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Gene and protein expression of programmed death-ligand 1 (PD-L1) are prognos-

tic in early breast cancer (BC), but their prognostic information is inconsistent at

least in some biological subgroups. The validated prognostic gene signatures (GS)

in BC are mainly based on proliferation and estrogen receptor (ER)-related genes.

Here, we aimed to explore the prognostic capacity of PD-L1 expression at the pro-

tein vs mRNA levels and to investigate the prognostic information that PD-L1

can potentially add to routinely used GS. Gene expression data were derived from

two early BC cohorts (cohort 1: 562 patients; cohort 2: 1081 patients). Tissue

microarrays from cohort 1 were immunohistochemically (IHC) stained for PD-L1

using the SP263 clone. GS scores (21-gene, 70-gene) were calculated, and likeli-

hood-ratio (LR) tests and concordance indiceswere used to evaluate the additional

prognostic information for each signature. The immune cell composition was also

evaluated using the CIBERSORT in silico tool. PD-L1 gene and protein expres-

sions were independently associated with better prognosis. In ER+/HER2�
patients, PD-L1 gene expression provided significant additional prognostic infor-

mation beyond that of both 21-GS [LR-Dv2 = 15.289 and LR-Dv2 = 8.812,

P < 0.01 for distant metastasis-free interval (DMFI) in cohorts 1 and 2, respec-

tively] and 70-GS score alone (LR-Dv2 = 18.198 and LR-Dv2 = 8.467,

P < 0.01 for DMFI in cohorts 1 and 2, respectively). PD-L1 expression was cor-

related with IHC-determined CD3+ cells (r = 0.41, P < 0.001) and with

CD8+ (r = 0.62, P < 0.001) and CD4+ memory activated (r = 0.66,

P < 0.001) but not with memory resting (r = �0.063, P = 0.14) or regulatory

(r = �0.12, P < 0.01) T cells in silico. PD-L1 gene expression represents a

promising favorable prognostic marker and can provide additional prognostic

value to 21- and 70-gene scores in ER+/HER2� BC.
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1. Introduction

Continuous developments in treatment and risk strat-

ification of early breast cancer (BC) have steadily

improved survival outcomes during the past decades.

However, clinicopathologic factors such as age,

tumor stage, expression of estrogen receptor (ER),

and human epidermal growth factor receptor 2

(HER2) do not predict the proportional risk reduc-

tion for recurrence or death conferred by adjuvant

chemotherapy (CT) (Peto et al., 2012). Thus, there is

a clear need to identify more precise and reliable

prognostic and predictive biomarkers that can be

implemented in routine practice (Foukakis and

Bergh). Advances in gene expression profiling (GEP)

technologies have resulted in the development of

gene signatures (GS) that can complement clinical

decisions to predict risk of recurrence and CT bene-

fit (Kwa et al., 2017). Although prognostication

through GS has been prospectively validated and is

recommended by contemporary guidelines in ER-pos-

itive, HER2-negative (ER+/HER2�) BC (Cardoso

et al., 2019), there is still risk for undertreatment,

especially in patients with node-positive disease

(Matikas et al., 2019a).

The prognostic role of immune microenvironment in

BC has been highlighted by numerous reports, demon-

strating that tumor-infiltrating lymphocytes (TILs) pre-

dict favorable disease outcome especially in the triple-

negative (TNBC) and HER2+ subtypes (Denkert et al.,

2018). Moreover, immune-related GS may provide

prognostic and predictive information in BC, including

early and metastatic ER+ BC (Denkert et al., 2015;

Foukakis et al., 2018; Matikas et al., 2018), a tumor

type traditionally considered as nonimmunogenic

(Alexandrov et al., 2013). Among individual protein

biomarkers, programmed cell death-ligand 1 (PD-L1)

carries prognostic value and can also select appropriate

candidates for treatment with immune checkpoint

blockade (Matikas et al., 2019b; Schmid et al., 2018).

In a comprehensive pooled-data analysis, we have

shown that higher PD-L1 gene (CD274) expression is

associated with improved survival, especially in basal-

like BC, whereas significant heterogeneity is noted

when PD-L1 protein expression is evaluated by

immunohistochemistry (IHC) (Matikas et al., 2019b).

