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Abstract: Gut microbiota is the key controller of healthy aging. Hypertension and osteoarthritis
(OA) are two frequently co-existing age-related pathologies in older adults. Both are associated with
gut microbiota dysbiosis. Hereby, we explore gut microbiome alteration in the Deoxycorticosterone
acetate (DOCA)-induced hypertensive rat model. Captopril, an anti-hypertensive medicine, was
chosen to attenuate joint damage. Knee joints were harvested for radiological and histological
examination; meanwhile, fecal samples were collected for 16S rRNA and shotgun sequencing. The
16S rRNA data was annotated using Qiime 2 v2019.10, while metagenomic data was functionally
profiled with HUMAnN 2.0 database. Differential abundance analyses were adopted to identify the
significant bacterial genera and pathways from the gut microbiota. DOCA-induced hypertension
induced p16INK4a+ senescent cells (SnCs) accumulation not only in the aorta and kidney (p < 0.05)
but also knee joint, which contributed to articular cartilage degradation and subchondral bone
disturbance. Captopril removed the p16INK4a + SnCs from different organs, partially lowered blood
pressure, and mitigated cartilage damage. Meanwhile, these alterations were found to associate
with the reduction of Escherichia-Shigella levels in the gut microbiome. As such, gut microbiota
dysbiosis might emerge as a metabolic link in chondrocyte senescence induced by DOCA-triggered
hypertension. The underlying molecular mechanism warrants further investigation.

Keywords: gut microbiota; chondrocyte senescence; hypertension; captopril

1. Introduction

Gut microbiota is the key controller of healthy aging in older adults [1]. Mounting
evidence suggests that the gut microbiome signature reflects healthy aging and predicts
survival in humans [2]. Moreover, alteration in the gut microbiota emerges as a shared
pathomechanism underlying a variety of age-related pathologies such as hypertension [3]
and OA [4].

Vascular attrition leads the way to systemic aging, which precedes the emergence
of cellular aging’s hallmarks, such as cellular senescence [5]. Hypertension, one of the
most common types of vascular attrition, induces endothelial senescence and gives rise
to age-related vascular pathologies [6,7]. It has also been shown to induce somatic cell
senescence in a DOCA-induced hypertensive rat model, while the anti-hypertensive drugs
could ablate p16INK4a-positive senescent cells from the body [6]. Importantly, p16INK4a-
positive senescent cell accumulation was corroborated to engender joint damage [8] and
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bone loss [9]. Intra-articular senescent chondrocytes impair the cartilage regeneration
capacity of mesenchymal stem cells [10]. Captopril, a widely used anti-hypertensive drug
targeting angiotensin-converting enzyme to suppress the production of the vasoconstrictor-
angiotensin II, can extend the lifespan of Caenorhabditis Elegans [11]. Our recent work
demonstrated the association between DOCA-induced hypertension and gut microbiota in
the rat model; meanwhile, the anti-hypertensive effect of captopril was also linked with
gut microbiome alteration [12].

So far, there are three unanswered questions. The first question is whether hyperten-
sion induces cellular senescence in bone and joints, and the second is whether captopril can
remove cellular senescence in bone and joints in the DOCA-induced hypertensive rat model.
The last one is whether the gut microbiota plays a role in the emergence and removal of
cellular senescence in bone and joints in the DOCA-induced hypertensive rat model.

To fill this gap, in this study, through the establishment of a DOCA systemic aging
model, we first elucidated the effect of hypertension on the articular cartilage and sub-
chondral bone. Later, with the administration of the anti-hypertensive drug captopril,
we demonstrated the removal of senescence in the joint tissue and the partial restoration
effect of the bone. In particular, this study focuses on the therapeutic effect of the drug
on suppressing the established hypertensive condition rather than its preventive function
for hypertension. The composition and correlation structure of the gut microbiome was
subsequently examined under hypertensive and normotensive conditions, from which key
bacterial genera were further identified that potentially associate with senescence change
under the influence of differential blood pressure.

2. Materials and Methods

The study adopted a sample size of 8 for each group (i.e., a total sample size of 24,
assuming equal group sizes). We first referred to the mean and standard deviation of blood
pressure data of the control and DOCA-treated groups reported by Bae et al. [13]. Later,
with the online statistical tool, Statulator [14], we calculated the required sample size to
be at least 5 per group in order to achieve a power of 80% and a level of significance of
5% (two-sided) for detecting a true difference in means between the test and the reference
group. Based on the estimation, the sample size was further increased to 8 per group to
ensure sufficient statistical power.

A total of 24 male Sprague Dawley (SD) rats weighing 180–200 g (around 6 weeks old)
were used in this study. The rats were randomly divided into the control, DOCA-induced
hypertensive, and captopril-treated groups, each comprising 8 rats. The hypertensive and
captopril-treated (i.e., DOCA + Captopril) groups received a subcutaneous injection of
DOCA (20 mg/kg bw) twice a week, in combination with 1.0% NaCl and 0.2% KCl in
the drinking water to induce hypertension. While rats in the control group were injected
with saline, no saltwater was supplied. This treatment lasted for 14 weeks. The DOCA
+ Captopril group was administered with captopril (50 mg/kg) by oral gavage daily
since week 9. Fecal samples were collected at the end of week 14. The body weight was
measured every week, while the blood pressure was recorded every two weeks by the
tail-cuff method using a BP-2000 Blood Pressure Analysis System (Visitech System, Inc.,
Apex, NC, USA). The aorta, kidney, and liver samples were collected for routine histology
and immunostaining to examine the accumulation of p16INK4a + senescent cells.

