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Differential equation methods for simulation of 
GFP kinetics in non–steady state experiments

ABSTRACT Genetically encoded fluorescent proteins, combined with fluorescence micros-
copy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods 
for extraction of quantitative information from these data are based on the mathematics of 
diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the 
assumption that the cellular system being studied is in a steady state, that is, the assumption 
that all the molecular concentrations and fluxes are constant for the duration of the experi-
ment. Here, we derive new tracer kinetic analytical methods for non–steady state biological 
systems by constructing mechanistic nonlinear differential equation models of the underlying 
cell biological processes and linking them to a separate set of differential equations govern-
ing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new 
application of the fundamental tracer principle of indistinguishability and, unlike current 
methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach 
thus provides a general mathematical framework for applications of GFP fluorescence micros-
copy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered 
experimental protocols involving physiological or pharmacological perturbations (e.g., 
growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and me-
tabolites) that initiate mechanistically informative intracellular transients. When a new steady 
state is achieved, these methods automatically reduce to classical steady state tracer kinetic 
analysis.

INTRODUCTION
Fluorescent probes, with their characteristic rapid response times 
and enormous potential dynamic range, have long been flexible 
and productive sensors of pivotal cell physiological and biophysical 
variables (Tsien, 1980; Paradiso et al., 1984; Farkas et al., 1989). In 
cell biology, the power of fluorescence imaging has emphasized the 
use of fluorescent tags or tracers to follow the cellular itineraries of 

specific molecules. Moreover, the possibility—unique to fluores-
cence—of switching off the tracer on command, by photobleaching 
has been the source of many cell biological insights. Extraction of 
useful information about diffusion by quantitative analysis of photo-
bleaching recovery kinetics dates from classic work published in the 
late 1970s (Axelrod et al., 1976; Edidin et al., 1976). With the advent 
of green fluorescent protein (GFP) genetic constructs (Chalfie et al., 
1994; Heim et al., 1994) it became possible to extend the determi-
nation of diffusion coefficients to intracellular membranes and com-
partments (Cole et al., 1996; Seksek et al., 1997; Partikian et al., 
1998). Consequently, analysis of photobleaching kinetics for studies 
of protein diffusion and binding has been extensively developed. 
Excellent methods papers and reviews are available (Axelrod et al., 
1976; Sprague and McNally, 2005; Beaudouin et al., 2006; McNally, 
2008; Mueller et al., 2010; Stasevich et al., 2010; Blumenthal et al., 
2015). Typically, experiments of this kind involve data collection on 
a time scale of seconds, and the principal challenge is to separate 
the kinetics of binding from the kinetics of diffusion.

A transition soon followed from studies of diffusion/binding to 
studies of endomembrane and protein trafficking on time and space 
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in nutrient or ionic composition by replacement of the culture me-
dium. Perturbations are chosen to activate or inhibit processes of 
interest to the investigators. They induce changes that drive the 
cells out of their initial steady state, through a transient whose dura-
tion is generally not known a priori, and possibly into a new steady 
state, if the perturbation is sustained or the system is nonlinear and 
bi- or multistable.

Because the underlying cell biological system is no longer in 
steady state, we naturally end up with two closely related systems of 
differential equations. And those close relations are the key to data 
analysis. The first system we will call the chemical system differential 
equations, and the second system we refer to as the non–steady 
state tracer differential equations.

Chemical system differential equations. The chemical system 
equations are so-named to emphasize that they represent the 
chemical kinetics of each process in the model so that the dynamics 
of each state can be calculated based on changes in its inputs and 
outputs. It is helpful to include both native molecules and traced 
molecules in each chemical system state in order to account for 
those, not infrequent, cases where the addition of tracer molecules 
is substantial enough to perturb the steady state. This happens, for 
example, when transfection of the GFP-encoding genetic construct 
results in overexpression of the encoded protein, and also in mod-
ern stable isotope tracer experiments where a large dose of tracer-
labeled molecules is often necessary to ensure the tracer is detect-
able in its target pathways.