Similar results have also been reported by others

(Muenst et al., 2014; Sabatier et al., 2015; Schalper

et al., 2014). Both analytical challenges due to the use

of different IHC platforms, antibodies, scoring methods,

and cutoffs (Hirsch et al., 2017), and the complex regula-

tion of protein expression via genetic variations, tran-

scription factors and post-transcriptional modifications

(Zerdes et al., 2018) may contribute to the observed

heterogeneity.

The clinical validity and utility of PD-L1 gene

expression remains, however, uncertain. In addition,

GS that are currently available for clinical use are

mostly based on proliferation and ER-related genes.

As a result, there might be room for further refinement

and optimization through the addition of immune-re-

lated genes to known GS. In this study, we aimed to

investigate and compare the prognostic value of PD-

L1 gene and protein expressions, and to further

explore whether the incorporation of PD-L1 gene

expression to known GS can provide additional prog-

nostic information.

2. Methods

2.1. Study populations

Cohort 1 was used as the discovery cohort for gene

expression and for protein analysis and has been previ-

ously described in detail by Lundberg et al. (2017).

Patients diagnosed with primary BC in Stockholm,

Sweden, during 1997–2005 were retrospectively selected

using the regional Cancer Registry. Patient selection

was originally based on a nested case–control design,
but a direct cohort design was used in the current

analysis. Data on clinical and pathological tumor char-

acteristics, survival, locoregional/systemic treatments,

and follow-up [complete to January 10, 2015, for over-

all survival (OS) and December 31, 2012, for distant

metastasis-free interval (DMFI)] have been collected.

The clinical endpoints used in this cohort-based study

were DMFI, defined as the period of time from date

of diagnosis to the first evidence of distant metastasis;

and OS, defined as the period of time from date of

diagnosis to death of any cause, both censored after

15 years. The reverse Kaplan–Meier (KM) estimate

(Altman et al., 1995) of the median DMFI and OS fol-

low-up was 12.4 years and 15 years, respectively.

Biospecimen Reporting for Improved Study Quality

criteria for this cohort have been previously published

(Lundberg et al., 2017). All analyses performed in

cohort 1 have been approved by the ethics committee

at Karolinska Institute, Stockholm, Sweden (Dnr

2006/394-31/3, 2006/1183-31/2, and amendments 2016/

1505-32, 2018/789-32, 2018/790-32), which decided that

there was no need for additional written consent for

each subject. The study methodologies conformed to

the standards set by the Declaration of Helsinki.

Cohort 2 was used for validation of gene expression

results and included patients from The Cancer Gen-

ome Atlas (TCGA) provisional dataset [originally
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consisting of a total of 1100 primary breast tumors

with available clinicopathologic annotation and GEP

(RNA-seq) data], retrieved from cBioPortal (Cerami

et al., 2012; Gao et al., 2013) on November 21, 2018.

The clinical endpoint used was the progression-free

interval (PFI) as recommended (Liu et al., 2018),

defined as the time period from the date of diagnosis

to the date of the first occurrence of a new tumor

event, including progression of the disease, locore-

gional recurrence, distant metastasis, new primary

tumor, or death with disease. PFI was extracted from

the standardized TCGA Pan-Cancer Clinical Data

Resource dataset (Liu et al., 2018). The median PFI

and OS follow-up for this cohort (reverse KM esti-

mate) were 2.5 and 2.6 years, respectively, while both

endpoints were censored after 10 years. The analyses

regarding cohort 2 have been performed in publicly

available data from TCGA (https://www.cancer.gov/tc

ga).

CONSORT diagrams for both cohorts are shown in

Fig. 1. This study is reported in accordance with

REporting recommendations for tumor MARker prog-

nostic studies guidelines (McShane et al., 2005).

