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Abstract: Endometrial cancer is one of the most common malignant diseases in women worldwide,
with an incidence of 5.9%. Thus, it is the most frequent cancer of the female genital tract, with more
than 34,000 women dying, in Europe and North America alone. Endometrial Cancer Stem Cells (CSC)
might be drivers of carcinogenesis as well as metastatic and recurrent disease. Therefore, targeting
CSCs is of high interest to improve prognosis of patients suffering of advanced or recurrent endome-
trial cancer. This review describes the current evidence of molecular mechanisms in endometrial
CSCs with special emphasis on MYC and NF-κB signaling as well as mitochondrial metabolism.
Furthermore, the current status of immunotherapy targeting PD-1 and PD-L1 in endometrial cancer
cells and CSCs is elucidated. The outlined findings encourage novel therapies that target signaling
pathways in endometrial CSCs as well as immunotherapy as a promising therapeutic approach in
the treatment of endometrial cancer to impede cancer progression and prevent recurrence.

Keywords: endometrial cancer; cancer stem cells; endometrial cancer stem cells; MYC; NF-κB; PD-1;
PD-L1; mitochondria

1. Endometrial Cancer

Endometrial cancer (EC) is one of the most common malignant diseases in women
worldwide. Annually, about 320,000 women are diagnosed with EC. In high-income
countries especially, the incidence of EC is elevated at 5.9% [1]. In Europe and in North
America, it is the most frequent cancer of the female genital tract. Major risk factors are
obesity, diabetes type II, physical inactivity and elevated estrogen levels in postmenopausal
women [2,3]. Romania in particular shows high incidence and mortality rates with frequent
comorbidities for endometrial cancer such as hypertension, obesity and HPV infection [4,5].
In most cases, EC is presenting early on with postmenopausal bleeding and therefore often
is diagnosed at an early stage. However, more than 34,000 women die of EC in Europe and
North America each year [6], and incidence is rising. The prognosis for recurrent EC in
general is miserable, with a five-year overall survival from 15% to 17% [7]. Endometrial
cancers have been classified in two categories. Type 1 includes grade 1 and 2 endometrioid
carcinomas, which are linked to chronic estrogen stimulation and arise from complex
atypical hyperplasia. They often show good prognosis, since they are diagnosed early.
Type 2 comprises grade 3 endometrioid and non-endometrioid cancers that develop from
atrophic endometrium with a poorer prognosis [6]. Recently, the cancer genome atlas
research project revealed a genomic re-classification of EC with four distinct subtypes:
DNA polymerase epsilon catalytic subunit (POLE) ultramutated, microsatellite instability
(MSI), copy-number low and copy-number high [8].
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In clinical treatment, standard therapy is surgical intervention, where surgical staging
is state of the art. The surgical procedure for locally restricted endometrial cancer is a
total hysterectomy and bilateral adnexal removal with or without pelvic and paraaortic
lymphadenectomy laparoscopically [9]. For localized recurrences, surgery or radiation or a
combination of both may be an option. Nonlocalized recurrent tumors are usually treated
with systemic therapy. The options are hormonal treatment, chemotherapy and/or rather
novel alternatives like targeted immunotherapy. To understand how EC metastasizes could
help to prevent recurrence or at least to improve therapy. According to early research
by Virchow, chronic inflammation might be a major driver of tumor development [10].
Furthermore, it was shown that tumors can develop by single cell somatic mutations. This
mutated cell was supposed to proliferate locally and when reaching a certain number starts
to metastasize [11]. Some tumors develop drug resistance quite rapidly and show clonal
heterogeneity, which may be caused by a small subpopulation of cells that show stem-like
features [12,13]. The concept of cancer stem cells (CSCs) is the most promising concept
until now to fill the gap in understanding cancer progression and resistance.