2.1. Micro-CT Analysis

Micro-CT images of the knee joint were obtained. The images were subsequently
analyzed using DataViewer (version 1.4.4.0, SKYSCAN) with the grey level threshold for
binarization set to 90. The bone volume fraction (BV/TV), trabecular separation (Tb.Sp),
trabecular number (Tb.N), and trabecular thickness were then measured with the in-built
tools of the software. Later, radiomic analysis was conducted using the PyRadiomics
v3.0.1 package from Python 3.7 [15]. The first order, Gray Level Co-occurence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),
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Neighbouring Gray Tone Difference Matrix (NGTDM), and Gray Level Dependence Matrix
(GLDM) features were calculated from the 3-dimensional images using a bin width of 55,
forming a total feature set of 1459 variables. Finally, top-50 radiomic features were selected
using the chi-square test, and their mean values were plotted as heatmaps.

2.2. Histology

The samples harvested from the rat were first fixed with 4% paraformaldehyde for
24 h, followed by decalcification of the bones with 10% Ethylenediaminetetraacetic acid.
Then, the samples were embedded with wax after the tissue processing procedure. A
microtome was used to cut the sample into 5µm sections, and immunohistochemical
staining was performed to detect specific proteins in the samples. After dewaxing and
antigen retrieval, we used horse serum for blocking. The samples were then incubated
with the primary antibody overnight at 4 ◦C, where the primary antibodies used were
p16 (1:500; Abcam, ab54210), p53, and MMP13 antibody (1:500; Abcam, ab39012). For
3,3’-Diaminobenzidine (DAB) staining, we used a Vectastain ABC kit and a DAB peroxidase
substrate kit (Vector Labs, Newark, CA, USA) to stain the targeted antigen. Then Harris
hematoxylin was employed for counterstaining. We employed Safranin O/Fast green for
Safranine O staining on the tibia. In each rat, 10 slices were selected for analysis on which
both menisci appeared to be disconnected, and finally, 3 slices were chosen for detailed
analysis. Specifically, the cells with brown nuclei were identified as p16-positive cells.
All images were taken with a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan). The
data were then compared using one-way ANOVA with posthoc Tukey HSD test in SPSS
statistical analysis software (IBM Software, Armonk, NY, USA).

2.3. Gut Microbiota Analysis

Stool samples were collected sterilely from the rectum at week 14 and stored at −80 ◦C.
The 16S rRNA amplicon sequencing targeted V3V4 regions, and shotgun metagenomic
sequencing was performed using Illumina HiSeq (Illumina, Inc., San Diego, CA, USA)
PE250/PE300 sequencer (300–500 bp paired-end reads). Subsequently, the 16S rRNA data
were processed and annotated using Qiime 2 v2019.10 [2]. The raw paired-end sequences
of the metagenome data were first denoised, merged, then functionally profiled using
HUMAnN 2.0 [5] and PICRUSt to reconstruct species-level microbial metabolic pathways
as well as molecular functions of microbiota. A total of 2659 pathways were successfully
profiled in the end.

A genus-level TAXA plot was used to visualize the top 20 abundant genera identified
from gut bacterial 16S rRNA gene amplicon sequencing for each group. Later, the richness
and Shannon diversity measures were calculated for each sample. A cladogram was plotted
to demonstrate the linear discriminant effect size of the significant gut genera (p < 0.05).
Alterations in the macroscopic correlation structure among genera in the gut microbiome
under hypertension and captopril treatment were assessed by constructing Spearman’s
correlation networks for each experimental group. The network was constructed by only
considering the magnitude of associations between the genera. As a result, the network
edges were defined as the absolute values of the correlation coefficients, and only corre-
lations with p < 0.05 were retained. The network nodes were subsequently clustered by
the spectral clustering algorithm using Scikit-Learn 1.0.2 to visualize emerging structures.
Finally, the global network parameters, including centrality, density, heterogeneity, clus-
tering coefficient, and Shannon entropy, were calculated with 1000 iterations of bootstrap
sampling using the igraph version 1.2.7 package of R 4.0.

Genera with significant differential abundance across the experimental groups were
identified using DESeq2 [16] out of 200 genera profiled from the 16S rRNA sequencing
data. The between-group fold changes were plotted, and the top 2 principal components
of the selected genera were visualized to illustrate the distribution of the differential
abundance across different experimental groups. Additionally, the bacterial pathways
from metagenomic data showing significant differential expression under DOCA-induced
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hypertension and captopril treatment were selected using the EdgeR algorithm [17]. The
groupwise fold-change of expression level was plotted in log-scale, and the first two
principal components of the selected pathways were also plotted.

