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Quantum topology 
in the ultrastrong coupling regime
C. A. Downing* & A. J. Toghill

The coupling between two or more objects can generally be categorized as strong or weak. In cavity 
quantum electrodynamics for example, when the coupling strength is larger than the loss rate 
the coupling is termed strong, and otherwise it is dubbed weak. Ultrastrong coupling, where the 
interaction energy is of the same order of magnitude as the bare energies of the uncoupled objects, 
presents a new paradigm for quantum physics and beyond. As a consequence profound changes to 
well established phenomena occur, for instance the ground state in an ultrastrongly coupled system 
is not empty but hosts virtual excitations due to the existence of processes which do not conserve 
the total number of excitations. The implications of ultrastrong coupling for quantum topological 
systems, where the number of excitations are typically conserved, remain largely unknown despite 
the great utility of topological matter. Here we reveal how the delicate interplay between ultrastrong 
coupling and topological states manifests in a one-dimensional array. We study theoretically a 
dimerized chain of two-level systems within the ultrastrong coupling regime, where the combined 
saturation and counter-rotating terms in the Hamiltonian are shown to play pivotal roles in the rich, 
multi-excitation effective bandstructure. In particular, we uncover unusual topological edge states, we 
introduce a flavour of topological state which we call an anti-edge state, and we reveal the remarkable 
geometric-dependent renormalizations of the quantum vaccum. Taken together, our results provide a 
route map for experimentalists to characterize and explore a prototypical system in the emerging field 
of ultrastrong quantum topology.

The beauty of topology continues to fascinate scientists from an increasing diversity of fields, including more 
recently the quantum light and matter community1. The versatility of modern systems from the nanophotonic2–4 
to the magnonic5 to the ultracold atomic6 has significantly enrichened contemporary topological physics. Indeed, 
quantum topology is advancing at an impressive rate both from a fundamental point of view, including the crea-
tion of topological sources of quantum light7 and biphoton states8, and from the perspective of applications, for 
example the recent development of topological lasers9 and chiral quantum optical devices10.

A standard approximation employed within quantum physics is the so-called rotating wave approximation 
(RWA), whereby all non-resonant terms in the Hamiltonian are discarded as negligible11. This celebrated approxi-
mation breaks down in the ultrastrong coupling regime12–14, where the coupling strength becomes comparable 
to the bare transition frequencies of the uncoupled subsystems. The coupling is no longer perturbative, such that 
the non-resonant counter-rotating (C-R) terms must be included in any proper treatment15–20. Importantly, these 
C-R terms permit processes which violate the conservation of the number of excitations, so that the intuitively 
empty ground state instead bubbles with virtual excitations. The impact of ultrastrong coupling on quantum 
topological matter21,22, which usually draws upon a single particle picture, presents an interesting puzzle.

Ultrastrong coupling has been observed in a stream of pioneering experiments across several platforms, from 
LC resonators magnetically coupled to superconducting qubits23, to superconducting artificial atoms coupled 
to on-chip cavities24, to superconducting artificial atoms coupled to the electromagnetic continuum of a one-
dimensional waveguide25, to arrays of plasmonic nanoparticles26. Therefore, an expansion of the field to include 
topological considerations - so-called ultrastrong quantum topology - is a natural progression which promises 
a myriad of theoretical and experimental curiosities. Early theoretical efforts have thus far focussed on the influ-
ence of the geometric phase and other topological features of the quantum Rabi model27,28.

A prototypical model showcasing ultrastrong coupling is a pair of coupled two level systems (2LSs). As 
sketched in Fig. 1a, we consider the transition frequency of each 2LS to be ω0 , and the coupling strength to be 
J > 0 . The Hamiltonian Ĥ , including the C-R terms, thus reads (after setting � = 1)11,29
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with the raising (lowering) operator σ †
n  ( σn ) describing the n-th 2LS. Within the RWA, the terms ∝ σ1σ2 and 