CSCs are of enormous clinical interest since this small subpopulation of cancer cells
may be responsible for tumor growth, invasion and metastasis as well as treatment resis-
tance and cancer relapse. Due to their role in treatment failures, cellular models of CSCs
are highly promising tools for the investigation of the underlying molecular biology and
the development of novel cancer therapeutics. The purpose of this review is to characterize
the role of endometrial cancer stem cells, to describe the molecular pathways involved in
ECSC sustainment and the impact of interfering with these pathways as well as to give an
outlook of potential CSC-targeting therapeutic implications for endometrial cancer.

2. Literature Data Searching

For this narrative review, we performed research on pubmed.gov, clinicaltrials.gov
and google.scholar using the keywords ‘endometrial cancer’, ‘endometrial cancer stem cell’,
‘endometrial neoplasm’, ‘endometrioid carcinoma’, ‘uterine cancer’ and ‘uterine cancer
stem cell’ together with specific keywords like ‘tumorigenicity’, ‘signaling’, ‘stemness’,
‘pluripotency’, ‘immunotherapy’ and ‘metabolism’ as well as ‘wnt’, ‘PI3K’, ‘Akt’, ‘notch’,
‘CD133/C44‘, ‘nfkb’, ‘nuclear factor kappa b’, ‘RelA’, ‘myc’, ‘mitochondria’, ‘PD-L1’ and
‘pembrolizumab’. Medical subject heading terms used were ‘endometrial neoplasm’, ‘uter-
ine neoplasm’, ‘endometrioid carcinoma’. We sorted the results by most recent and included
all papers from 2010 to 2022. For further information, we also included older publications.

3. Endometrial Cancer Stem Cells

Most cancers arise in tissues containing a subpopulation of stem cells, which are
responsible for the development and maintenance of the respective tissue. The presence
of CSCs has been assumed for several decades, as many tumors exhibit significant hetero-
geneity regarding their morphology, genetic lesions, cell proliferation kinetics and response
to therapy even when the tumor initiated from a single cell [14]. The first possible rela-
tionship between cancer and stem cells was found in the hematopoietic system, when
Fialkow and colleagues showed stem cell involvement in chronic myelocytic leukemia and
acute non-lymphocytic leukemia [15,16]. Hierarchical tumor organization was also shown
in solid cancers, as for instance only CD44+/CD24-/low tumorigenic breast cancer cells
were able to form tumors that contained additional CD44+/CD24-/low cells, as well as
phenotypically different non-tumorigenic cells [17]. Consistently, EC shows a hierarchical
organization that contains a small subpopulation of tumor-initiating cells able to initiate
tumors with morphologies similar to the parental one [18]. The properties of these rela-
tively rare tumor-initiating subpopulations are strongly related to those of normal stem
cells, as they are able to proliferate, self-renew and differentiate into diverse cell types of
the respective tumor population. In contrast to normal stem cells, CSCs have a specific
molecular signature and deregulations of several molecular signaling pathways [19].
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The discovery of (E)CSCs drastically changed the perspective of cancer research re-
garding tumor biology and approaches of treatment. They are most commonly identified
using specific cell-surface antigens like CD44, CD133 and CD24 together with implantation
and tumor sphere formation assays to prove their ability to initiate a tumor containing the
same CSCs as well as differentiated progeny [20]. Next to tumor sphere formation assays,
invasion, migration and chemoresistance assays are conducted to confirm the tumorigenic
phenotype of ECSCs [21,22]. Consistently, subpopulations isolated from endometrial can-
cer cell lines showed stem cell properties such as self-renewal, low proliferative activity,
chemoresistance and tumor initiation [23]. CD133/CD44+ endometrial cancer cells were
able to form tumor spheres, showed enhanced chemoresistance and were able to initiate
tumor formation with the same phenotype as the parental tumor when transplanted into
immunodeficient mice [24]. Further, CD133/CD44+ cells isolated from endometrial can-
cers expressed the pluripotency markers Myc, Sox-2, Nanog and Oct4 as well as other
stemness-related genes such as Nestin and showed enhanced clonogenic ability and sphere
formation [25]. As CSCs rely on self-renewal, it is most likely that they originate from
normal stem cells and utilize the already implemented self-renewal pathways. However,
it has been shown that CSCs can also be derived from progenitor cells suggesting that
oncogenic mutations include the regain of self-renew ability [26]. This stands in line with
the fact that the origin of CSCs has been connected to dedifferentiation of a mature cancer
cell with epithelial to mesenchymal transition (EMT) [27]. Consistently, upregulation of
EMT-associated genes like TWIST1 and SNAI1 was demonstrated in an endometrial cancer
stem-like cell line and treatment with EMT-blocker salinomycin inhibited the tumorigenic-
ity of these cells [21]. An aldehyde dehydrogenase (ALDH)-1high cancer stem-like cell
subpopulation isolated from other endometrial cancer cell lines also showed increased
expression of EMT-associated genes like SNAI1 as well as pluripotency markers Sox2 and
Nanog [28]. Furthermore, ALDH-1high ECSC spheres show expression of Oct4, Nanog and
Myc and inhibition of ALDH activity suppressed tumor sphere formation and decreased
their chemoresistance [29]. The significantly increased expression of ALDH1 and epithelial
cell adhesion molecule (EpCAM) as well as Oct4, Nanog, Sox2 and Myc was also revealed
in a CD133+ cell subpopulation isolated from an endometrioid adenocarcinoma [30]. Hy-
poxia was further shown to promote an endometrial cancer stem-like cell phenotype by
increasing the expression of CD133, ALDH1, Oct4, Sox2 and Nanog and enhancing tu-
mor sphere formation [31]. Signaling pathways involving miRNAs were demonstrated
to be involved in modulating endometrial CSC properties [32]. For instance, miR-423
and miR-135a contribute to CSC characteristics as they promote proliferation, migration,
invasion and chemoresistance of endometrial cancer cells [33,34]. Furthermore, miR-101
has been shown to suppress EMT, self-renewal and invasiveness of aggressive endometrial
cancer cells by decreasing the expression of TWIST1, ALDH1 and Nanog [35]. However,
other signaling pathways like Wnt/β-Catenin, Notch and phosphatidylinositol 3-kinase
(PI3K)/AKT were also demonstrated to regulate stemness in endometrial cancer [21,32,36].