In general, the kinetic laws or rate laws for these processes (P) are 
nonlinear functions, P(S(t)), where S(t) is the state vector of the sys-
tem. In other words, the rate laws tell us that the fluxes (molecules/
min/cell) depend on the current abundances (molecules/cell) or con-
centrations (nM) of at least one, and often many, of the molecules 
present in the cell. A simple example of such a rate law is the Michae-
lis-Menten equation with a competitive inhibitor (Sauro, 2012). The 
well-known characteristic constants, kcat, Km, and Ki quantify the rela-
tionships among the molecules that cause changes in the flux through 
an enzyme. Applying conservation of mass to each molecule in the 
modeled system, we obtain a system of nonlinear ordinary differen-
tial equations called the chemical system differential equations:
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where Sj (in, say, molecules/cell) is the jth element of the chemical 
system state vector, S(t), Pji is the flux (in, say, molecules min−1 cell−1) 
into the jth state from the ith state, and n is the number of states. 
There is, of course, no need for the state vector, S(t), to include every 
molecule in every pathway your cell expresses. On the other hand, 
S(t) must include all the molecules whose abundances or concentra-
tions you wish to plot, as well as all those you plan to measure or 
whose concentrations you plan to manipulate experimentally.

Applying the fundamental assumption of tracer kinetics, namely, 
indistinguishability between parent molecule (e.g., protein of inter-
est) and tracer molecule (e.g., GFP-tagged protein of interest), we 
then write all the tracer fluxes, Pij

tracer (in, say, tracer molecules min−1 
cell−1), as
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S
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j

j
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Notice, particularly, that the coefficient ( SP t
S t
( ( ))

( )
ij

j
) of S j

tracer in Eq. 3 is 
not a constant. Because the experiment disturbed the steady state, 

scales much greater than those for which diffusion is a concern 
(Presley et al., 1997). Once feasibility was established, a natural next 
step was quantitative analysis of the trafficking kinetic data (Hirsch-
berg et al., 1998). Thus, the transition was made from the mathe-
matics of diffusion and binding to the mathematics of tracer kinetics. 
Closed-form solutions, so effective for simple diffusion and binding 
models, are impractical or even impossible as complexity increases, 
and therefore gave way to the ordinary differential equations of 
compartmental analysis.

RESULTS AND DISCUSSION
Steady state kinetic analysis
Quantitative analysis of GFP-tagged protein kinetics has generally 
assumed, either implicitly or explicitly, that the cells, from which the 
data are collected, are in a steady state (Hirschberg et al., 2000). A 
simple definition of steady state is that nothing is changing with 
time. A more technical definition is that dSj/dt = 0 for j = 1,…,n, 
where the Sj are the individual state variables in the biological sys-
tem of interest. In a cellular system, state variables (or simply states) 
are the concentrations (nM) or abundances (molecules/cell) for each 
molecule in each cellular compartment (e.g., cytosol, endoplasmic 
reticulum [ER], nucleoplasm, mitochondrial matrix, plasma mem-
brane). In any given experiment, investigators are typically inter-
ested in a subset of the full collection of states, but the size of that 
subset seems to increase every year as cell biology aims at more 
and more comprehensive models of cellular function. The assump-
tion of steady state is often entirely reasonable. If the culture me-
dium contains the essential substrates, degradation of all molecules 
is balanced by synthesis, entropy is being produced at the minimum 
rate, and the concentrations, fluxes, and membrane potentials are 
constant. If a steady state is attained, and the other requirements for 
classical tracer kinetics are met, then the dynamics of the tracer are 
guaranteed to be described by a model consisting of linear ordinary 
differential equations with constant coefficients. We will call these 
the steady state tracer differential equations:
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==
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dt k S k Sj

ji i ij j
i

n

i

ntracer
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(1)

where S j
tracer represents the abundance of the tracer (e.g., GFP-fu-

sion protein) in the jth compartment (e.g., ER lumen) of the model 
and kij is the rate constant characterizing the process that transfers 
the tracer molecule into compartment i from compartment j. These 
rate constants quantify the fraction of the molecules in compart-
ment j that move to compartment i per unit time and have units of 
inverse time (e.g., min−1). Informally, a rate constant of 0.025 min−1 
can be reported as 0.025 pools/min, or 2.5% per minute. These 
forms are entirely equivalent.