2.4. Multi-Omic Correlation Network

To unravel the correlation structure linking multiple omics of data, including blood
pressure, bone phenotypes of primary and secondary spongiosa, selected bacterial gen-
era, and the enriched pathways under DOCA-induced hypertension and the captopril
administration, we constructed a multi-omic correlation network by integrating samples
from all three experimental groups using igraph version 1.2.7 package of R. All data were
rescaled to a range of 0 to 1. Only Spearman’s correlations with Benjamini and Yekutieli-
adjusted p < 0.05 were retained and network edges were defined as the absolute values of
the correlation coefficients.

2.5. Statistical Analysis

Inter-group comparisons of the p16 and MMP13 staining were compared using one-
way ANOVA with posthoc Tukey HSD test in SPSS statistical analysis software (IBM
Software, Armonk, NY, USA). A permutational multivariate analysis of variance (PER-
MANOVA) and pairwise Adonis analyses were conducted to test for the difference in
composition of the gut microbiota among the control, hypertensive, and captopril-treated
groups. The group means of bone phenotypes, gut flora richness, gut microbiome correla-
tion network parameters, genus abundance, and bacterial pathway expression level were
compared using one-way ANOVA with Tukey HSD posthoc analysis using R 4.0.3.

3. Results
3.1. Senescent Cells Accumulation with the Onset of Metabolic OA after DOCA Induction

DOCA induced the p16INK4a-positive senescent cell accumulation in both aorta and
the kidney, which ultimately contributed to elevated blood pressure (Figure 1). However, it
did not alter the body weight over time (Figure A1).

Figure 1. (A) Blood pressure measured every 2 weeks from week 0 to week 14 of the Control, DOCA,
and DOCA + Captopril groups. The treatment of DOCA starts from w0. In week 9, DOCA + Captopril
groups began to feed captopril (n = 8 for each group). The results of p16 staining in the aorta (B)
and kidney (D) with red boxes highlighting the p16-positive cells. (C,E) show the percentage of
p16-positive cells in the aorta and kidney, respectively. (* p < 0.05).
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Meanwhile, DOCA also triggered the p16INK4a-positive senescent cells accumulation
in different knee joint tissues such as articular cartilage, synovium, meniscus, and sub-
chondral bone (Figure 2A–F), as well as the enhancement of p53 expression in the articular
cartilage (Figure 2I,J). As one of the senescence-associated secretory phenotypes (SASP), the
expression of MMP-13 is upregulated in articular cartilage and synovium (Figure 2K–N).

Figure 2. The p16 staining results of cartilage (A), synovium (C), meniscus (E), and secondary
spongiosa (G) are shown with the red boxes indicating the p16- positive regions. The percentage
of p16-positive cells in the (B) cartilage, (D) synovium, (F) meniscus, and (H) secondary spongiosa
in Control (red), DOCA (green), and Captopril-treated group (blue) are plotted. (I,J) The results of
p53 staining of cartilage and the percentage of p53-positive cells in the sample. The MMP13 staining
of the (K,L) cartilage and (M,N) synovium of the Control, DOCA, and DOCA + Captopril groups,
respectively. (*** p < 0.001).

As a consequence, articular cartilage appeared thinner with loss of proteoglycan in
the DOCA group than in the control group (Figure A2). The increase in p16 staining has
also been observed in the subchondral bone (Figure 3A,B), leading to significant bone loss
(Figure 3C–H). Similar findings were also found in the primary spongiosa beneath the
growth plate (Figure A3).

Figure 3. (A) The 3D bone structure of secondary spongiosa under micro-CT with the (B) bone volume
ratio (BV/TV), (C) trabecular number (Tb.N), (D) trabecular separation (Tb.Sp), and (E) trabecular
thickness (Tb.Th) calculated for the Control, DOCA, and DOCA+Captopril groups, respectively.
(*** p < 0.001) (F) The heatmap of the mean values of the top 50 radiomic features quantifying the
texture of secondary spongiosa.

3.2. Captopril Reduced Senescent Cells and Mitigated Joint Deterioration

Captopril reduced the number of senescence cells in the aorta and kidney and lowered
blood pressure (Figure 1B–D). It could also decrease senescent cell accumulation and
MMP-13 expression in synovial joint tissues, ultimately preserving articular cartilage in
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hypertensive rats (Figure 2). In addition to articular cartilage, captopril could reverse
subchondral cellular senescence (Figure 3A–C) and bone radiomics change (Figure 3F) after
DOCA induction. Noteworthily, there only existed a trend for the osteo-protective effect
of captopril in DOCA rats in terms of BV/TV and trabecular bone thickness, but it lacked
statistical significance (Figure 3C–E). In contrast, captopril failed to restore bone mass and
microstructure in primary spongiosa under the growth plate, although it could mitigate
senescence cell accumulation (Figure A3).