4. Targeting Signaling Pathways in Endometrial Cancer Stem Cells

There are several pathways that have been described to maintain stemness and me-
diate resistance in endometrial CSCs. The Wnt/β-Catenin pathway is one of these and
also has been described to control self renewal and promote growth and migration in a
variety of CSCs [37]. In endometrial cancer cells, activation of Wnt/β-Catenin signaling
was shown to facilitate tumor progression and accelerate cell growth as well as promote
tumor migration and invasion [38–40]. Further, miR-15a-5p-mediated inhibition of Wnt/β-
Catenin signaling suppressed cell proliferation and stemness of endometrial cancer cells,
as it regulates the expression of various stemness genes like Oct-4, Sox2 and Nanog [41].
Additionally, SMOC-2-mediated activation of Wnt/β-Catenin enhanced chemoresistance
of CD133/CD44+ endometrial CSCs [22]. Another pathway known to modulate stemness
and resistance of CSCs is the Notch signaling pathway [42]. A study around Mitsuhashi
revealed that expression of Notch receptors and ligands was higher in endometrial can-
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cer than the normal endometrium and is associated with higher grade and myometrial
invasion [43]. However, another study suggested that the Notch pathway may act as an
endometrial cancer suppressor, as expression of Notch molecules was reduced compared
to the adjacent non-carcinogenic tissue [44] Nonetheless, treatment of endometrial cancer
cells with Notch inhibitor DAPT suppressed their invasiveness [43]. Furthermore, expres-
sion of Notch was significantly higher in CD133+ cells than CD133- cells and inhibition
of Notch increased cell cycle arrest and apoptosis [45]. In primary endometrial CSCs,
miR-134 overexpression led to the downregulation of Notch pathway proteins as well
as suppressed proliferation, migration and drug resistance [36]. A study investigating
estrogen activated Notch signaling in ER-positive and -negative endometrial cancer cell
lines showed a proliferative effect in both cell lines, although only ER-positive cells showed
activated Notch signaling and reduced cell viability upon inhibition of Notch [46]. In
ER-negative cells, estrogen mediated proliferation was induced by PI3K/AKT signaling,
which is another master regulator of CSCs [47]. Several studies revealed the importance of
PI3K/AKT signaling in endometrial cancer cells, as it promotes cell proliferation, migration
as well as mediates chemoresistance [48,49]. For instance, human epidermal growth recep-
tor 2 (HER2) mediated PI3K/AKT activation increased paclitaxel resistance in endometrial
cancer cells [50]. Consistently, inhibition of PI3K/AKT signaling by, for instance, metformin
suppressed viability, sphere formation, migration and invasion as well as induced apopto-
sis, which are features contributing to the CSC phenotype [51,52]. Further, dysregulations
of several miRNAs affect PI3K/AKT signaling and contribute to the invasive, EMT and
CSC phenotype of tumor cells including endometrial cancer [32].

