVS2-3C.G) is the

causative mutation. Our results support the presence of a gene dosage

effect: the quantity of SV2A present in heterozygous animals is

sufficient to prevent seizures, while the level present in homozygous

animals is not. We thus identified for the first time the molecular basis

of a genetic reflex epilepsy, which should pave the way to functional

in-depth studies of this monogenic epilepsy model.

Materials and Methods

Ethics statement
This study was carried out at INRA (Pôle d’Expérimentation

Avicole de Tours, F-37380 Nouzilly, authorization B37-175-1,

2007) in accordance with European Union Guidelines for animal

care, under authorization 37-002 delivered to D. Gourichon by the

French Ministry of Agriculture. Animal procedure was approved by

Departmental Direction of Veterinary Services of Indre-et-Loire.

Animals
The experimental pedigree, derived from a Fayoumi ancestor,

comprised two half-sib families: two heterozygous sires from an

epileptic family were each crossed with five or six affected

homozygous dams, and yielded a total of 209 offspring. Blood

samples were collected from all individuals of the experimental

pedigree (born in 2002) and DNA was extracted. Samples were

also collected from animals of the subsequent generations (2003:

Figure 3. Identification of a dinucleotide mutation that causes reflex epilepsy in the Fepi chicken strain. (a) Sequencing
electropherograms of the SV2A intron 2 fragment showing the candidate dinucleotide mutation (green and black arrows). Abbreviations: wild-type,
CC; heterozygous, CC/TG; epileptic, TG. (b) Multalin [59] sequence comparison between mammals, wild-type chickens and epileptic chickens in the
candidate mutation region. Colors: high degree of consensus (red), low degree of consensus (blue) and single change (black). The second C
nucleotide (black arrow) is highly conserved across the various species, whereas the first C nucleotide (green arrow) was found to be replaced by a T
(in dog and cow) or a G (in cat, mouse and megabat), suggesting that the former is more likely to be responsible for the epileptic phenotype.
doi:10.1371/journal.pone.0026932.g003

Causative Gene for Chicken Photosensitive Epilepsy

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e26932



n = 18; 2004: n = 28; 2005: n = 151; 2006: n = 30; 2007: n = 134;

2008: n = 120; 2009: n = 146). The wild-type animals used to

confirm the causative mutation came from 16 different lines: two

lines differing for coccidiosis resistance (originating from White

Leghorn and Fayoumi [43]); two divergent lines selected for meat

quality (originating from broiler lines [44]); two divergent lines

selected for their growth curves (originating from broiler lines

[45]); two divergent lines selected for residual feed intake

(originating from Rhode Island Red [46]); three divergent lines

selected for salmonella resistance [originating from White

Leghorn; these were experimental inbred lines from the USDA

Avian Disease and Oncology Laboratory (East Lansing, MI) and

were provided by the Institute for Animal Health (IAH; Compton,

UK)]; the East Lansing backcross (originating from Red Jungle

Fowl and White Leghorn [47]); one inbred line (originating from

Leghorn [48]); one commercial broiler line; one experimental

Naked Neck line (originating from a laying strain [49]) and one

experimental line selected for resistance to Rous sarcomas

(originating from White Leghorn [50]).

Phenotyping
All animals in the experimental population were tested twice for

the photosensitive GRS (Genetic Reflex Seizure), with the

exception of animals born in 2005, which were tested only once.

Figure 4. Expression analysis of SV2A in the Fepi chicken strain. (a) Real-time relative RT-PCR analysis showing the expression of SV2A versus
that of b-actin in chicken embryos from the three genotypes (wild-type, carriers and epi/epi; n = 5 for each). The average SV2A expression was found
to be higher in wild-type chickens compared to carriers and epileptic chickens, and in carriers compared to epileptics (p,0.003, Kruskal-Wallis test).
(b) The relative expression in each tested embryo is shown in color by genotype: green, wild-type; orange, carrier; and pink, epi/epi. (c) Northern blot
analysis showing that SV2A expression is highest in wild-type embryos and adults. Size estimations are indicated in kb. (d) In situ hybridization
analysis of brains cross-sections from wild-type and epi/epi 17 day-old chicken embryos (E17). SV2A is clearly expressed in the mesencephalon of the
wild-type embryonic brain (black arrow) but not in epi/epi embryos.
doi:10.1371/journal.pone.0026932.g004

Causative Gene for Chicken Photosensitive Epilepsy
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The first phenotyping test took place at birth and the second one

at one week (2009), three weeks (2002), six weeks (2007 and 2008)

or eight weeks (2003–2006) of age. Tests consisted of intermittent

light stimulation at 14 flashes per second, which is the most

effective epileptogenic frequency for Fepi chickens [51]. Animals

were classified as epileptic if they displayed a seizure during at least

one of the two tests.