The steady state tracer differential equations 1 express conserva-
tion of mass for each tagged molecule in each cellular compart-
ment; the first term on the right-hand side is the sum of all the fluxes 
(molecules min−1 cell−1) entering compartment j and the second 
term is the sum of all the fluxes leaving. Moreover, the underlying 
biochemical–cell biological system, because it is (or is assumed to 
be) in steady state, requires only linear algebra for its analysis 
(Berman et al., 1962; Jacquez, 1996).

Extension to non–steady state experiments
Although steady state analysis is extremely useful, cell biological 
and biochemical experiments often involve perturbations of the 
steady state. These include changes in temperature or pH; addition 
of drugs, hormones, or growth factors to the medium; and changes 
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strong promoters, like CMV or SV40, substantial overexpression is 
not uncommon. Even when this level of expression does not alter 
your protein’s localization or function, the experiment is immediately 
a non–steady state perturbation. Every cellular process for which 
this protein was limiting will undergo an increase in its effective Vmax 
until a new steady state is reached or some other molecule becomes 
limiting.

Suppose the plasmid-encoded protein is cytosolic and its sym-
bol in the model state vector is Sm. To include transcription and 
translation from the transfected plasmid in the model equations we 
modify both the chemical system differential equations and the 
non–steady state tracer differential equations by adding the same 
protein translation process to the right-hand sides:
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Units for this added term are flux units (e.g., molecules min−1 
cell−1). It is important to add Pm

tracer to the chemical system equations 
because this accounts for possible overexpression and resultant 
nonlinearities such as cooperativity and saturation. Including this 
ongoing production term often explains unanticipated fluorescence 
signals late in an experiment. When ongoing production obscures a 
key feature of your data, photoactivation (see below) can be a useful 
workaround.

Modern modeling software tools support experimental pertur-
bations at specific times and over specific intervals of time relative 
to a user-defined zero of time. In this case, the time of transfection 
would be specified. This is the significance of ≥t t transfectionin Eqs. 5 
and 6.

Generally, little attention is paid to the tracer distribution phase, 
the period between ttransfection and the start of the experiment. The 
usual rationale is that the fluorescence data will always be normal-
ized to whatever value is attained at the start of the “real” experi-
mental protocol. It is, however, good practice to record the clock 
times of transfection and experiment start and to keep the differ-
ence between them as constant as possible for different experimen-
tal days. The data analyst will want to know the duration of the 
distribution phase because Pm

tracer must be “turned on” at some 
fixed time, ttransfection, relative to the start of the first perturbation 
(e.g., drug addition, fluorescence recovery after photobleaching 
[FRAP]) of the experimental protocol and changing that time can 
change the contribution of slow pools to the model solution. Imag-
ine, for example, that your protein participates in the formation of 
two different complexes. Imagine further that one of those com-
plexes is relatively labile and the other is so stable that FRAP studies 
generally report an immobile fraction. The three FRAP curves in 
Figure 1 are simulations of three different tracer distribution times 
(8 , 12 , and 24 h) for exactly the same binding and bleaching para-
meters. Short tracer distribution times clearly underestimate the 
magnitude of the slow (“immobile”) binding pool, and variable dis-
tribution times will add unnecessary noise to your results. It is also 
true that different amounts of incorporated plasmid will lead to dif-
ferent levels of expressed protein, which can be important if chang-
ing expression changes the identity of the rate-limiting step due to 
nonlinearity, but in the absence of such a nonlinearity, consistency of 
tracer distribution time is the more important aspect of experimen-
tal design when “immobile” fractions are nonzero.

all n of the chemical system states, including Sj, are liable to be 
changing in time. If we had remained in a steady state, both Pij and 
Sj would be constant and the non–steady state tracer differential 
equations would revert to their classical linear constant coefficient 
form with =P k Sij ij j

tracer tracer  as introduced above in Eq. 1. In other 
words, the equations for non–steady state tracer kinetics automati-
cally reduce to those for classical tracer kinetics whenever the un-
derlying biological system returns to a steady state.