4.1. Targeting NF-κB in Endometrial Cancer Stem Cells

The nuclear factor ‘kappa light chain enhancer’ of activated B-cells (NF-κB) belongs to
a family of transcription factors involved in important cellular processes, but also plays a
major role in the progression of numerous diseases including cancer [53]. Furthermore, NF-
κB-mediated signaling pathways promote tumor progression by directly being involved in
maintaining stem cell characteristics of CSCs [54]. Regarding endometrial cancer, all NF-κB
members and related proteins were found frequently expressed [55]. Disruption of NF-κB
signaling in endometrial cancer cells has been shown to induce G1 cell cycle arrest through
the transcriptional down-regulation of Cyclin-dependent kinase 4 (CDK4) expression [56].
Furthermore, non-canonical NF-κB member RelB signaling was found to be elevated in
endometrioid adenocarcinomas and connected to tumor initiation and tumor growth
in vivo [57]. A molecular profiling study of CD44 and ALDH expressing endometrial
tumor circulating cells found increased expression of NF-κB member RelA associated with
tumor infiltration and EMT [58]. Consistently, miRNA-16-mediated suppression of RelA
activation inhibited the invasion and migration of endometrial stromal cells often involved
in endometrial pathogenesis [59]. Invasion and migration of endometrial cancer cells was
also inhibited via IL-37b-mediated suppression of RelA, however it did not affect EMT [60].
Furthermore, analysis of the cancer genome atlas RNAseq data revealed a correlation
between transcriptional activation of NF-κB p65-regulated genes with FXYD5/dysadherin
mRNA levels in endometrial cancer, which is stronger expressed in higher staged or
invasive ECs [61]. NF-κB has been shown to promote endometrial cancer cell survival
under hypoxia [62], which is known to modulate chemo- and radioresistance, as well as
having been suggested to constitute niches for CSCs [63]. This stands in line with post-
radiation endometrial cancer recurrences showing increased nuclear translocation of NF-κB
members p50, RelB and cRel [64]. Regarding endometrial CSCs, nanopore sequencing
of several CSC populations isolated from different tissues including endometrial cancers
showed highly enriched genes involved in the GO-term “NF-κB binding” [19]. We recently
published a significant survival decreasing effect of the NF-κB Inhibitor dexamethasone
and pyrrolidine dithiocarbamate (PDTC) in CSCs derived from non-small cell lung cancer,
which may also affect endometrial CSCs with elevated NF-κB activity [65].



Int. J. Mol. Sci. 2022, 23, 3412 5 of 15

NF-κB signaling is further directly connected with signaling pathways known to
maintain stemness of endometrial CSCs. For instance, AKT activates NF-κB through
stimulation of the trans-activating domain and activation of the inhibitor of kappa B (IκB)
kinases (IKK) [66]. Consequently, AKT-mediated NF-κB activation in endometrial cancer
has been shown to increase Cyclooxygenase-2 (COX-2) expression as well as estradiol-
mediated vascular endothelial growth factor (VEGF) and basic fibroblast growth factor
(bFGF) [67,68]. NF-κB signaling is further directly connected to Notch signaling, as several
cross-regulations have been observed [69]. Some cross-talks can also be found between
Wnt/β-Catenin and NF-κB signaling, such as a Wnt5a/NF-κB feedback loop that sustains
both elevated Wnt5a levels and NF-κB activity [70].