3.3. Rebalancing Effect of Captopril on Gut Microbiota in DOCA-Induced Hypertensive Rats

DOCA induction altered the composition of the gut flora in association with hyper-
tension and metabolic OA in a rat model. As shown in Figure 4A,B, the TAXA plot and
cladogram display the disparity in the phylogenetic distribution of the bacterial lineages
and top 20 most abundant genera between the control and DOCA groups. However, the
conventional analysis of the richness of microbial composition failed to demonstrate sta-
tistical significance, although the trend was observed. Therefore, we developed a novel
approach to analyze the organization of the gut microbiome in terms of its correlation
structure mathematically. Intriguingly, the cluster structure of the gut microbiome in the
control group was broken into a few small clusters in the hypertensive group (Figure 4D).
Moreover, the organization of the gut microbiome of hypertensive rats exhibited increasing
density and Shannon entropy in the DOCA group, while density and Shannon entropy
decreased in the Captopril group (Figure 4E–H). Similar trends in the disparity of gut
microbiome among groups have been further validated by the Permutational multivariate
analysis of variance (PERMANOVA) (Table A1) and pairwise Adonis (Table A2).

Figure 4. (A) Relative abundance TAXA plot of the top 20 most abundant genus-level taxonclassified
sequences from gut bacterial 16S rRNA gene amplicon sequencing (n = 24). (B) The gut microbial
genus richness of the Control, DOCA, and DOCA + Captopril groups. A Mann–Whitney U test
was conducted, showing a statistically insignificant (p = 0.414) difference between the richness of
the control and DOCA groups, while a marginally significant difference could be observed among
the DOCA and DOCA + Captopril groups (p = 0.065). (C) Cladogram to demonstrate the linear
discriminant effect size of the significant genera. (D) Gut microbial genus correlation networks of the
Control, DOCA, and DOCA + Captopril groups, respectively. (E) Density and (F) Shannon entropy
of the correlation networks of the Control (red), DOCA (green), and DOCA + Captopril (blue) groups.
All the network parameters were compared among the groups through one-way ANOVA with Tukey
HSD posthoc analysis (** p < 0.01, *** p < 0.001).



Cells 2022, 11, 3173 7 of 17

Captopril did not significantly alter the overall abundance of the gut flora genera
(p = 0.68) (Figure 4A and Tables A1 and A2). However, it reduced the richness of the
microbiome with marginal significance (p = 0.065). Furthermore, it significantly changed
the organization of the gut microbiome in terms of density and Shannon entropy back to a
level similar to the control. It is, therefore, evident that captopril might show a trend to
partially restore certain microbial macroscopic structures in the gut.

3.4. Identification of Differentially Activated Pathways of Gut Microbiota Associated with
Senescent Cells Removal Using Captopril

Among all enriched genera from the 16S rRNA sequencing, four of them, Desulfovibrio,
Victivallis, Escherichia-Shigella, and Lachnospriraceae-UGC006, were isolated. Escherichia-
Shigella exhibited differential abundance upon the induction of hypertension by DOCA and,
at the same time, showed signs of rebalancing after captopril administration (Figure 5E).
Alongside, other genera, Desulfovibrio and Lachnospriraceae-UGC006, were suppressed,
whereas RVictivallis was enriched under the hypertensive condition. Nonetheless, the
captopril treatment showed no restoration to the abundance in any of the three genera
(Figure 5C,D,F).

Figure 5. (A) Heatmap of the log-fold-change of the top 13 genus having differential abundance
among the Control, DOCA, and DOCA + Captopril groups. (B) The plot of the first 2 principal
components (PCs) of the identified bacterial genera’s abundance, with the first PC explaining 18%
variance and the second PC explaining 12% variance. (C–F) Box plots show the abundance of the
4 highlighted bacterial genera, and the p-values of pairwise comparison are reported. (* p < 0.05,
** p < 0.01, *** p < 0.001).

3.5. Identification of Differentially Activated Pathways of Gut Microbiota Associated with
Senescent Cells Removal Using Captopril

To further elucidate the potential involvement of the bacterial pathways in the gut
flora, differential expression analysis was carried out. Using the EdgeR statistical model,
32 pathways were identified to be significant among the 3 groups, where the PC plot
constructed using the selected 32 pathways (Figure 6B) also shows a clear separation
between the Control, DOCA, and Captopril-treated groups. With a further selection, we
have identified 2 bacterial pathways (Figure 6C,D) that potentially relate to the effect of
captopril on the alleviation of hypertension and joint deterioration.
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Figure 6. (A) Heatmap of the log-fold-change of the top 32 differentially expressed pathways
identified from the taxonclassified sequences from gut bacterial shotgun metagenomic sequencing
among the Control, DOCA, and DOCA + Captopril groups. (B) The plot of the first 2 principal
components (PCs) of the 32 identified bacterial pathways, with the first PC explaining 18% variance
and the second PC explaining 12% variance. (C,D) Box plots demonstrate the expression of the
2 identified bacterial pathways in each group with the p-values of the group comparison reported.
(* p < 0.05, ** p < 0.01).

3.6. Multi-Omic Correlation Analysis Unraveled Associations between Microbiota and Bone under
the Hypertensive and Normotensive Conditions

A multi-omics correlation network was constructed (Figure 7) that integrates the pre-
viously selected gut 16S bacterial genus, the pathways identified from the gut metagenomic
data, blood pressure, as well as the phenotypic data of secondary spongiosa, including
bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp),
and trabecular number (Tb.N).