Genotyping
PCR amplifications and genotyping of markers 100A3M13,

SEQ1285 and GCT1888 (Table S1) were performed through SSCP

(Single Strand Conformation Polymorphism) or PCR-RFLP (Re-

striction Fragment Length Polymorphism) as previously described

[17]. Genotyping of markers GCT2123 and GCT2044 (Table S1)

was performed via SSCP (Single-Strand Conformation Polymor-

phism) analysis on an ABI 3100 sequencer (Applied Biosystems), as

described in Applied Biosystems Publication 116AP01-02. Marker

GCT2272 (Table S1) was genotyped by direct sequencing using an

ABI 3730 sequencer (Applied Biosystems). Linkage analysis was

performed using the CriMap version 2.4 software [52]. The ‘‘build’’

option was used to order markers within the linkage group, while the

‘‘flips’’ option was used to confirm the order of the markers.

Sequencing
Sanger technology. Twenty-four PCR fragments were

amplified on an ABI 9700 thermocycler (Applied Biosystems) from

cDNA generated from two wild-type chickens, two carriers and two

epileptic animals. Amplifications were performed using a GC-rich

PCR system (Roche Applied Science) and primer pairs GCT1967U-

GCT1694L, GCT1964U-GCT2146L, GCT2146U-GCT2044L

and GCT2151U-GCT2254L (Table S1). The fragments were

purified using 0.5 U of SAP (Shrimp Alkaline Phosphatase,

Promega) and 0.5 U of exonuclease I (NE Biolabs), sequenced

using a Big Dye Terminator v3.1 Kit (Applied Biosystems), and

analyzed on ABI 3730 or ABI 3100 sequencers (Applied Biosystems).

454 Technology. Five long-range PCR fragments were

amplified on an ABI 9700 thermocycler (Applied Biosystems)

from the two heterozygous sires, using the Long PCR Enzyme Mix

(Fermentas) and primer pairs SNP36U-GCT1964L, GCT1964U-

GCT2244L, GCT2146U-GCT2147L, GCT2148U-GCT2152L

and GCT2152U-GCT2245L (Table S1). The resulting fragments

were purified and pooled all together at equal concentrations.

These samples were then sequenced using the Roche 454 Life

Sciences Genome Sequencer FLX (454 Life Science, Roche),

following the manufacturer’s instructions with the following kits

(454 Life Science, Roche): a shotgun library was prepared with

1 mg genomic DNA using the Titanium General Library

Preparation Kit. Nebulized, purified, and adaptor-linked DNA

fragments were amplified using the GS FLX Titanium LV

emPCR Kit, and sequencing on the FLX Genome Sequencer was

performed using the GS FLX Sequencing Kit, Titanium Reagents

XLR70. A total of 245,625 reads were obtained, with an average

length of 340 bases. Contig building was performed using the

AMOS comparative assembler [53].

RNA extraction
Total RNA was extracted from adult and embryonic (E17)

chicken brains according to the technique described by Le Meur

et al. [54], with slight modification [55].

Relative real-time PCR
The utilized cDNA were generated in 20-ml reaction volumes

containing 2 mg of total RNA, 1 mM of polydT primer (Roche),

200 U of Superscript II reverse transcriptase (Invitrogen), 40 U of

RNasin (Promega) and 0.04 mM of dNTP. SV2A expression was

analyzed using the relative expression method described by

Drouilhet et al. [56], using the primers listed in Table S1. The

level of ACTB (b-actin) gene expression was used to normalize the

amount of each investigated transcript. PCR was performed in 10-

ml reaction volumes using LightCyclerH480 SYBR Green I Master

(Roche) and 3 mM each of the forward and reverse primers. PCR

was performed in a LightCycler 480 instrument (Roche). All

samples were analyzed in duplicate.

Northern blot analysis
RNA was electrophoretically separated on a denaturing

formaldehyde agarose gel, transferred to a nylon membrane

(Millipore) and immobilized by UV irradiation. The utilized 33P-

labeled probes were generated from two PCR products repre-

senting the SV2A cDNA and one PCR product representing

GAPDH (reference gene) using the Prime-a-gene protocol

(Promega), and purified on microspin G50 columns (GE

Healthcare). For Northern blotting, the hybridization buffer was

composed of 56SSC, 56Denhardt’s solution and 0.5% SDS, and

the washing buffer was composed of 0.26 SSC and 0.1% SDS.

The membranes were pre-hybridized for 2 h at 65uC with

hybridization buffer and 10 mg/ml sonicated salmon sperm

DNA, and hybridized overnight at 65uC with the relevant 33P-

labeled probe (2 000 000 CPM/ml of hybridization buffer). The

membranes were then washed twice (15 minutes and 5 minutes,

respectively) with washing buffer, and exposed to screens for 24 h

(GAPDH probe) or 7 days (SV2A probes). The screens were then

scanned with a Fujibas 5000 instrument (Fuji), and results were

analyzed using the ArrayGauge V1.3.S software (Fuji).

In situ hybridization analysis
In situ hybridization was performed as previously described [57]

on Vibratome-cut (VT 1000S Vibrating Blade Microtome, Leica)

50-mm brain cross sections obtained from E17 embryos.

Nonradioactive RNA in situ hybridizations were performed using

digoxigenin-UTP (Roche) and a labeled RNA probe correspond-

ing to a 680-bp PCR fragment from the SV2A cDNA.