4.2. Targeting Myc in Endometrial Cancer Stem Cells

The Myc family of transcription factors are one of the few master regulators of onco-
genesis, as deregulation has been detected in over 70% of human cancers and associated
with poor prognosis [71]. A study conducting immune histochemical stainings found a
78.3% positive rate of c-Myc in endometrial cancer tissues and an amplified c-Myc in 25%
of the cases [72,73]. Additionally, high expression of c-Myc was more often observed in
low differentiated endometrial cancers than moderately differentiated ones [73]. Regarding
endometrial carcinogenesis, upregulation of c-Myc in endometrial cancer cells was shown
to induce EMT, drug resistance and invasion [74,75]. Consistently, targeting c-Myc using
small molecule JQ1 inhibited endometrial cancer growth in cell culture and xenograft
models [76].

The emerging role of Myc in CSCs is becoming increasingly clear, as several studies
demonstrated a central role of c-Myc in maintaining stem-like properties in a variety
of cancers including breast and colon cancer, and inhibition of Myc suppressed their
stemness [77,78]. Increased expression of c-Myc also was observed in several stem-like
endometrial cancer subpopulations [25,30], making c-Myc an important target to eliminate
endometrial CSCs. We recently published a significant survival decreasing effect utilizing
the small molecule KJ-Pyr-9 in CSCs derived from colon and lung cancer [65,79]. In ovarian
cancer, overexpression of the tumor suppressor miRNA-654 reduced cell proliferation and
induced cell death by acting against Myc-, Akt- and Wnt-signaling pathways, which are
also important in the regulation of endometrial CSCs [80]. In endometrial cancer cells, 17β-
estradiol and tamoxifen were shown to induce c-Myc expression through ER-α36-mediated
activation of ERK and AKT, which in turn promoted cell proliferation. Additionally,
inhibition of PI3K significantly reduced cell growth [81]. Suppression of tumor driver
α-Enolase in endometrial cancer cells significantly reduced proliferation and invasion
in vitro, as well as tumorigenicity in vivo, by the inactivation of PI3K/AKT signaling.
This inactivation led to reduced c-Myc expression as well as Snail and N-cadherin and
the overexpression of PI3K in α-Enolase silenced endometrial cancer cells reversed this
effect [82]. However, c-Myc promoter binding protein 1 (MBP-1), an alternative translation
product of α-Enolase, has been shown to suppress c-Myc expression, which reduced the
proliferation and migration of endometrial cells [83]. Targeting the Hedgehog signaling
pathway, which has been suggested to maintain CSCs [84], significantly inhibited the
growth of endometrial cancer cells with a concomitant reduced expression of cyclin D1 and
N-Myc [85]. Furthermore, nanopore sequencing of CSCs derived from three endometrial
tumors further revealed an upregulation of Myc as well as genes associated with the
mitochondrion, which stands in line with the fact that amplified Myc expression has also
been connected to increased mitochondrial oxidative phosphorylation [19,86].

Taken together, the most prominent activated pathways in endometrial cancer stem
cells include Wnt/β-Catenin, PI3K/AKT signaling and Notch signaling in crosstalk with
other signaling pathways like NF-κB, which leads to the upregulation of genes associated
with stemness, resistance and EMT (Figure 1).
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Figure 1. Activated Signaling Pathways in Endometrial Cancer Stem Cells and possible Target Sites.
Activated Wnt/β-Catenin Signaling leads to the expression of stemness genes Oct-4, Sox-2 and
Nanog as well as activates NF-κB. NF-κB is also activated by the PI3K/AKT/mTOR pathway, whose
activation is mediated by tyrosine receptor kinases like HER2 and leads to the expression of genes like
c-Myc and Snail. Another receptor contributing to cancer stem cell characteristics is Notch. Possible
target sites affecting these pathways as well as stemness, resistance and invasiveness of CSCs are
pictured in the black boxes. PI3K = phosphatidylinositol 3-kinase; HER2 = human epidermal growth
factor receptor 2; EGF = epidermal growth factor; ECM = extracellular matrix; mTOR = mammalian
target of rapamycin.