2.2. Tissue microarrays, immunohistochemical

methods, and biomarker analysis

For cohort 1, tissue microarrays (TMAs) using primary

tumors of all patients were produced. Representative

tumor-rich areas were selected and punched from for-

malin-fixed paraffin-embedded tissue blocks using an

automated tissue microarrayer (VTA-100; Veridiam,

Oceanside, CA, USA). Each TMA consisted of cores

with a diameter of 1 mm and duplicate cores per

tumor. Tissue sections (4 lm) were prepared from the

TMAs and stored at 4 °C. IHC staining with anti-PD-

L1 (clone SP263; Ventana Medical Systems, Oro Val-

ley, AZ, USA) and anti-CD3 (clone 2GV6; Ventana

Medical Systems) antibodies was performed using Ven-

tana Autostainer according to the manufacturer’s pro-

tocol. PD-L1 was evaluated separately in tumor cells

and immune cells by two independent investigators

including a certified pathologist. Total cell expression

was defined as the expression of PD-L1 in tumor and/

or immune cells. A TMA core was considered as PD-

L1 positive (PD-L1+) when at least one cell with mem-

branous immunostaining was detected. Between TMA

cores with discordant scoring, the positive one was

selected. TMA slides stained with CD3 were scanned

using a digital glass scanner (NanoZoomer-XR, Hama-

matsu Photonics K.K, Hamamatsu City, Japan), and

manual scoring was performed using IMAGEJ software

v. 1.48 (NIH, Bethesda, MD, USA). The total number

of CD3-positive (CD3+) cells—defined as membranous

staining in lymphocytes—was counted in each TMA

core and averaged over the duplicates to give the aver-

age number of CD3+ cells per tumor sample. TMA

cores with missing tumor tissue were excluded from the

analysis. Control tissue samples for both PD-L1 and

CD3 IHC included reactive lymphoid tissue of tonsil.

ER tumor status was collected from pathology reports,

while HER2 status was centrally assessed using chro-

mogenic in situ hybridization on the TMAs and scored

by a BC pathologist (Lundberg et al., 2017).

For cohort 2, the reported ER status by IHC was

used. HER2 status was determined using IHC, and for

those samples with equivocal, indeterminate, or miss-

ing IHC-based status, or for the discordant cases [de-

fined as those cases that IHC-based status and

fluorescence in situ hybridization (FISH)-based HER2

status differ], the provided FISH-based HER2 status

was used instead.

2.3. Gene expression profiling, data

preprocessing, and normalization

In cohort 1, total RNA was extracted from primary

fresh-frozen tumors using the Qiagen RNeasy Mini Kit

(Qiagen, Hilden, Germany) and samples were hybri-

dized using the Rosetta/Merck Human RSTA Custom

Affymetrix 2.0 microarray, as previously reported

(Lundberg et al., 2017). Further details regarding

experimental methods and the microarray GEP data

are available from the Gene Expression Omnibus

depository (accession number GSE48091). The raw

microarray data were background-corrected, normal-

ized, and summarized to obtain a log-transformed

expression value for each probe set using the RMA

(Irizarry et al., 2003) method implemented in the aro-

ma.affymetrix R package (Bengtsson et al., 2008). A

nonspecific filter was employed, and probe sets with the

highest interquartile range were kept in the case of mul-

tiple mappings to the same Entrez Gene ID.

In cohort 2, TCGA’s mRNA expression RNA

sequencing data (RNA-seq v2 RSEM) were down-

loaded from CBIOPORTAL (Cerami et al., 2012; Gao

et al., 2013) on November 21, 2018. Briefly, these level

3 data have been produced after alignment of the raw

reads to the human h19 genome assembly using MAP-

SPLICE (Wang et al., 2010), quantitation at the gene

(and isoform) level using RSEM (Li and Dewey, 2011),

and then applying upper-quartile normalization (Bul-

lard et al., 2010). The retrieved normalized data were

log2-transformed after addition of 1 to each value.

For the analysis of PD-L1 mRNA levels, the median

expression was used as a cutoff point in both cohorts.
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2.4. Gene expression signatures

The same intrinsic molecular subtyping procedure was

applied to both cohorts using the research-based 50-

gene subtype predictor [prediction analysis of microar-

ray 50 (PAM50)] (Parker et al., 2009). Specifically, due

to ER status imbalances, a similar to the iterative

approaches (Ciriello et al., 2015; Curtis et al., 2012)

was adopted. First, the mRNA expression data were

subsampled to match the original ER distribution of

the training set used for the PAM50 (Parker et al.,

2009), and an ER-balanced subset was formed (using

all ER� samples and randomly selected ER+ ones in a

ratio of ER+/ER� = 114/77). Then, the whole dataset

was median-centered (as recommended in Perou et al.,

2010; Sorlie et al., 2010) based on the PAM50 genes of

the ER-balanced subset, and assignment to one of the

intrinsic molecular subtypes (Luminal A, Luminal B,

HER2-enriched, Basal-like, and Normal-like) was per-

formed using the Spearman’s rank correlation coeffi-

cient to the PAM50 centroids available in the GENEFU

R/BIOCONDUCTOR package (Gendoo et al., 2016). Sam-

ples with correlations < 0.1 for all intrinsic subtypes

were considered as not classified (Curtis et al., 2012).