On the macroscopic view of the networks, a large cluster forms around blood pressure
involving correlations between multiple data sets. Blood pressure correlates with BV/TV.
BV/TV and Tb.N of secondary spongiosa was found to associate with the Desulfovibrio.
The blood pressure correlated with Lachnospiracea.UCG.006 and Victivallis. Addition-
ally, L-valine biosynthesis (g2633), adenosine deoxyribonucleotides de novo biosynthesis
(g2004), and guanosine deoxyribonucleotides de novo biosynthesis (g2063) were correlated
with blood pressure.
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Figure 7. Multi-omics correlation networks between the selected metagenomic bacterial pathways,
16S bacterial genus, phenotypes secondary spongiosa, and blood pressure of all experimental groups.
The nodes are colored in orange for the pathways enriched from metagenomic data, cyan for bacterial
genus identified from 16S rRNA Gene Sequencing, blue for secondary spongiosa phenotype, and
pink for blood pressure. The edges of the networks are defined by Spearman’s correlation coefficients
with Benjamini and Yekutieli-adjusted p-value < 0.05. Greater intensity and thickness of the edges
represent the higher strength of the correlation. An index is shown on the right for the mapping
between the enriched bacterial pathways and their corresponding codes.

4. Discussion

Articular cartilage damage is the primary concern of osteoarthritis (OA). In response
to altered mechanical loading (e.g., after injury) or oxidative stress (e.g., aging), articular
chondrocytes undergo premature senescence and stop dividing permanently, which pro-
vokes the onset of OA [8]. Our results demonstrate articular cartilage deterioration in a
DOCA-hypertensive rat model, in which a significant elevation in the p16 and MMP13
expression was observed in the joint tissues, including cartilage, meniscus, and synovium.
Overexpression of cellular senescence marker p16Ink4a in chondrocytes induces cartilage
degradation with two matrix remodeling enzymes, i.e., matrix metalloproteinase (MMP)-1
and −13 [18]. Moreover, very recent studies provided direct evidence to show the involve-
ment of senescent cells in cartilage damages [8,19], where ablation of p16Ink4a-positive cells
using a genetically modified mice model could mitigate OA [8]. The major flipside up to
this moment is that the mechanism leading to age-related cartilage degradation remains
unclear and early changes that predispose to chondrocyte senescence and cartilage matrix
disruption are not well characterized. This finding sheds light on the current situation
by the indication of hypertension as a potential risk factor triggering chondrocyte senes-
cence. The more noteworthy experimental finding is that captopril treatment reduces
the articular cartilage senescence back to the normal level. This might be attributed to
the anti-hypertensive effect of captopril [20], which eventually removes the risk factor
triggering senescence in the joint tissue.

Notable subchondral bone loss was observed in the DOCA-hypertensive rats; however,
restoration was not exhibited in the bone volume ratio, trabecular separation, and trabecular
number. Interestingly, in contrast to other bone phenotypes, the trabecular thickness in
secondary spongiosa showed a slight increase after the captopril treatment. Moreover,
through the comprehensive radiomic analysis of the micro-CT images of both primary and
secondary spongiosa, we successfully identified the distinctive difference of the radiomic
marker “fingerprint” in the hypertensive group when compared to the control and captopril-
treated groups. This may imply the ability of captopril to alter the bone texture that is not
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obvious enough to be manifested in the above bone phenotypes. Overall, captopril poses a
senolytic effect on the cartilage and partially restores the trabecular structure.

DOCA-induced hypertension disrupts the global structure of the gut microbiome, in
which a higher degree of disorderedness of the correlation network leads to the dissociation
of large correlation clusters in the normotensive samples into smaller distinct groups. It
has been reported that hypertension is associated with the occurrence of dysbiosis through
increasing lipopolysaccharide biosynthesis, steroid degradation [21], and gut permeability,
which results in a shift in the overall composition of the gut flora [22]. From our experiment,
the administration of captopril exerts a restoration effect on the macroscopic microbiome
structure over DOCA-induced hypertension, reducing richness and correlation complexity
back to the level comparable to the control. This echoes a previous study reporting that
the anti-hypertensive drug reshapes the microbiome via a continuous influence on specific
microbial populations, hence improving dysregulated hypertensive rats’ gut–brain axis [20].

In synchrony with our previous work [11], Escherichia-Shigella, which showed higher
abundance under the DOCA-hypertensive condition, is rebalanced upon the administration
of captopril. In addition to its association with hypertension, our results further demon-
strated that under high blood pressure, the genus is closely correlated with senescence.
Combined with findings of increased senescence in the secondary spongiosa, Escherichia-
Shigella might be involved specifically in hypertension-induced joint senescence.