∝ σ
†
1 σ

†
2  in Eq. (1) are discarded and the four resulting eigenfrequencies ω′

n are simply: ω′
4 = 2ω0 ; the hybridized 

levels ω′
3 = ω0 + J and ω′

2 = ω0 − J ; and the ground state ω′
1 = 0 . In terms of the bare states in the occupation 

number representation, that is |0, 0� , |1, 0� , |0, 1� , and |1, 1� , one may find the corresponding eigenstates |ψn� . The 
extremities of the energy ladder are associated with the doubly occupied eigenstate, which we denote |ψ4� = |1, 1� , 
and the wholly unoccupied ground state, which we label |ψ1� = |0, 0� . The intermediate, singly-occupied eigen-
states |ψ3� = (|1, 0� + |0, 1�)/

√
2 and |ψ2� = (|1, 0� − |0, 1�)/

√
2 are superpositions due to the nonzero coupling, 

and are separated in energy by the splitting 2J30,31.
When considering the ultrastrong coupling regime, diagonalizing the full Hamiltonian of Eq. (1) leads to the 

exact eigenfrequencies ωn , which are given by32 

 Notably, the C-R terms ∝ σ1σ2 and ∝ σ
†
1 σ

†
2  in Eq. (1) link the zero-excitation and two-excitation sectors, 

breaking particle number conservation. Consequently, the highest and lowest rungs of the energy ladder are 
renormalized from ω′

4 = 2ω0 and ω′
1 = 0 to the J-dependent eigenfrequencies ω4 and ω1 respectively [cf. Eq. (2a) 

and Eq. (2d)]. In Fig. 1b, we plot the four eigenfrequencies ωn of Eq. (2) as a function of the coupling strength 
J, showcasing the drastic reconstruction of half of the energy ladder in the ultrastrong coupling regime. In 
particular, there are divergences from the bare transition frequencies 0 and 2ω0 , as marked by the dashed grey 
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Figure 1.   Ultrastrong coupling in the dimer. Panel (a): a sketch of a pair of two-level systems, each of bare 
transition frequency ω0 , with the qubit-qubit coupling strength J [cf. Eq. (1)]. Panel (b): the eigenfrequencies ωn , 
as a function of J [cf. Eq. (2)]. Dashed grey lines: the transition frequencies in the uncoupled limit. Panel (c): the 
occupancy of the ground state ||ψ1�� as a function of J [cf. Eq. (3d)].
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lines. The exact eigenstates associated with Eq. (2), where we use the notation ||ψn�� for when the C-R terms are 
considered, read 

 where the frequencies ω1 and ω4 are defined in Eq. (2). Clearly, the mixed particle number eigenstates of 
Eq. (3a) and Eq. (3d) present a new paradigm for coupled systems. One immediate implication is that the 
ground state ||ψ1�� is no longer trivially empty, ||ψ1�� �= |0, 0� . As shown in Fig. 1c, the occupancy of the proper 
ground state ||ψ1�� increases with coupling strength J. When J ≪ ω0 , the pure state ||ψ1�� ≃ |0, 0� means that 
the ground state is wholly unoccupied, while in the extreme limiting case of J ≫ ω0 the maximally mixed state 
of ||ψ1�� ≃ (|0, 0� − |1, 1�)/

√
2 is essentially reached, such that the ground state ||ψ1�� is half-occupied and 

half-unoccupied.
The impact of the ultrastrong coupling can also be seen in the mean correlations of the dimer. For example, 

the population-like quantity 〈σ †
n 〉〈σn〉 reads (see the Supplementary Information S1) 

 where the auxiliary function f (ω̃0, t) , which accounts for the ultrastrong coupling, is given by

with the renormalized transistion frequency ω̃0 =
√

ω2
0 + J2 . In the strong coupling limit of J ≪ ω0 , the func-

tion f (ω̃0, t) ≃ 1 and Eq.  (4) approaches the simple trigonometric results �σ †
1 ��σ1� ≃ cos2 (Jt) and 

�σ †
2 ��σ2� ≃ sin2 (Jt) , which recover the expressions found after neglecting the C-R terms in the Hamiltonian of 