The subsampling was performed 100 times, and the

final intrinsic subtypes were determined by calculating

the mode (i.e., the subtype that appears most often)

across all iterations (Curtis et al., 2012).

The original signature algorithms for 21-gene (Onco-

typeDx) (Paik et al., 2004) and 70-gene (MammaPrint)

(van ’t Veer et al., 2002) as implemented in the GENEFU

R/BIOCONDUCTOR package (Gendoo et al., 2016) were

used to compute the corresponding research-based sig-

nature scores and risk classifications. Before signature

application, the GEP data were median-centered.

Mapping of genes for both signatures was performed

through Entrez Gene IDs. Out of the 16 nonreference

genes in the 21-gene signature, in total 15 and 16 genes

were available in cohorts 1 and 2, respectively, and

therefore used in the signature’s calculations. Similarly,

out of the 56 genes with available Entrez Gene ID in

the 70-gene signature, in total 51 and 52 genes were

available in cohorts 1 and 2, respectively.

2.5. Quantification of immune cell

subpopulations from GEP data

To deconvolve the immune cell subpopulations using

the patients’ GEPs, the cell-type identification by esti-

mating relative subsets of RNA transcripts (CIBER-

SORT) method (R script version 1.04) was followed

(Newman et al., 2015). Specifically, CIBERSORT was

employed with the gene signature matrix LM22, which

contains 547 genes that distinguish 22 human

hematopoietic cell phenotypes. The deconvolution was

run in absolute mode; that is, for each patient, an

Fig. 1. CONSORT diagrams of patient inclusion for cohorts 1 and 2.
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absolute immune fraction score was estimated by the

median expression level of all genes in the signature

matrix divided by the median expression level of all

genes in the mixture. The default number of 100 per-

mutations was selected.

2.6. Statistical analyses

Survival analyses were performed with the survival R

package (Therneau, 2015) using DMFI and PFI as

clinical endpoints in cohorts 1 and 2, respectively. For

both cohorts, OS was also used as an endpoint. Specif-

ically, univariate and multivariable Cox proportional

hazards (PH) regression models were applied and haz-

ard ratios (HRs) and associated 95% confidence inter-

vals (CIs) were estimated. The PH assumption was

tested for all variables using the scaled Schoenfeld

residuals. For comparability, the same Cox models

were applied to cohorts 1 and 2, based on a set of

common covariates that were available in both

cohorts. Therefore, clinical variables included as

covariates were lymph node status (categorical, LN�;

LN+) and tumor size (categorical, ≤ 20 mm;

> 20 mm). PAM50 subtype was included as a stratify-

ing factor in the models fitted for all patients. PD-L1

transcript was evaluated as continuous variable. The

21-gene and 70-GS were evaluated as either continuous

or categorical variables. Exploratory interaction tests

between the PD-L1 transcript expression and the pre-

defined subgroups (either clinical or PAM50-based)

with respect to survival outcome were evaluated in

multivariable models. Survival distribution differences

were also assessed using KM estimates and the log-

rank test, where PD-L1 transcript expression was

dichotomized using median as cutoff within each sub-

type analysis.

The added prognostic value of PD-L1 gene to each

GS score was assessed by two approaches: (a) the

changes in the likelihood-ratio test values (LR-Dv2)
and (b) the concordance index (c-index) (Dowsett

et al., 2013). Each GS score was added either alone or

in combination with PD-L1 transcript expression to a

Cox PH model with the corresponding clinical end-

point(s) for each cohort.

The chi-squared (v2) test was used to assess any dif-

ferences in clinicopathological characteristics between

patients with positive/negative (protein) or high/low

(mRNA) PD-L1 expression and with positive/negative

CD3 protein expression. Associations between tran-

script and protein expression levels were estimated

using the Wilcoxon–Mann–Whitney test, while correla-

tions between PD-L1 mRNA levels and absolute frac-

tion scores of immune cell subpopulations were

accessed using Spearman’s rank correlation coefficient.