We also observed Victivallis to be over-expressed under hypertensive conditions, which
failed to be rebalanced by captopril. This genus was found in our results to be correlated
with the trabecular bone thickness of secondary spongiosa under both hypertensive and
captopril-induced anti-hypertensive environments. Previous studies revealed that Victival-
lis is positively associated with hepatic lipid accumulation [23]. Notably, increased liver
adipose fat has been reported as one of the critical risk factors for osteoarthritis [24], where
it corresponds to a higher circulating level of proinflammatory factors, including IL-6 in
the serum, triggering the anti-osteoblastic effect that matches the observed reduction in sec-
ondary spongiosa trabecular bone thickness. However, we speculate that the insignificant
decrease in the genus’ abundance level upon the captopril treatment might contribute to
the lack of notable restoration in the subchondral bone, except the alteration in radiomic
markers and the increase in trabecular bone thickness which has direct correspondence to
the osteoblast activity.

Desulfovibrio exhibited lower abundance in DOCA-induced hypertension, and capto-
pril failed to restore it. The genus has been observed with elevated abundance in symp-
tomatic hand OA [25]. In contrast, very recent work by Yu et al. pointed out that the higher
level of Desulfovibrionales order, to which Desulfovibrio belongs, is beneficial to knee OA [26].
Experiments observed that the abundance of family Desulfovibrionaceae in Interleukin-1α
(IL-1α) knockout mice are notably higher than in the control group [27], indicating a po-
tential role of the bacterial order in the inflammatory response that triggers the onset of
OA. The above evidence suggests bacterial participation in affecting kidney function and
OA development; however, in light of the seemingly opposite role of it in symptomatic
hand OA and knee OA, further work has to be carried out to characterize the relationship
between the genus and different types of OA.

Other genera, including Lachnospriraceae-UGC006, were suppressed. Lachnospriraceae,
the family of Lachnospriraceae-UGC006, demonstrated a lower abundance level in the symp-
tomatic hand OA cases [25]. Given the associations, it is speculated that the hypertensive
environment leads to a decrease in the genus, which could act against the deterioration of
the knee joint. Particularly, all three genera were not rebalanced by captopril treatment.

Our results have demonstrated the potential of the anti-hypertensive drug captopril
in alleviating chondrocyte senescence and partially reversing joint aging under the DOCA-
induced hypertensive condition, where Escherichia-Shigella in the gut microbiota might play
a role in the restoration mechanism. However, our study did not consider the possible
preventive effect of the drug on joint deterioration in normotensive animals. It warrants
further investigation of the effect of captopril before the establishment of hypertension and
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the corresponding alterations in the gut microbiome in order to provide a clearer picture of
the underlying mechanism.

5. Conclusions

In summary, via the establishment of a DOCA-systemic aging model, we demonstrated
that metabolic osteoarthritis is triggered by DOCA-induced hypertension, where significant
articular cartilage senescence and subchondral bone loss were observed. Meanwhile, our
experiment showed that the anti-hypertensive drug captopril exhibited an anti-senolytic
effect on the deteriorated cartilage as well as partial restoration to the subchondral bone.
Our results revealed the associations between gut microbiota, hypertension, and joint
senescence, suggesting the potential role of the gut flora as a shared mechanism for two
common age-related disorders. Moreover, the key genera of gut microbes identified may
contribute to the discovery of potential therapeutic targets in the gut microbiome for
joint degeneration.
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Appendix A

Experimental Details

1. Animals

A total of 24 male SD rats weighing 180–200g (around 6 weeks old) were purchased
from the Centralized Animal Facilities (CAF) of Hong Kong Polytechnic University and
housed individually in a temperature-controlled room (at a temperature of 21 ± 2 ◦C and
55% ± 10% relative humidity) with a 12:12 h light-dark cycle. They were supplied with
autoclaved bedding and cages. Rats were housed for a minimum of two weeks in the
facility prior to being used in this study.

2. DOCA-salt hypertensive rat model and captopril treatment

Among 24 rats, 8 were randomly selected as the control group; the rest of the 16 rats
received a subcutaneous injection of DOCA (20 mg/kg bw) twice a week, in combination
with 1.0% NaCl and 0.2% KCl in the drinking water to induce hypertension, while rats in
the control group were injected with saline and no saltwater was supplied. This treatment
lasted 14 weeks. Among the 16 rats injected with DOCA-salt, 8 of them were selected at
random as the DOCA + Captopril group, in which the hypertensive rats were administered
with captopril (50 mg/kg) by oral gavage daily since week 9. Fecal samples were collected
at the last week, the end of the experiment.

3. Measurement of body weight and blood pressure

The body weight was measured every week, while the blood pressure was recorded
every two weeks by the tail-cuff method using a BP-2000 Blood Pressure Analysis System
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(Visitech System, Inc., Apex, NC, USA). Rats were kept at 37 ◦C for 10 min to detect
pulsations in the tail artery before measurement. Ten readings were taken, and the mean of
all measurements was calculated. To minimize stress-induced variations in BP, the same
person did all measurements in the same calm environment. A training period of 2 weeks
was established before the actual trial time to accustom rats to the procedure.