Importantly, Eq. 3 is the critical link between the chemical system 
differential equations and the non–steady state tracer differential 
equations; it calculates each tracer flux based on the non–steady 
state chemical system flux, and the probability, S S/j j

tracer , that a mol-
ecule in the source state is a tracer molecule. Notice that drugs and 
other experimental perturbations do not appear explicitly in the 
non–steady state tracer differential equations except insofar as their 
effects are conveyed by causing perturbations of chemical system 
states and fluxes in Eq. 3. Tracer fluxes thus change automatically 
and correctly in response to perturbations of the underlying chemi-
cal system. Eq. 3 is the key result of this work.

Non–steady state tracer equations. Now applying conservation 
of mass to all the tracers, the non–steady state tracer differential 
equations become
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where the Pij
tracer are the tracer fluxes from Eq. 3.

When only one tracer molecule is used, Eqs. 2, 3, and 4 provide 
a complete mathematical model for the dynamics of both the tracer 
and the underlying non–steady state cell biological system. More 
tracers in the same experiment are easily accommodated by includ-
ing a set of Eqs. 3 and 4 for each new tracer. When multiple tracers 
are used in the same experiment, the modeler’s work is easier if the 
software provides tools to specify which states and which processes 
are traced by each tracer. Some of these assignments can be made 
computationally, but especially for processes that yield two or more 
products, no algorithm can make these decisions as efficiently as a 
human investigator.

Applying experimental protocols to the 
mathematical model
Equations 2, 3, and 4 are extremely general; they represent not only 
your current understanding (or theory) of how the biological system 
works, but also provide the foundation upon which any number of 
specific experiments can be built. Because the goal of kinetic mod-
eling (Beard and Kushmerick, 2009; Phair, 2014) is to test a theory 
against the results of particular experiments by comparing model 
solutions to experimental data, we need an explicit procedure for 
modifying the model equations to reflect exactly what was done, 
experimentally, to the cell biological system we are studying. The 
simplest and least error-prone approach is to replicate, in the model 
equations, exactly what was done in the laboratory. In effect, this 
translates the time line of the experimental procedures to a time line 
of quantitative changes imposed on the model equations. How to 
do this for each of the most widely applied fluorescent tag experi-
mental designs is the topic of the next few sections.

Adding the tracer. When the tracer molecule is encoded by a tran-
siently transfected genetic construct, the outcome of an experiment 
can depend on the strength of the promoter and the time allowed 
for transcription and translation. For fusion constructs driven by 
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concentration represented by that state and 
using interpolation between the measured 
points to define a forcing function for the 
time course of the state in question. Extra-
cellular stimuli not under the direct control 
of the investigator are much more common 
in whole animal experiments, but are a fre-
quent feature of coculture experiments as 
well. A paracrine cytokine released by an 
unmodeled cell type may be measured and 
used to define a forcing function on the 
model boundary for the cell type being 
studied.

Photobleaching: FRAP. One of the most 
useful features of GFP tracers is that they 
may readily be photobleached, effectively 
switching off their ability to fluoresce.

To see how the chemical system and 
tracer differential equations are modified to 
replicate a FRAP protocol, we need only 
consider the model state where the fluores-
cent tracer is synthesized and the state 
where it is bleached. Consider, for example, 
a secretory protein, synthesized in the ER 
and bleached in the Golgi apparatus. If Se is 
the state representing the protein in the ER 

and Sg represents the same protein in the Golgi, then the chemical 
system and tracer differential equations that must be modified to 
reproduce the FRAP protocol are 7, 8, and 10. Equations 7 and 8 
include the terms for biosynthesis of the fluorescent tracer in the ER 
as described in the section on Adding the tracer, above. Equation 
10 includes the term for photobleaching.
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Because the kinetics of transition among the various energy 
states in a fluorophore’s photocycle are fast relative to photobleach-
ing kinetics, it is standard practice to treat the photocycle as a rapid 
equilibrium subsystem (Wustner et al., 2014) and describe Pbleach as 
a first-order removal process characterized by a single intrinsic 
bleach rate constant. In this case,

=P k Sg g g
bleach bleach tracer

 (11)

By fitting both the prebleach and postbleach data to S t( )g
tracer , it 

is a simple matter to extract kg
bleach from the experimental data. 