All statistical tests applied were two-sided, and a P-

value < 0.05 was considered as statistically significant.

All bioinformatics and statistical analyses were per-

formed within R computing environment version 3.5.1

(https://www.r-project.org/), unless otherwise stated.

3. Results

3.1. Patient characteristics

The clinicopathologic characteristics of patients with

available GEP and IHC data in cohort 1 are summa-

rized in Table 1 and Table S1, respectively. In brief,

among 562 early BC patients with available GEP data

included in the analysis, median age was 55 years

(range: 23–76 years), while 312 (55.5%) patients were

presented with axillary LN involvement. Tumor size

was > 20mm in 288 (51.2%) patients, whereas ER,

progesterone receptor (PR), and HER2 were positive

in 397 (70.6%), 268 (47.7%), and 96 (17.1%) patients,

respectively. In cohort 2, among 1081 patients included

in the analysis, median age was 58 years (range: 26–
90 years) and 761 (70.4%) had a tumor size of

> 20mm. ER, PR, and HER2 were positive in 794

(73.5%), 688 (63.6%), and 179 (16.6%) patients,

respectively (Table S2).

3.2. PD-L1 mRNA and protein expression and

association with clinicopathologic parameters

Programmed death-ligand 1 protein IHC expression

was evaluable in 490 of 562 (87.2%) patients in cohort

1. PD-L1 was expressed in tumor cells, immune cells

(i.e., macrophages, dendritic cells), or both (total

expression) in 9.8%, 23.7%, and 24.7% of the tumors,

respectively. In the majority of patient samples with

PD-L1 expression in tumor cells, co-expression was

also noted in immune cells (Fig. 2). Within immuno-

histochemical and molecular subtypes, PD-L1 total

protein was highly expressed among ER�/HER2�
(38/86, 44.2%) and basal-like (48/107, 44.9%) tumors,

respectively (Table S1). PD-L1 gene expression was

higher in ER�/HER2� and molecularly basal-like

tumors in both cohorts (Table 1 and Table S2).

3.3. Prognostic value of PD-L1 expression at the

protein and mRNA levels

The correlation between PD-L1 mRNA and protein

levels, as well as their prognostic value, was explored

in cohort 1. PD-L1 transcript levels were statistically
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significantly correlated with protein expression (Wil-

coxon, P < 0.001; Fig. S1). Total PD-L1 protein

expression was significantly associated with improved

DMFI (univariate HR = 0.58; 95% CI = 0.39–0.87,
P < 0.01; and multivariable HR = 0.52; 95%

CI = 0.34–0.80, P < 0.01) and OS (univariate

HR = 0.75; 95% CI = 0.53–1.05, P = 0.089; and mul-

tivariable HR = 0.66; 95% CI = 0.46–0.94, P < 0.05;

Tables S3 and S4). Similar results were observed when

PD-L1 protein expression was assessed only in tumor

or immune cells (Fig. S1).

Furthermore, PD-L1 gene expression was indepen-

dently associated with better DMFI and OS in multi-

variable analysis (HR = 0.71; 95% CI = 0.61–0.82,
P < 0.001; and HR = 0.77; 95% CI = 0.67–0.87,
P < 0.001, respectively) in cohort 1 (Fig. S2 and

Table S5). In cohort 2, PD-L1 gene expression was

significantly associated with longer PFI (HR = 0.76;

95% CI = 0.64–0.91, P < 0.01) but not OS

(HR = 0.85; 95% CI = 0.72–1.01, P = 0.065;

Table S5). The favorable prognostic value of PD-L1

gene expression was more pronounced in basal-like

subtype in both cohorts and all endpoints (Fig. S2 and

Table S5). In ER+/HER2� patients, PD-L1 mRNA

was associated with better DMFI and PFI in cohorts

1 (HR = 0.71; 95% CI = 0.57–0.87, P < 0.01) and 2

(HR = 0.67; 95% CI = 0.50–0.89, P = 0.01), respec-

tively, but with improved OS only in cohort 1 (Fig. S2

and Table S5), presumably due to the short follow-up

for OS in cohort 2.