5. Mitochondrial Metabolism in Endometrial Cancer Stem Cells

In contrast to the differentiated tumor bulk surrounding CSCs that shows persistent
activation of aerobic glycolysis, many CSCs show metabolic plasticity and are able to
switch their metabolic state to favor glycolysis or oxidative metabolism [87]. For instance,
pancreatic CSCs prefer oxidative metabolism, as they show an increased mitochondrial
mass as well as decreased lactate production [88]. Consistently, nanopore sequencing of
CSCs isolated from various tissues demonstrated an upregulation of mitochondrial and
oxidative phosphorylation pathways as well as glycolytic pathways further underlining
the metabolic plasticity of CSCs [19]. On one hand, endometrial CSCs displayed higher
mitochondrial membrane potential, reactive oxygen species, ATP levels, and oxygen con-
sumption rates than regular endometrial cancer cells and knock-down of mitochondrial
peroxiredoxin three decreased sphere formation and reduced their cellular viability [89].
Additionally, endometrial CSC spheres showed an increased uptake in glucose associated
with lower lactate production and mitochondrial oxidative phosphorylation and endome-
trial CSCs isolated from endometrial cancer cell lines showed increased mitochondrial
mass [28,90]. On the other hand, spheroid endometrial CSCs with ALDH activity show
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glycolytic dependency and glycolytic suppression impaired their stemness [29]. In gastric
CSCs, the glycolytic α-Enolase has been shown to regulate stem cell-like properties by
stimulating glycolysis [91]. In endometrial cancer cells, expression of α-Enolase is elevated
and correlates with worse outcomes, as well as having been shown to regulate glycolysis,
cell proliferation, migration and invasion via the PI3K/AKT pathway [82].

However, independent of their metabolic state, CSCs rely on mitochondrial function
as it is crucial for processes like regulation of stemness and chemoresistance [92]. Thus,
targeting mitochondrial metabolism may provide a new therapeutical tool for targeting
(endometrial) CSC-mediated carcinogenesis. The already clinically approved standard
type II diabetes medication Metformin has shown promising results in cancer treatment
through the inhibition of oxidative phosphorylation in mitochondria and activation of
5’ AMP-activated protein kinase (AMPK), leading to reduced cell growth and prolifera-
tion [93]. However, next to mitochondrial metabolism, Metformin was shown to target
CSCs by interfering with pathways like Wnt/β-catenin, TGF-β and NF-κB signaling [94].
Regarding endometrial cancer, a meta-analysis revealed that metformin does not reduce the
risk, although it was significantly associated with improved overall survival and reduced
recurrence [95]. Metformin treatment of endometrial cancer cells inhibited cell growth via
the induction of cell cycle arrest, apoptosis and autophagy as well as decreased EMT [96,97].
Furthermore, metformin significantly reduced estrogen-mediated proliferation and c-Myc
expression of endometrial cancer cells [98]. However, high glucose and hypoxia in en-
dometrial cancer negatively affect metformin response in vitro and in vivo [99]. Regarding
endometrial CSCs, metformin reduced the number and activity as well as the expression of
CSC genes in endometrial CSCs isolated from established endometrial cancer cell lines [28].
Another mitochondria targeting agent is salinomycin [100], which also has been shown to
suppress proliferation, migration, sphere formation as well as tumorigenicity and induces
apoptosis of CSCs [101] including endometrial CSCs [21].