Eq. (1). Otherwise, Eq. (4) presents nontrivalities. In Fig. 2 the evolution of the population-like cycles of 〈σ †
n 〉〈σn〉 

are displayed as a function of time t using Eq. (4), where the orange and green lines represent the first and second 
2LS respectively [cf. Fig. 1a]. Panel (a), where J = ω0/10 , shows the typical strong coupling regime result: peri-
odic cycles of essentially unity amplitude, which are well described by trigonometric functions in the dimension-
less quantity Jt. The ultrastrong coupling regime ω0 ∼ J sees the renormalized transition frequency ω̃0 influence 
the amplitude of the cycles following Eq. (5). This is typified by panel (b), where J = ω0/2 and a characteristic 
wave packet is observed oscillating in time. The C-R terms also also impact the entanglement properties of the 
dimer, as discussed in the Supplementary Information S1.

The consequences of ultrastrong coupling for quantum topology is mostly unchartered terrain. We will start 
to explore it via the celebrated Su-Schrieffer-Heeger (SSH) topological array model6,21,33, which is formed by a 
chain of dimers like the one described in Fig. 1.

Results
Let us consider a dimerized chain of 2LSs, each of bare transition frequency ω0 , with alternating coupling 
strengths J1 > 0 and J2 > 0 along the formed one-dimensional lattice21. The arrangement is sketched in Fig. 3a 
for a short example chain of four 2LSs. For a general chain of size N, the Hamiltonian Ĥ reads [cf. Eq. (1)]

where the floor function ⌊...⌋ ensures Eq. (6) holds for both even and odd values of the integer N. The model 
encapsulated by Eq. (6) has an equivalent 2N × 2N matrix representation, and in the RWA there are well-defined 
sectors corresponding to the conserved number of excitations N  . The sectors follow Pascal’s triangle, where the 
binomial coefficient N !/N !/(N −N )! counts the number of eigenstates in each excitation sector N  (see the Sup-
plementary Information S1). For a chain of N = 4 2LSs, the 24 = 16-dimensional Hilbert space is distributed with 
{1, 4, 6, 4, 1} eigenstates in the N = {0, 1, 2, 3, 4} excitation sectors respectively (when working in the RWA). That 
is, there is a single excitation-less ( N = 0 ) ground state, four single-excitation ( N = 1 ) states, six two-excitation 
( N = 2 ) states and so on. Two principal parameters govern the intrinsic physics of the model defined by Eq. (6),
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namely ǫ , the dimerization parameter which records the inherent geometry of the bipartite chain; and J̄ , the 
chain coupling strength. The latter quantity tracks the importance of the C-R terms like ∝ σlσm and ∝ σ

†
l σ

†
m in 

Eq. (6) via the dimensionless ratio J̄/ω0 . The inverse relations for Eq. (7) provide forms of the alternating coupling 
strengths J1 = (1+ ǫ)J̄/2 and J2 = (1− ǫ)J̄/2.

The results of diagonalizing Eq. (6) are shown in Fig. 3b–d for a chain of N = 4 2LSs, which is represented 
in Fig. 3a. The panels (b–d) display the eigenfrequencies as a function of the dimerization ǫ , with increasing 
coupling strength J̄ across the panels. In panel (b) the chain coupling strength J̄ = 0.1ω0 , such that the 16 exact 

(7)ǫ = J1 − J2

J̄
, J̄ = J1 + J2,
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Figure 2.   Mean correlations in the dimer. The evolution of 〈σ †
n 〉〈σn〉 as a function of time t for the n-th 2LS, 

in units of the inverse coupling strength J−1 [cf. Eq. (4) with Eq. (5)]. Orange lines: n = 1 . Green lines: n = 2 . 
Panel (a): the strong coupling regime, where the bare transition frequency ω0 = 10J . Panel (b): the ultrastrong 
coupling regime, where ω0 = 2J.
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increasing coupling strength J̄ across the panels [cf. Eq. (7)]. Thin colored lines: the eigenfrequencies ωn , found 
by diagonalizing the full Hamiltonian of Eq. (6). Thick yellow lines: ω′