4. Histology

The samples harvested from the rat were first fixed with 4% paraformaldehyde for
24 h, followed by decalcification of the bones with 10% Ethylenediaminetetraacetic acid.
Then, the samples were embedded with wax after the tissue processing procedure. A
microtome was used to cut the sample into 5 µm sections, and immunohistochemical
staining was performed to detect specific proteins in the samples. After dewaxing and
antigen retrieval, we used horse serum for blocking. The samples were then incubated
with the primary antibody overnight at 4 ◦C, where the primary antibodies used were
p16 (1:500; Abcam, ab54210), p53, and MMP13 antibody (1:500; Abcam, ab39012). For
3,3’-Diaminobenzidine (DAB) staining, we used a Vectastain ABC kit and a DAB peroxidase
substrate kit (Vector Labs, Newark, CA, USA) to stain the targeted antigen. Then, Harris
hematoxylin was employed for counterstaining. We employed Safranin O/Fast green for
Safranine O staining on the tibia. In each rat, 10 slices were selected for analysis on which
both menisci appeared to be disconnected, and finally, 3 slices were chosen for detailed
analysis. Specifically, the cells with brown nuclei were identified as p16-positive cells.
All images were taken with a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan). The
data were then compared using one-way ANOVA with posthoc Tukey HSD test in SPSS
statistical analysis software (IBM Software, Armonk, NY, USA).

5. Micro-CT analysis

We used ketamine (100 mg/mL) and xylazine(20 mg/mL) (2 mL:1mL, 0.14 mL/100 g)
to anesthetize the rats. The knee was scanned by a micro-CT system (SKYSCAN IN-VIVO
X-ray MICROTOMOGRAPH, Kontich, Belgium). The whole knee joint was scanned with a
35 mm scan width 35 mm and size of 18 µm. The X-Ray voltage and filter used were 88
kV and 1.0 mm, respectively. The data sets were analyzed by DataViewer (version 1.4.4.0,
SKYSCAN) in the coronal plane. The same volume of interest (VOIs) and same regions of
(ROIs) were selected for each sample. For tibial secondary spongiosa, we selected a total of
150 slides, including 50 slides above and 100 slides below the critical point defined by the
end of two menisci, for analysis, while the tibial primary spongiosa ROI was defined by the
200 slides beneath the growth plate. The thresholding of grey levels in the binarization of
the image was 90–225. The bone volume fraction (BV/TV), trabecular separation (Tb.Sp),
trabecular number (Tb.N), and trabecular thickness (Figure 3B–E) were calculated for each
sample. One-way ANOVA followed by the Tukey HSD Test was conducted to compare
the means of the calculated parameters among the different experimental groups. Later,
radiomics analysis was conducted using the PyRadiomics v3.0.1 package from Python
3.7 [15]. The square, square root, logarithm, exponential, gradient, Laplacian of Gaussian
(LoG), and wavelet filters were applied to the 3-dimensional images; for each filter type,
the first order, Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix
(GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighbouring Gray Tone Difference
Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM) radiographic features were
calculated using a bin width of 55, forming a total feature set of 1459 variables. Finally, the
top 50 radiomic features were selected using the chi-square test.

6. Gut microbiota sequencing analysis

Stool samples were collected sterilely from the rectum at week 14 and stored at
−80 ◦C. DNA was extracted from each sample using the TIANamp Stool DNA kit (Tiangen,
Beijing, China). The 16S rRNA amplicon sequencing targeted V3V4 regions, and shotgun
metagenomic sequencing was performed using Illumina HiSeq (San Diego, CA, USA)
PE250/PE300 sequencer (300–500 bp paired-end reads) at Majorbio BioPharm Tech. Co.
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(Shanghai, China). Raw data were filtered, and primers were trimmed. The results of
the sequences were analyzed, and figures were generated using the i-sanger platform.
Subsequently, the 16S rRNA data were processed and annotated using Qiime 2 v2019.10 [2].
Raw paired-end sequences were denoised using the DADA2 pipeline [3] and subsequently
classified using a pre-fitted Scikit-Learn-based taxonomy classifier with SILVA 132 Ref
NR database [4]. The linear discriminant effect sizes of the annotated gut bacterial genera
with logarithmic LDA score over 2 or p-value < 0.05 obtained from the fitted classifier
were plotted as a bar chart and a cladogram, respectively. For the metagenome data,
raw paired-end sequences were denoised using KneadData and merged using the Linux
command CAT. The merged sequences were functional profiled using HUMAnN 2.0 [5]
to reconstruct species-level microbial metabolic pathways. PICRUSt was used to profile
molecular functions of microbiota within a known sequenced database.

7. Gut microbiota compositional analysis

To analyze the compositional changes of the gut microbiota in the Control, DOCA, and
DOCA + Captopril groups on the genus level, we plotted the TAXA plot, which visualizes
the top 20 abundant genera identified from gut bacterial 16S rRNA gene amplicon sequenc-
ing, for each group. A permutational multivariate analysis of variance (PERMANOVA)
(Table A1) and pairwise Adonis (Table A2) analyses were conducted to test for the difference
in composition in the gut microbiota among the control, hypertensive, and captopril-treated
groups. Later, the richness and Shannon diversity were calculated for each gut sample,
followed by ANOVA with Tukey HSD post hoc analysis to test for the difference between
each experimental group.