Once again, the ability of a software tool to start and stop a process 
at specific times is important to accurate replication of the experi-
mental protocol. In this particular case, tstop is only slightly greater 

Changing extracellular stimuli. In cell biology, most non−steady 
state experiments are initiated by pipetting a small volume of con-
centrated solution into the existing culture medium or by com-
pletely removing the medium and then replacing it with a medium 
of different composition, sometimes with an intervening wash. In-
creasingly, automated microfluidics-based tools are being used to 
control the composition of the extracellular medium as desired 
(Salieb-Beugelaar et al., 2010; Ly et al., 2013; Haque et al., 2016). 
No matter whether changes are effected manually or by servomo-
tors, replicating experimental perturbations in the model is a univer-
sal requirement for analysis of non−steady state experiments.

First, any variable that is to be manipulated by the experimental-
ist must appear in the chemical system differential equations. The 
numerical value of a state representing a drug, or a cytokine, or a 
hormone may be, and often is, zero during the prestimulus control 
period, but whenever dictated by the experimental protocol the 
simulation software must be capable of a stepwise change to a new 
value, or an incremental bolus addition if the experimental stimulus 
was pipetted into the dish or microinjected into the cell under 
observation.

If the cells reside in a flow-through chamber, a sensible approach 
is to model the chamber and the flow especially if the perfusate is to 
be collected and sampled for measurements of molecules or tracers 
released by the cells. For any measurements made in the extracel-
lular medium or perfusate, it is highly desirable to have an accurate 
count of the number of cells in the chamber so that these measure-
ments can be integrated with those that are made on single cells.

Every model has a boundary. Processes and events outside this 
boundary do not appear in the model equations. The boundary thus 
defines the scope of the model. Quite often, however, there are 
several states that reside on the boundary and a few processes that 
cross the boundary. States on the boundary do not have their own 
defining differential equations; if they did, they would be in the 
model, not on the model boundary. Such states must be defined for 
the model to be solved, and this is often done by measuring the 

FIGURE 1: Sensitivity of “immobile fraction” to tracer distribution time. The slow (“immobile”) 
binding site has a residence time of ∼22 h. The faster binding site has a residence time of 2.7 
min. Tracer distribution times for the three FRAP experiments are as indicated in the figure. 
FRAP is initiated at t = 0. The different apparent immobile fractions of 36%, 42%, and 51% for 
the different tracer distribution times, despite identical binding kinetics, emphasize the 
importance of consistency in the time between transfection of the GFP construct and the FRAP.



Volume 29 March 15, 2018 Fluorescent tracers in non–steady states | 767 

∑ ∑= − − ≥ ≥
= ≠

→

= ≠

dS
dt P P P t t t( )g

pa

gi
pa

i i g

n

ig
pa

g
pa PA

i i g

n

1,
start stop

1,  

(16)

∑ ∑= − + ≥ ≥
= ≠

→

= ≠

dS
dt P P P t t t( )g

PA

gi
PA

i i g

n

ig
PA

g
pa PA

i i g

n

1,
start stop

1,  
(17)

Here, Pe
pa represents the biosynthesis of the nonfluorescent (low-

ercase pa) photoactivatable tracer. →Pg
pa PA represents the photoac-

tivation ( →pa PA) of the invisible tracer in the Golgi. The term is 
negative in Eq. 16 because photoactivation removes some flux of 
tracer from the invisible pool; the term is positive in Eq. 17 because 
photoactivation adds the same flux of tracer to the visible pool. The 
duration of the photoactivating laser pulse is tstop – tstart.

There are three classes of photoactivatable fluorescent proteins: 
photoactivated, photoconverted, and photoswitched. The same 
system of differential equations can be used for each of these. For 
the photoconversion case, the pa differential equations represent 
the protein fluorescing at one of its wavelengths while the PA dif-
ferential equations represent the protein after it has been photocon-
verted to fluoresce at a different emission wavelength.

Some fluorophores will be partially photobleached in the pro-
cess of photoconversion, so it may be necessary to add a photo-
bleaching term as well as the photoconversion term. Photoacti-
vation, photoconversion, and photoswitching all take place on a 
time scale of 40 s or less. If the model operates on this time scale 
it is prudent to consider more detailed kinetics of these pro-
cesses. Otherwise, as for photobleaching, the photoactivation 
flux, =→P k Sg

pa PA
g
pa

g
pa, where kg

pa is approximately linear in laser 
power.