n , found upon neglecting the C-R terms.
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eigenfrequencies ωn (thin colored lines) closely resemble the results in the RWA (thick yellow lines). Notably, the 
effective bandstructure with dimerization ǫ < 0 is markedly different from that with ǫ > 0 , especially around ω0 
and 3ω0 where states are either present or absent depending upon the dimerization (hinting at the topology of the 
model). Upon increasing the coupling strength to J̄ = 0.3ω0 in panel (c), the influence of the C-R terms becomes 
visible, particularly around 0 and 4ω0 , where there are significant deviations from the RWA results [as may have 
been anticipated from the dimer results of Fig. 1b, where the 0 and 2 excitation sectors became linked]. Finally, 
in panel (d) J̄ = 0.5ω0 , such that the impact of entering the ultrastrong coupling regime is highly apparent. It 
has lead even to crossovers between energy levels supposedly (in the RWA) associated with different numbers 
of excitations. For example, green (nominally single excitation sector) and red (supposedly two excitation sec-
tor) eigenfrequencies overlap when ǫ > 0 , as do the red and purple (purportedly three excitation sector) results. 
However, while there is a significant reconstruction of the energy ladder, the asymmetry about ǫ = 0 in panel (d) 
remains in a similar fashion to panel (a), hinting that some topological properties may well endure.

The underlying behavior of the eigenstates associated with Fig. 3d is investigated in Fig. 4, where we consider 
the fidelity of the 16 quantum states from ||ψ1�� to ||ψ16�� , ordered from lowest to highest in energy (from ω1 
to ω16 ). That is, we show how the weighting of the underlying bare states |i, j, k, l� changes as a function of the 
dimerization ǫ , with white signifying zero contribution from the bare state and brighter shades of green denoting 
an increasingly large overlap (the bare states |i, j, k, l� are marked at the left edge of the first column of panels). 
The eigenstates labelled ||ψ3�� and ||ψ4�� correspond to the states residing near to ω0 (when ǫ < 0 ) in Fig. 3d. The 
overlaps of ||ψ3�� and ||ψ4�� (found at the right-hand side of the upper row of Fig. 4) demonstrates their transition 
from being primarily edge states when ǫ < 0 , composed of the bare states |1, 0, 0, 0� and |0, 0, 0, 1� , to being bulk 
states extended throughout the four-dimensional single excitation sector when ǫ > 0 . An analogous effect may 
be observed for the eigenstates ||ψ13�� and ||ψ14�� , which reside around 3ω0 (when ǫ < 0 ) in Fig. 3d. Now it is a 
‘hole’, or absence of excitation, which appears as a novel type of topological anti-edge state, based upon the bare 
states |1, 1, 1, 0� and |0, 1, 1, 1� (see the two panels on the left-hand side of the bottom row of Fig. 4). These edge 
state and anti-edge state features are common across chains of an arbitrary size N, even in the ultrastrong coupling 
regime (see the Supplementary Information S1). Indeed, despite the significant coupling strength of J̄ = 0.5ω0 
the packaging of states into excitation-number-conserving bundles is still has some utility. The influence of the 
C-R terms on the eigenstates ||ψn�� can be seen for example in the bottom right panel of Fig. 4, describing the 
eigenstate ||ψ16�� , where the deviation from the RWA result of |1, 1, 1, 1� arises in the noticeable contributions of 
the two-excitation sector bare states.

The topology of a dimerized chain of 2LSs in the ultrastrong coupling regime is charted in Fig. 5 for a typical 
non-short chain. There we plot the eigenfrequencies as a function of the dimerization parameter ǫ , with increas-
ing coupling strength J̄ for each column. The top row employs the RWA and as such is applicable within strong 
coupling, while the bottom row takes the C-R terms into account so that ultrastrong coupling may also be prop-
erly described. In the figure, the chain is of size N = 8 (corresponding to a 28 = 256-dimensional Hilbert space) 
and all data above 2ω0 is cut. The color bar measures the localization of each state via PR(n) , the participation 
ratio34–37 of each eigenstate. In the participation ratio calculation, |ψn� is used in the upper row and ||ψn�� in the 
lower row. This localization measure counts how many bare states contribute to the eigenstate, with red mark-
ing a low number of states (a signature of potential edge states), and blue a high number of states (a signifier of 
highly extended states spread out over the entire chain).