6. Targeted Immunotherapy

Immunotherapy is an emerging innovative cancer treatment that modulates the body’s
own tumor immune response. However, due to its complexity, side effects and uncertainty,
immunotherapy is still under intensive studies [102]. Immunotherapies can be categorized
in two ways: active, where an immune response is actively triggered by transferred cells or
vaccines, and passive with transferred antibodies such as immune checkpoint inhibitors.
Regarding endometrial cancer, peptide, dendritic cell and nucleic acid based vaccines are
currently being trialed amongst others, yet still need to be clinically approved [103]. Passive
immunotherapies include immune checkpoint blockage by targeting programmed death
ligand 1 (PD-L1) or cytotoxic T-lymphocyte-associated protein 4 (CTL4) as well as bispecific
T-cell engager (BiTE) antibodies [104]. As already stated, targeting intracellular signaling
pathways that regulate cellular growth and proliferation like Myc and NF-κB represents a
promising therapeutic strategy. Other signaling pathways targeted in endometrial cancer
include pathways like the mammalian target of rapamycin (mTOR), epidermal growth
factor (EGF) and insulin-like growth factor (IGF), where receptors or kinases are targeted
by specific inhibitors [105]. For instance, a phase II study using Temsirolimus, a mTOR
inhibitor, showed 14% and 4% partial response as well as 69% and 48% stable disease in
chemotherapy-naive and -treated patients, respectively [106]. A phase II study in recurrent
or metastatic endometrial cancer utilizing the selective inhibitor of the EGF receptor (EGFR)
tyrosine kinase activity erlotinib showed a low response rate of 12.5%, although it is well
tolerated [107]. However, taking EGFR expression levels/mutations into consideration
could improve clinical outcomes, as in vitro and in vivo studies showed an anti-tumor
effect of erlotinib only in EGFR high level, although not low level endometrial cancer
cells [108].

As the presence of tumor-infiltrating lymphocytes is a favorable prognostic factor in
endometrial cancer and indicates an active role of the immune system, targeted therapies
like PD-1/PD-L1 checkpoint inhibitors may have the potential to be effective in endometrial
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cancer [109]. PD-1 and PD-L1 are frequently expressed in endometrial cancer [110], thus
evading immune surveillance and response. A meta-analysis conducted for endometrial
cancer revealed that PD-L1 expression is not associated with overall survival, yet positively
correlated with poor differentiation and advanced tumor stage [111]. Based on this frequent
expression of PD-L1, suppression of PD-L1 in endometrial cancer cell lines significantly
inhibited cell growth [112]. For instance, metformin treatment of endometrial cancer cell
lines heavily decreased the expression level of PD-L1 protein as well as activated co-cultured
T cells and thus suppressed cancer cell growth [113]. A study around Hsu and a coworker
revealed that PD-L1 expression in CSCs is enriched through an EMT/β-catenin/PD-L1
axis and suppression of this pathway led to the downregulation of PD-L1 and enhanced
the amount of tumor-infiltrating activated CD8+ T cells, as well as the efficacy of Tim-3
blockade therapy [114]. In breast cancer, PD-L1+ cells showed higher stemness, in vitro and
in vivo, mediated by Notch, and/or the PI3K/AKT pathway as well as PD-L1 was shown
to maintain stemness by promoting Oct4 and Nanog expression [115,116]. A recent study
further revealed that PD-L1 and PD-L2 expression in ECSCs is increased upon hypoxia and
knockdown of PD-L1 resulted in a reduced expression of pluripotency genes and a number
of spheres, as well as impaired cell proliferation [117]. Thus, targeting not only cancer
cells, but also CSCs through PD-L1 inhibition depicts an important therapeutic strategy to
improve clinical outcomes.