As a specific example that emphasizes how photoactivation is 
modeled using the differential equation approach, consider the 
simple model of albumin synthesis and secretion from hepatocytes 
in Figure 2. A transfected photoactivatable albumin tracer is trans-
lated on bound ribosomes and translocated into the ER lumen. A 
steady state is established and then photoactivation of the Golgi 
ROI begins at t = 0. Figure 3 displays the simulation results for the 
total chemical system albumin (Figure 3A), the invisible albumin-
paGFP (Figure 3B), and the visible albumin-PAGFP (Figure 3C). The 
appearance of albumin-PAGFP in the ER is due to retrograde traffic 
and will have an impact on the observed decline in the Golgi signal, 
especially if transport from ER to Golgi is slower than anterograde 
export from the Golgi. A comparison of Figure 3, B and C, empha-
sizes the explicit conversion of invisible to visible albumin-paGFP, 
which assures that the abundance of albumin-paGFP available for 
photoactivation in any compartment is correct even if additional 
photoactivations are initiated between t = 0 and t = 120 min when 
the first photoactivation transient will still strongly determine the 
response to a second photoactivation.

than tstart because the duration of the bleach pulse is typically short 
on the time scale of the FRAP experiment, so it is essential that the 
numerical integrator ensures it does not take too large a time step 
and miss the photobleaching event entirely.

The photobleaching term, −Pg
bleach, is added to the right-hand 

side (RHS) of all tracer differential equations representing traced 
states within the photobleached region of interest (ROI). No corre-
sponding term is added to the RHS of the chemical system ordinary 
differential equations (ODEs; Eq. 9) because photobleaching does 
not alter the ability of the tagged molecules to participate in chemi-
cal reactions. Solving the full system of differential equations is su-
perior to fitting only the recovery curve (the data for ≥t t stop) to an 
arbitrary sum of exponentials because it forces the recovery kinetics 
to be explained by the same processes and parameters that ac-
count for all the other data constraints, such as measured concentra-
tion or abundance data. Moreover, the resulting parameter values 
provide quantification of those key physiological processes. A sum 
of exponentials is a perfectly good mathematical model but its coef-
ficients and its exponents cannot readily be assigned cell biological 
meaning.

Photobleaching: FLIP. To replicate a fluorescence loss in photo-
bleaching (FLIP) protocol, the procedure is essentially identical to 
that for FRAP. The differential equations to be modified are identical 
to Eqs. 7–11. The duration of the photobleach is the biggest differ-
ence; tstop will be much greater than tstart and may, in fact, extend 
the bleaching period to the end of the experiment. Typically, the 
collected and fitted data will correspond to a state or states different 
from the bleached state(s). When the measured ROI includes more 
than one tracer state, an ancillary equation such as ∑=F k Sr inorm ROI

 
is necessary. Here, Fr is the fluorescence remaining in the ROI, knorm 
is a normalization constant, and the sum includes all tracer states 
within the defined ROI.

Photoactivation. Photoactivation is widely recommended for stud-
ies of protein turnover because there is no constant biosynthesis of 
the fluorescent tracer to confound the fluorescence data. Several 
approaches are possible for replicating a photoactivation process in 
the context of a differential equation model. Here, we present the 
one that most closely represents what actually happens experimen-
tally and biophysically. This straightforward approach requires three 
sets of differential equations: 1) the chemical system differential 
equations with the addition of a term representing biosynthesis of 
the nonfluorescent photoactivatable tracer (Eqs. 12 and 15), 2) the 
non−steady state tracer differential equations for the invisible (not 
yet photoactivated) fluorescent tracer (Eqs. 13 and 16), and 3) the 
non−steady state tracer differential equations for the visible (photo-
activated) fluorescent tracer (Eqs. 14 and 17).
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FIGURE 2: Model for steady state photoactivation example. Simple 
model of albumin secretion from hepatocytes. Arrows represent 
processes of albumin translation, vesicular traffic from endoplasmic 
reticulum (ER) to Golgi (G), retrograde traffic from G to ER, and 
vesicular traffic from G to the plasma membrane for exocytosis to the 
extracellular fluid (ECF). The proposed computational methods are 
applied to this system to show how model solutions (Figure 3) 
are obtained when the albumin-paGFP construct is transfected at 
t = −1440 min, and photoactivation of Golgi albumin-paGFP is carried 
out at t = 0 min.
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released from TF response elements (TFREs) 
in the upstream control regions of TF-re-
sponsive genes. One such gene is modeled: 
the TF-Pi:TFRE phosphatase, which pro-
vides self-regulating feedback by dephos-
phorylating and releasing the bound TF, 
which is transported through nuclear pores 
and returned to the cytosolic TF pool. Mol-
ecules and complexes in green rectangles 
are traced with TF-paGFP.