3.4. Association of the immune infiltrate with

PD-L1 expression

T-cell infiltration was also immunohistochemically

evaluated in 412 of 562 (73.3%) patient tumors with

available data in cohort 1 (Fig. 1). CD3 IHC expres-

sion was higher in triple-negative and in basal-like sub-

types (Table S6) and predicted improved DMFI

(Fig. S3) for all patients. CD3 IHC expression also

Table 1. Patient characteristics for all patients in cohort 1, split by

PD-L1 mRNA (median) expression. ET, endocrine treatment; CT,

chemotherapy.

Clinical and

pathological

characteristics

All

n (%)

PD-L1

mRNA

low

n (%)a

PD-L1

mRNA

high

n (%)a P-value

Number of patients 562 281 281

PD-L1 protein expression (total)

Negative 369 (65.7) 219 (59.3) 150 (40.7) < 0.0001

Positive 121 (21.5) 23 (19.0) 98 (81.0)

Unknown 72 (12.8) 39 (54.2) 33 (45.8)

ER status

ER� 152 (27.0) 49 (32.2) 103 (67.8) < 0.0001

ER+ 397 (70.6) 225 (56.7) 172 (43.3)

Unknown 13 (2.3) 7 (53.8) 6 (46.2)

PR status

PR� 152 (27.0) 51 (33.6) 101 (66.4) < 0.0001

PR+ 268 (47.7) 157 (58.6) 111 (41.4)

Unknown 142 (25.3) 73 (51.4) 69 (48.6)

HER2 status

HER2� 385 (68.5) 198 (51.4) 187 (48.6) 0.058

HER2+ 96 (17.1) 39 (40.6) 57 (59.4)

Unknown 81 (14.4) 44 (54.3) 37 (45.7)

Elston–Ellis grade

Grade I 46 (8.2) 30 (65.2) 16 (34.8) < 0.0001

Grade II 243 (43.2) 140 (57.6) 103 (42.4)

Grade III 244 (43.4) 95 (38.9) 149 (61.1)

Unknown 29 (5.2) 16 (55.2) 13 (44.8)

LN status

Negative 233 (41.5) 111 (47.6) 122 (52.4) 0.322

Positive 312 (55.5) 162 (51.9) 150 (48.1)

Unknown 17 (3.0) 8 (47.1) 9 (52.9)

Tumor size

≤ 20 mm 262 (46.6) 132 (50.4) 130 (49.6) 0.801

> 20 mm 288 (51.2) 142 (49.3) 146 (50.7)

Unknown 12 (2.1) 7 (58.3) 5 (41.7)

Age

≤ 45 128 (22.8) 61 (47.7) 67 (52.3) 0.438

45–55 141 (25.1) 77 (54.6) 64 (45.4)

> 55 293 (52.1) 143 (48.8) 150 (51.2)

IHC subtypes

ER+/HER2� 283 (50.4) 163 (57.6) 120 (42.4) < 0.0001

HER2+ 96 (17.1) 39 (40.6) 57 (59.4)

ER�/HER2� 93 (16.5) 29 (31.2) 64 (68.8)

Unknown 90 (16.0) 50 (55.6) 40 (44.4)

PAM50-based subtypes

Luminal A 249 (44.3) 154 (61.8) 95 (38.2) < 0.0001

Luminal B 107 (19.0) 61 (57.0) 46 (43.0)

HER2-enriched 64 (11.4) 17 (26.6) 47 (73.4)

Basal-like 122 (21.7) 41 (33.6) 81 (66.4)

Normal-like 18 (3.2) 7 (38.9) 11 (61.1)

Unknown 2 (0.4) 1 (50.0) 1 (50.0)

Table 1. (Continued).

Clinical and

pathological

characteristics

All

n (%)

PD-L1

mRNA

low

n (%)a

PD-L1

mRNA

high

n (%)a P-value

Treatment

ET 167 (29.7) 100 (59.9) 67 (40.1) < 0.0001

CT 156 (27.8) 50 (32.1) 106 (67.9)

ET/CT 222 (39.5) 122 (55.0) 100 (45.0)

Other treatment 16 (2.8) 9 (56.3) 7 (43.8)

Unknown 1 (0.2) 0 (0.0) 1 (100.0)

P-values under the threshold of statistical significance are noted in

bold.
a

Percentage (%) is calculated according to PD-L1 mRNA expression

(low vs high group).
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significantly correlated with both PD-L1 protein (Wil-

coxon, P < 0.001) and mRNA (Spearman’s

Rho = 0.41, P < 0.001) expressions (Fig. 3A,B). Fur-

ther associations of PD-L1 expression with distinct

immune cell subpopulations were explored using the

CIBERSORT in silico approach. PD-L1 gene expres-

sion was positively associated with CD8+ and CD4+
memory activated T cells (Fig. 3C,D), but not with

CD4+ memory resting or T-regulatory cells (Fig. 3E,

F) or other immune cell subpopulations (Fig. S4).