8. Gut microbiota weighted correlation network analysis

Alterations in the macroscopic correlation structure of the enriched bacterial genera
under normal, hypertensive, and captopril-treated conditions were assessed. To this
end, a Spearman’s correlation network was constructed for the Control, DOCA, and
DOCA + Captopril groups with all correlation coefficients taken absolute values, and only
correlations with p < 0.05 were retained. The bacteria genera in each experimental group
were then clustered using the spectral clustering algorithm, whereby the optimal number of
clusters was determined by the minimum Silhouette’s score obtained from 1000 iterations
of bootstrap sampling (Figure 3D). The above analysis was performed using the Scikit-Learn
version 1.0 in Python 3.7. Subsequently, the global network parameters, including centrality,
density, heterogeneity, clustering coefficient, and Shannon entropy, were calculated using
1000 iterations of bootstrap sampling using the igraph version 1.2.7 package of R 4.0. The
network parameter was compared among the groups with one-way ANOVA followed by
Tukey HSD Test.

9. Differential abundance analysis of microbiota

Differential abundance analysis was conducted using DESeq2 (ver 3.14) from Biocon-
ductor [16] to identify the most significantly deviated genera between the Control, DOCA,
and DOCA + Captopril groups. Pairwise comparisons were performed (i.e., Control versus
DOCA, Control versus DOCA + Captopril, and DOCA versus DOCA + Captopril) to obtain
a log-fold-change heatmap where 13 were selected out of 200 genera enriched from the 16S
rRNA sequencing data. The top 2 principal components were plotted to visualize the sepa-
ration among the experimental groups using the 13 selected genera. Finally, three of them
were further identified, which were potentially related to DOCA-induced hypertension
and rebalance effect of captopril.

10. Differential expression analysis of microbiota metagenomic data analysis

To further elucidate the alteration of gut microbiota under the effect of DOCA-induced
hypertension and captopril treatment, shotgun sequencing was performed to obtain the
metagenomic data, which were further processed to match with the microbial functional
pathways where 2659 pathways were successfully profiled. Differential expression analysis
was carried out subsequently to identify the most crucial microbial pathways partaking
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in the three experimental groups. Using the EdgeR statistical model [17], pathways with
significant fold-change (p < 0.05) of expression across the pairing groups were identified.
A heatmap of log-fold-change was plotted to visualize the average fold-changes of the
significant enriched bacterial pathways. Additionally, the top 2 principal components
were plotted to visualize the separation of the 3 experimental groups using the selected 32
differentially expressed pathways. With a further selection, we have identified 5 bacterial
pathways that potentially relate to the effect of captopril on the alleviation of hypertension
and joint deterioration.

Appendix B

Table A1. Table of PERMANOVA of the 16S bacterial genus abundance comparison among the
Control, DOCA, and DOCA + Captopril groups.

Pairs df Sums of Squares F Model R2 p-Value Adjusted
p-Value

Control vs. DOCA 1 0.115566 2.14969 0.13311 0.006 0.018
Control vs. DOCA + CAP 1 0.136479 1.943359 0.121891 0.019 0.057
DOCA vs. DOCA + CAP 1 0.080237 1.167919 0.076999 0.227 0.681

Table A2. Pairwise Adonis comparison of the 16S bacterial genus abundance among the Control,
DOCA, and DOCA + Captopril groups.

df Sums of Squares Mean Squares F Model R2 p-Value

2 0.221521 0.11076 1.724451 0.141066
0.00821 1.348818 0.064229 NA 0.858934

23 1.570338 NA NA 1

Figure A1. Average body weights of the rats of the control, DOCA-induced hypertensive, and
captopril-treated groups from weeks 0 to 14.

Figure A2. The results of Safranine O staining in cartilage in joints of the Control, DOCA, and
DOCA + Captopril group, with the red box highlighting the regions exhibiting key differences in the
staining intensity.
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Figure A3. (A) The results of p16 staining in primary spongiosa of the control, DOCA, and
DOCA + Captopril groups. (B) The bar chart shows the percentage of p16-positive cells in the
samples (*** p < 0.001). (C) The 3D bone structure of primary spongiosa under micro-CT with the
(D) bone volume ratio (BV/TV), (E) trabecular number (Tb.N), (F) trabecular separation (Tb.Sp), and
(G) trabecular thickness (Tb.Th) calculated for the Control, DOCA, and DOCA + Captopril groups,
respectively (*** p < 0.001). (H) The heatmap of the top 50 radiomic features quantifying the texture
of primary spongiosa. (I) The Sirius red staining results of p16 staining in primary spongiosa of the
Control, DOCA, and DOCA + Captopril groups. DOCA and DOCA + Captopril groups show more
fibrosis than Control.

Figure A4. The centrality (A), clustering coefficient (B), and heterogeneity (C) of the correlation
network between the abundance of genus level in the Control, DOCA, and DOCA + Captopril groups.
Inter-group comparisons were conducted using one-way ANOVA followed by the Tukey HSD post
hoc test. (D) The log-LDA score of the gut genera, all genera shown in the plot have significant
LDA-based effect size (p < 0.05). (*** p < 0.001, ** p < 0.01).
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