Because the goal of this article is to il-
lustrate how this system is modeled using 
the differential equation approach, the com-
plete set of non−steady state chemical sys-
tem differential equations defining this 
model, plus the non−steady state tracer dif-
ferential equations for the TF-paGFP photo-
activation experiment are included in the 
Supplemental Material.

Figure 5 displays simulation results for 
this model. After relaxing to a steady 
state, a bolus of a GF is added to the cul-
ture medium at t = 0 initiating a non−steady 
state transient. GF immediately increases, 
then decreases as it is bound to plasma 
membrane GFR and internalized; free GFR 
decrease accordingly (Figure 5A). Bound 
GFR (Figure 5A) increase and drive con-
version of cytosolic inactive MAPK (Figure 
5B) to its phosphorylated active form 
(Figure 5B). This active kinase then phos-
phorylates a cytosolic TF and TF-Pi (Figure 
5C) increases in the nucleus where it also 
forms a complex (TF-Pi:TFRE; Figure 5C) 
with TF TFREs. Among the many possible 
genes activated by this complex, the 
model emphasizes a phosphatase that de-
phosphorylates TF-Pi to TF (Figure 5C) 
and terminates TFRE binding, providing 
self-limiting negative feedback. Free TF is 
returned to the cytosolic TF pool. In Figure 
5D this GF experiment is run three times 
in a system expressing photoactivatable 
GFP-labeled TF (TF-paGFP). Each experi-
ment includes photoactivation of nuclear 

TF-paGFP at a different time. Notice that the kinetics of photoac-
tivated TF-PAGFP are qualitatively and quantitatively different 
when photoactivation is initiated at t = −100 in the pre-GF steady 
state compared with the same photoactivation at t = 20 during 
the early GF-induced transient, and different yet again when the 
same photoactivation is initiated later in the GF-initiated tran-
sient at t = 100 min (Figure 5D). These kinetic differences would 
not be predicted by a model that does not include quantitative 
representation of the underlying cellular feedback systems. Ex-
perimental data on these kinetic differences thus contain quanti-
tative mechanistic information about regulatory nuclear pro-
cesses that can be extracted by fitting the model solutions to the 
data (Phair, 2014).

Data analysis
Although not the focus of this article, it may be helpful to list briefly 
the software tools one would need to carry out this analysis for real 

Tracer experiment in a non–steady state: a full example. To ce-
ment the ideas presented in this article, it may be useful to consider 
a specific non−steady state example in detail. Figure 4 represents a 
mechanistic model of a simple generic growth factor signaling cas-
cade and its action on a transcription factor. This model aims to be 
complex enough to illustrate the details of the differential equation 
method while at the same time including only enough processes to 
provide a realistic example. More realistic models of cell signaling 
can easily be accommodated.

Beginning at the left side of the model diagram, a growth factor 
(GF) in the culture medium binds to a plasma membrane growth 
factor receptor (GFR). The off-rate constant is consistent with the 
usual nM KD. The ligand-bound receptor (GF:GFR) catalyzes the 
phosphorylation of inactive protein kinase (MAPK). A phosphatase 
can reverse this process. Activated kinase (MAPK-Pi) phosphorylates 
inactive transcription factor (TF) and the resulting activated TF (TF-
Pi) is transported to the nucleoplasm where it can bind to and be 

FIGURE 3: Simulation of steady state photoactivation example. Transfection with albumin-
paGFP at t = −1440 min. Photoactivation of Golgi albumin-paGFP 9 s starting at t = 0. 
(A) Solution of chemical system differential equations for total (endogenous + tracer) albumin 
in endoplasmic reticulum (ER) and Golgi. (B) Solution of tracer differential equations for invisible 
albumin-paGFP in ER and Golgi. (C) Solution of tracer differential equations for visible 
(photoactivated) albumin-PAGFP in ER and Golgi.
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model described above, measurements in the nuclear ROI will not 
be able to distinguish TF-PAGFP from TF-Pi-PAGFP. Indeed, the 
data from the nuclear ROI will have to be fitted to the sum of all 
three TF-PAGFP species in the nucleus. Many other relationships 
between model variables and observed variables are found in pub-
lished models.