Currently, several immune checkpoint inhibitors either targeting PD-1 or PD-L1 and
thus interaction with PD-1 and B7.1 are situated in phase II/III trials [118]. In ovarian
cancer, chemotherapy induces local immune suppression through NF-κB–mediated PD-L1
up-regulation indicating that a combination of chemotherapy and immunotherapy may
improve the antitumor response [119]. Regarding endometrial cancer, dostarlimab, an
antibody targeting PD-1 is now in a phase III trial in combination with carboplatin and
paclitaxel chemotherapy [120]. Pembrolizumab, an antibody targeting PD-L1 together
with lenvatinib demonstrated promising antitumor activity in patients with advanced
endometrial cancer, who have experienced disease progression subsequent to systemic
therapy [121]. A phase III trial revealed that prembolizumab plus lenvatinib treatment has
an overall favorable benefit/risk profile compared to chemotherapy and thus represents
a new standard therapy for advanced pre-treated endometrial cancer [122]. However, a
Markov model study revealed that pembrolizumab, plus lenvatinib as first-line treatment
in advanced high microsatellite stable endometrial cancer, would decrease efficacy and
worsen quality of life as well as increase costs in comparison to chemotherapy. For mi-
crosatellite instable endometrial cancer, the model predicted that first-line pembrolizumab
plus lenvatinib treatment would result in fewer deaths compared to chemotherapy, thus
may provide a clinical benefit even though it is not a cost-effective treatment option [123].
Currently, an active phase III trial is comparing the efficacy of pembrolizumab plus lenva-
tinib to chemotherapy in female participants with Stage III, IV, or recurrent endometrial
cancer [124].

Overall, targeting PD-1/PD-L1 in endometrial cancer seems to be a promising thera-
peutic strategy to not only target cancer cells, but also CSCs with considerable anti-tumor
effects to improve clinical outcomes and prevent cancer recurrence.

7. Clinical Outlook

Oncological treatment in general is becoming more and more individualized. The main
requirement therefore is perfect collaboration between physicians, molecular pathology and
geneticists in a molecular tumor board (MTB). The first studies show better progression-free
(PFS) and overall survival (OS) for patients who received MTB-based therapy [125]. In
the case of endometrial cancer testing for MSI-/MMR status will be mandatory. Another
promising tool for screening for metastasis or even early detection will be Liquid Biopsy
using blood samples and uterine aspirates (UAs) [126]. While these personalized yet very
expensive methods of diagnostics are promising tools in a wealthy healthcare system they
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will not be affordable for the predominant number of patients in the world. The same will
unfortunately be true for personalized therapy with antiangiogenetic and immunotherapy.

8. Strength and Limitations of This Review

As cancer is one of the leading causes of death worldwide, frequent research is
needed to expand our knowledge about underlying mechanisms and improving current
treatment options. The discovery of CSCs and their contribution to tumorigenesis as well
as treatment resistance and cancer relapse changed the perspective of cancer research, as
novel therapeutic strategies are needed to overcome CSC-mediated treatment failures. This
makes in vitro models highly promising tools to study underlying mechanisms, sustaining
the stemness of endometrial cancer cells. As described in this review, interfering with
signaling pathways like Myc and NF-κB as well as cellular metabolism showed promising
effects in the diminishment of endometrial cancer stem cells and could therefore display
considerable therapeutic targets for CSC-directed cancer therapy (Figure 2).
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Since endometrial CSCs are a relatively recent discovery, there are only limited studies
investigating signaling pathways involved in maintaining endometrial CSC properties.
Furthermore, future studies are needed to understand the underlying mechanisms when
interfering with these signaling pathways for the development of CSC-targeted therapies.

9. Conclusions

Unequivocally, CSCs are highly relevant for the formation, resistance and recurrence
of EC. Thus, selectively targeting CSCs is an emerging promising therapeutic strategy in the
treatment of EC. Several signaling pathways including Myc and NF-κB are involved in the
maintenance and survival of ECSCs and targeting these reduced the invasion and migration
ability as well as tumorigenicity. Furthermore, ECSCs show metabolic plasticity, which
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may contribute to their maintenance as targeting glycolysis, in addition to mitochondrial
metabolism, decreased their stemness. The inhibition of immune checkpoints is another
clinically relevant ECSCs-targeting strategy, since PD-L1 expression has been shown to
maintain stemness of CSCs and targeting PD-L1 in EC has shown promising anti-tumor
effects. However, there are only limited data describing the molecular mechanisms that
modulate ECSC characteristics making further in vitro and in vivo studies necessary to
provide new insights and possibly identify novel molecular targets.
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