In first column of Fig. 5, where the coupling strength J̄ = 0.1ω0 effectively ensures strong coupling behavior, 
the results of panels (a) and (d) are in essence the same. One observes in red the topological edge state at ω0 
for ǫ < 0 , which lies in the effective band gap between two collections of extended states in orange-yellow. This 
midgap state disappears when ǫ > 0 , a result resembling standard one-excitation SSH-like models transitioning 
from the topologically nontrivial to the topologically trivial regime21. The lowest energy state ω′

1 = 0 in panel 
(a) [or ω1 ≃ 0 in panel (d)] is not topological, and it is red simply because it is only composed of the empty state 
|0, 0, 0, 0� [in panel (d), ||ψ1�� ≃ |0, 0, 0, 0� holds].

The second column of Fig. 5 sees the coupling strength increased to J̄ = 0.3ω0 . Similar topological features 
can be found around ω0 , with the red localized state present when ǫ < 0 merging into the effective bands for 
ǫ > 0 . However, now the two effective bands surrounding the edge state are of substantially larger effective 
bandwidths due to the increased coupling strength J̄ , such that the nominally two-excitation-sector states in the 
vicinity of 2ω0 (primarily colored in green) are almost reaching the ostensible one-excitation-sector states around 
ω0 (mostly orange-yellow). While the orange-yellow extended states in panel (b) maintain symmetric behavior 
about ω0 due to the RWA, the analogous collections of states in panel (d) are highly asymmetric, since the C-R 
terms guarantee significant couplings to higher rungs of the energy ladder. Most notably, these hybridizations 
lead to a ground state no longer pinned at 0 in panel (d).

When J̄ = 0.5ω0 in the third column of Fig. 5, there is a drastic reconstruction of the effective bandstructure 
in panel (f) due to the ultrastrong coupling causing a complete breakdown of particle number conservation. The 
ground state shows a remarkable warping away from 0, and there is pronounced effective band crossing around 
ω0 for all values of ǫ . However, quite remarkably, the edge state (now located near to 0.7ω0 when ǫ ≃ −1 ) persists, 
as does its highly localized nature (it is red for ǫ < 0 and indeed transforms into an extended state in yellow-
green for ǫ > 0 ) suggesting the translation of topological features deep into the ultrastrong coupling regime. 
This relative robustness to the effects of the C-R terms in the Hamiltonian presents intriguing perspectives for 
the existence of localized edge states specifically, and for ultrastrong quantum topology in general.

The preceding discussion of Fig. 5 panels (a–f) used terminology such as effective bandstructures, effective 
bands and effective band gaps. Such concepts may reasonably be invoked, since the finite system studied using 
the Hamiltonian of Eq. (6) has a natural analogue in the continuum limit. When the number of 2LSs in the chain 
N → ∞ , the resultant eigenfrequencies may be grouped into certain bands which are separated by certain band 



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11630  | https://doi.org/10.1038/s41598-022-15735-0

www.nature.com/scientificreports/

gaps. For example, applying the RWA and concentrating on the first-excitation sector only, Eq. (6) may be readily 
diagonalized as ω0 ±

√

J21 + J22 + 2J1J2 cos
(

qd
)