Ancillary equations have other valuable applications. They make 
predictions for variables we cannot yet measure, and they help de-
sign experiments to measure them. They do unit conversions from 
model variables to related variables that readers want to see. They 
do normalizations and they calculate figures of merit that often 
serve as useful constraints.

The final software tool is optimization. Here there is enormous 
variety in what is offered by different tools. Experience suggests 
choosing a tool with both a classical local gradient optimizer, and 
one of the many global optimizers. The goal of parameter optimiza-
tion is to find a set of numerical values for the parameters of a model 
that succeeds in minimizing an objective function that depends on 
the sum of the squares of differences between model solution and 

experiments. First, a solver or numerical integrator is required. There 
are free tools supported by academic laboratories such as Virtual 
Cell, Berkeley Madonna, WinSAAM, and Copasi, as well as com-
mercial products such as Matlab, Mathematica, SAAM2, and Pro-
cessDB. Different software tools have different user interfaces and 
support different specialized functions. All of them include one or 
more numerical differential equation solvers, and all of them provide 
fast solutions based on state-of-the-art algorithms. Moreover, given 
the same equations, all will output the same answers. The reason 
there are so many choices is that scientists come to biological mod-
eling with many different backgrounds and every developer has in 
mind a specific user group and a particular modeling philosophy. 
There is not, and may never be, a single universal approach to cell 
biological modeling.

The next question is, What, in terms of model variables, was 
measured experimentally? Each software tool must have a means 
of adding ancillary equations to the differential equation model. 
The most important of these are the equations that calculate ob-
served variables from model variables. For example, in the TF 

FIGURE 4: Hypothetical simplified model of non−steady state transcription factor (TF-GFP) system. Labeled vertical 
“swim lanes” define physiological compartments or places. Rectangles represent molecules and molecular complexes 
present in those places (culture medium, plasma membrane, cytosol, and nucleus). Black arrows represent the three 
main types of biological processes: binding, chemical reactions, and transport. Dashed green lines terminated with + 
adjacent to a process indicate enzymatic catalysis. A dotted green line indicates an activator. Processes with no 
endpoint molecule (e.g., TF degradation) and processes with no starting point molecule (e.g., TF synthesis) are crossing 
the model boundary. They represent degradation to unmodeled products or synthesis from unmodeled substrates, 
respectively.
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experimental data or maximizing the likelihood of the experimental 
data given the model and parameter values. Successful gradient 
optimization provides statistical information on mechanistic param-
eters of biological interest, and global optimization has the poten-
tial to treat the model as a hypothesis and test it by asking whether 
there is any combination of numerical parameter values that can 
satisfactorily account for the experimental data.

Finally, it may be worth repeating that the differential equation 
procedures detailed above for modeling the addition of tracers, 
FRAP, FLIP, and photoactivation in non−steady state experiments 
are equally applicable to steady state experiments. Consequently, 
the modeling approach described here is general enough for the 
analysis of kinetic data from a wide variety of steady and non−steady 
state experimental protocols involving fluorescent tracers. The 
equations derived in this article and in the Supplemental Material 
should allow interested investigators to implement these techniques 
in their own research environments.

FIGURE 5: Simulation of nonlinear non−steady state signaling cascade/transcription factor model shown in Figure 4. 
The simulated experiment is a response to growth factor exposure at t = 0 plus photoactivation of PAGFP-labeled 
transcription factor before and at two times after growth factor addition (see details in the text). Full model equations 
are shown in the Supplemental Material. GF, growth factor; GFR, GF receptor; PM, plasma membrane; MAPK, mitogen 
activated protein kinase; MAPK-Pi, phosphorylated (activated) MAPK; TF, transcription factor; TF-Pi, phosphorylated 
(activated) TF; TFRE, TF response element.
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