3.5. Additional prognostic value of PD-L1 gene

expression to 21-gene and 70-gene signatures in

ER+/HER2� patients

Having demonstrated the prognostic value of PD-L1

mRNA in ER+/HER2� patients, we aimed to investi-

gate the additional prognostic value that it may provide

to clinically used GS. When added to the 21-gene

signature, PD-L1 provided significant prognostic infor-

mation beyond that of the GS alone in terms of DMFI/

PFI (LR-Dv2 = 15.289, P < 0.001; and LR-Dv2 =
8.812, P = 0.003 in cohorts 1 and 2, respectively) and OS

(LR-Dv2 = 10.020, P = 0.002 in cohort 1). Similarly,

when added to the 70-gene signature, PD-L1 provided

significant prognostic information beyond that of the GS

score alone in terms of DMFI/PFI (LR-Dv2 = 18.198,

P < 0.001; and LR-Dv2 = 8.467, P = 0.004 in cohorts 1

and 2, respectively) and OS (LR-Dv2 = 12.468,

P < 0.001 in cohort 1). Moreover, c-indices were higher

for RS + PD-L1 compared to RS alone both for DMFI

and PFI (0.670 vs 0.636 and 0.666 vs 0.603 in cohorts 1

and 2, respectively) and for OS (0.624 vs 0.594 and 0.567

vs 0.565 in cohorts 1 and 2, respectively). A similar pat-

tern was noted for the 70-gene signature + PD-L1 vs the

GS alone for DMFI and PFI (0.648 vs 0.607 and 0.659

vs 0.593 in cohorts 1 and 2, respectively) and for OS only

in cohort 1 (c-index: 0.612 vs 0.578; Table 2). The results

were similar when GS scores were treated as categorical

instead of continuous variables (Table S7).

4. Discussion

During the rapidly evolving era of immunotherapy,

PD-L1 protein expression is widely used as biomarker

for selection of appropriate candidates for immune

checkpoint blockade in several tumor types (Reck

et al., 2016; Reck et al., 2019), including TNBC

(Emens et al., 2018; Schmid et al., 2018). Regarding its

prognostic value, we have recently shown that PD-L1

expression in tumor cells is associated with worse

prognosis, while it is correlated with improved out-

comes when expressed in immune cells in the TNBC

subtype (Matikas et al., 2019b). In this study, we

demonstrate that PD-L1 expression in tumor and/or

immune cells is associated with improved survival

Fig. 2. PD-L1 protein expression patterns in BC cohort 1. (A) Areas of PD-L1 protein expression by IHC in different cell compartments:

tumor cells (upper left panel, original magnification 9400), immune cells (upper right panel, original magnification 9200), and both cell types

(lower panel, original magnification 9400), scale bar 200lm; (B) Venn diagram depicting the distribution of PD-L1 protein expression in

tumor and immune cells.
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outcomes, further indicating that its prognostic capac-

ity is predominantly assay-dependent. This finding

underscores both the need for the establishment of

standardized PD-L1 IHC platform and evaluation

guidelines and for further insights on the immune

microenvironment biology. The latter might be of

importance given that PD-L1 expression appears here

as a marker of immune cell accumulation rather than

that of immune exhaustion (Hegde and Chen, 2020),

as shown in our cohort both immunohistochemically

and in silico.

The aforementioned shortcomings of PD-L1 IHC

expression pave the way for alternative approaches,

such as assessing PD-L1 expression at the mRNA level

(yet not feasible in most diagnostic labs). We have pre-

viously shown that PD-L1 gene expression is associ-

ated with prolonged DFS and OS (Matikas et al.,

2019b). In the present study, we confirm that PD-L1

gene expression is correlated with improved outcomes,

while we also demonstrate a significant correlation

between PD-L1 mRNA and protein expression,

helping to clarify currently available inconsistent stud-

ies that have reported high (Guo et al., 2016; Kim

et al., 2017), moderate, or low protein–mRNA correla-

tion (Ali et al., 2015; Ren et al., 2018). PD-L1 mRNA

can thus be a promising and reliable prognostic mar-

ker compared with current IHC methods but with

unclear—up until now—clinical validity and utility.