 , where q is the wavenumber and where periodic boundary 
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Figure 4.   Eigenstates in the dimerized chain. The probability densities of the eigenstates ||ψn�� in the 
ultrastrong coupling regime, in terms of the bare states |i, j, k, l� , as a function of the dimerization ǫ [cf. Eq. (7)]. 
In the figure, the coupling strength J̄ = 0.5ω0 , and the chain is of size N = 4 (corresponding to a 24 = 16 
dimensional Hilbert space). The presented eigenstates correspond to the eigenfrequencies of Fig. 3d.
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conditions were employed to ensure an analytic result21. This simple expression exposes the presence of two 
bands (± in the aforementioned expression) filled of one-excitation states, which appear inside the bow tie shape 
formed by

which are plotted as the dashed grey lines in Fig. 6a–c. We also plot the RWA results for a finite chain of size 
N = 8 in panels (a, b, c), for increasing values of the coupling strength J̄ , which clearly fit the bow tie analysis 
of Eq. (8) for the one-excitation eigenfrequencies (red lines). The two-excitation eigenfrequencies (blue lines) 
encroaching the bow tie for larger J̄ also form a band, but no simple analytic expression for the two-excitation 
band is readily obtainable. Similar results to Fig. 6a–c also hold with the C-R terms included, but since the 
number of excitations is no longer conserved the effective band theory language becomes less and less useful for 
larger values of J̄ . Notably, the edge states falling outside of the bow ties in Fig. 6a–c are a priori excluded from 
the periodic boundary condition calculation leading to Eq. (8).

As was mentioned in the discussion of a 2LS dimer around Fig. 1c, ultrastrong coupling renormalizes the 
ground state due to the presence of the C-R terms in the Hamiltonian of Eq. (6) linking the vacuum state and 
occupied states. This effect can be clearly seen for the dimerized chain by considering the occupancy of the 
ground state ||ψ1�� , as is shown in Fig. 6d as a function of the dimerization ǫ . The coupling strength J̄ increases 
from 0.1ω0 to 0.9ω0 with decreasing line thickness. Quite intuitively, with smaller J̄ (thick red line) the ground 
state is essentially unoccupied ||ψ1�� = |0, 0, . . . , 0� , being the trivial ground state familiar from the RWA. How-
ever, upon entering ultrastrong coupling (thinner lines), there is a significant occupation of the ground state 
||ψ1�� . Importantly, this effect is highly sensitive to the dimerization ǫ , and thus may be readily probed by taking 
measurements of the same physical system in different geometric configurations.

Discussion
We have studied a prototypical topological model in the ultrastrong coupling regime, where the rotating wave 
approximation breaks down. Inspired by the surge in experimental activity on one-dimensional dimerized 
arrays38–41, we have shown that in the ultrastrong coupling regime various desirable features remain. For exam-
ple, topological edge states continue to form in the gaps in the effective bandstructure, and although they are 

(8)ω0 + J̄ , ω0 + |ǫ|J̄ , ω0 − |ǫ|J̄ , ω0 − J̄ ,
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Figure 5.   Topology in the ultrastrong coupling regime. Eigenfrequencies as a function of the dimerization 
parameter ǫ , with increasing coupling strength J̄ in each column [cf. Eq. (7)]. Colour bars: the participation ratio 
PR(n) of each eigenstate. Panels (a–c): the results without taking counter-rotating terms in the Hamiltonian 
of Eq. (6) into account, namely the RWA eigenfrequencies ω′

n and RWA eigenstates |ψn� . Panels (d–f): the full 
eigenfrequencies ωn and eigenstates ||ψn�� are used. In the figure, the chain is of size N = 8 (corresponding to a 
28 = 256 dimensional Hilbert space) and all data above 2ω0 is cut.
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no longer pinned at a constant ‘zero energy’ they are highly localized in the topologically nontrivial geometric 
arrangement and indeed disappear in the trivial arrangement. Consideration of higher rungs of the energy ladder 
led to the discovery of anti-edge states, which have the property of residing everywhere apart from the edges of 
the chain. Finally, a hallmark of ultrastrong coupling is a non-empty ground state, and here we show that this 
vacuum renormalization is geometric-dependent for a dimerized chain, proffering opportunities for observation. 
We believe that our results should stimulate experimental work23–26 in ultrastrong topology, as well as further 
theoretical work in this exciting area.

Methods
In this theoretical work, exact diagonalization of finite matrices was carried out as described in the main text. 
Further details are given in the Supplementary Information S1.

Data availability
There is no additional data. Further information is given in the Supplementary Information.
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