Testing the effect of levetiracetam
The antiepileptic effect of levetiracetam (KeppraH, UCB

Pharma) was tested on 71 three to five month-old Fepi chickens

(identified as having ILS_induced seizures at birth). All chickens

were exposed to ILS once a day for 21 days. On day one, all

showed ILS-induced seizures (baseline control). Over the following

10 days, all animals received one intraperitoneal injection per day

as follows: 18 animals received 200 mg/kg of levetiracetam; 17

received 100 mg/kg; 18 received 50 mg/kg; and 18 control

animals received a placebo injection. Each treatment category

(200, 100, 50, 0) included equal proportions of males and females.

No animal was treated during the last 10 days of ILS testing. The

influence of levetiracetam treatment on the stimulus-locked

myoclonus and the generalized convulsions of the photosensitive

GRS was evaluated using generalized linear models implemented

in the glm function of the R software, version 2.9.0 [58]. The

number of seizures for each animal over a given phase of the

experiment (during treatment and following treatment) was

modeled using a binomial distribution, and linked to factors using

the logit function. The delay before seizure initiation, the duration

of the myoclonus, and the duration of the convulsions were

modeled using gamma distributions and linked to the factors using

the identity function. Sex was included as an additive co-factor in

the analyses, but no significant difference was found.
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Supporting Information

Figure S1 The Fepi mapping pedigree. At generation 0

(2001), two heterozygous sires from an epileptic family were each

crossed with five or six affected homozygous dams, giving rise to a

total of 209 offspring born in 2002. Successive crosses were

performed each year thereafter, for seven years, in an attempt to

obtain offspring with crossover events close to the epi mutation.

(DOC)

Figure S2 Available chicken genomic sequences repre-
senting the genetic interval containing the epi mutation.
The epi mutation was localized to a region of GGA25 that was

only poorly covered by the chicken genome assembly, where just

over 1.5 Mb of gapped sequence represented this chromosome,

which has an estimated size of 11.4 Mb. Alignment of our

framework genetic map with the sequence assembly of GGA25

showed that only one side of both our initial GCT1888-SEQ1285

interval and our refined GCT1888-GCT2123 interval was present

in the assembly, and that there were many gaps representing

missing sequences. GCT1888 is located on GGA25, while

GCT2123 had been designated to chrUn, which contains

sequences that have not yet been attributed to a specific chicken

chromosome. (From the UCSC genome browser: http://genome.

ucsc.edu/cgi-bin/hgGateway.)

(DOC)

Figure S3 Identification of additional sequences by
comparison to the human genome. Sequence searching

with our 6.6-cM mapped genetic interval (markers GCT1888 and

SEQ1285, black arrows) identified a similar region in the human

genome, located on HSA1q21.2. This region represents 3.94 Mb

of HSA1, most of which does not correspond to GGA25 (in gray

and boxed in the chicken Alignment Net), but rather to GGA8

(orange) or GGA1 (brown) and other chicken chromosomes. This

restricted the candidate region to sequences near GCT1888,

which contained a single candidate gene: SV2A. (From the UCSC

genome browser http://genome.ucsc.edu/cgi-bin/hgGateway.)

(DOC)

Figure S4 Finding additional sequence information for
the chicken SV2A gene. (a) Chicken SV2B (GGA10, yellow)

and a portion of SV2C (GGAZ, black) aligned with human SV2A,

but only a small portion of the sequence was available for chicken

SV2A (GGA25, gray). (b) When we observed the alignment of

available chicken sequence against that from the mouse genome

assembly, however, we were able to identify additional chicken

sequences from chrUn_random (contigs 1773.1 and 1773.2,

March 2006 assembly) that aligned with the mouse SV2A gene.

This additional sequence information was used to develop new

SNP markers.

(DOC)

Figure S5 Analysis of the splicing acceptor site using the
Human Splicing Finder software. The first graph (a) shows

the acceptor site strength for each putative allele, as determined

using the HSF matrix, which considers the last 12 nucleotides of the

intron and the first nucleotide of the following exon. Below the

threshold value of 80, the acceptor site is considered non-existent.

The second graph (b) shows the acceptor site strength calculated

based on the MaxEnt matrix, which considers the last 20

nucleotides of the intron and the first three of the following exon.

Below a threshold of 0, the acceptor site is considered non-existent.

CC: Wild type allele; TC: Hypothetical recombinant haplotype;

CG: Hypothetical recombinant haplotype; TG: Mutant allele (epi).

(DOC)

Table S1 Markers used for genetic and expression
analyses. Positions (Start and End columns) are given in Mb

relative to WUGSC 2.1 chicken sequence assembly (UCSC) or,

when available, relative to the SV2A gene structure. Markers used

for genetic analysis are labeled with *, primers marked ‘‘a’’ are

extended with M13 probe (59-GTTTTCCCAGTCACGA-

CGTTG-39) and primer marked ‘‘b’’ is extented with rM13

probe (59-AGGAAACAGCTATGACCATGAT-39). Markers

used for relative real time PCR analysis are labeled with #.

(DOC)
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