Guidelines and indications for the usage of genomic

risk prediction include a number of GS (Harris et al.,

2016), but only RS and 70-gene signature have been

prospectively validated in randomized trials (Cardoso

et al., 2016; Sparano et al., 2018). Through their use,

patients with ER+/HER2� BC (especially those with

node-negative disease) at sufficiently low risk of

relapse can be identified, so that adjuvant CT can be

omitted. Further optimization through the addition of

components such as immune response might be possi-

ble, especially when such factors can carry independent

prognostic and predictive information. Here, we

demonstrate the clinical validity of immune gene

expression, since adding PD-L1 to two GS improved

Fig. 3. PD-L1 expression in association with lymphocytic infiltration using IHC and in silico methods. Associations between CD3 IHC

expression and PD-L1 total cell protein (A) and mRNA expression (Wilcoxon–Mann–Whitney test) (B). Correlations between PD-L1 mRNA

expression and immune cell subpopulations, as derived from the CIBERSORT in silico approach, CD8+ T cells (C), CD4+ memory activated

T cells (D), CD4+memory resting T cells (E), and T-regulatory cells (F) (Spearman’s rank correlation coefficient); ***P < 0.001.
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their prognostic capacity. The improved prognostica-

tion could be due to the addition of purely prognostic

information through the identification of patients at

very low risk of relapse. However, we (Foukakis et al.,

2018; Matikas et al., 2018) and others (Denkert et al.,

2018) have shown that immune function, expressed as

immune-related gene expression or abundance of TILs,

is also a driver for chemosensitivity in ER+/HER2�
BC, implying that the results of the present study

might be due to increased efficacy of CT in high PD-

L1 expressors. However, since allocation to CT was

not randomized, this hypothesis cannot be proven in

our study. The possible clinical implications are there-

fore obvious, since optimization of GS currently in use

may pave the way for CT de-escalation and avoidance

of unnecessary treatment-related short- and long-term

adverse events.

However, this study suffers from some limitations

needed to be addressed. First, PD-L1 IHC expression

was evaluated in TMAs (with duplicate cores from

each tumor) rather than in whole-tissue sections. Previ-

ous studies in BC showed that TMA protein assess-

ment underestimated PD-L1 expression due to its

spatial heterogeneity as compared to whole-tissue sec-

tions (Sobral-Leite et al., 2018). Moreover, SP263

clone was used for PD-L1 IHC, which should be put

into the context of low reported analytical concor-

dance among different antibodies in BC (Rugo et al.,

2019). Furthermore, the studied cohorts included

patients irrespective of their nodal status, thus hinder-

ing the translational interpretation of our findings

specifically in node-negative or node-positive patients.

In both cohorts (Table 1 and Table S2), patients with

high-risk characteristics were overrepresented com-

pared with BC population. Due to the low number of

time-to-endpoint events, no separate analysis could be

performed according to the given treatment (CT vs

no-CT), and therefore, the possible predictive value of

the GS and PD-L1 gene expression cannot be explored

within these cohorts. Moreover, the GS used in this

study do not represent the commercial versions of the

tests and the lower percentage of available genes—
especially in the 70-gene signature—may impact its

prognostic performance. Finally, the retrospective nat-

ure of the study might introduce bias, underscoring

the need for prospective validation of our findings.

5. Conclusions

In conclusion, this study highlights the value of PD-L1

gene expression as an informative biomarker of good

prognosis in early BC. Especially in ER+/HER2� dis-

ease, it can provide added prognostic value beyond

that of 21- and 70-GS. Therefore, upon method stan-

dardization and prospective validation, PD-L1 mRNA

might be considered as a candidate biomarker for

implementation in routine clinical practice.
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Supporting information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.
Fig. S1. Prognostic value of PD-L1 protein expression

and correlation with mRNA levels according to cell of

origin in cohort 1. Correlation of PD-L1 gene expres-

sion with protein levels in tumor (A), immune (B) and

total (C) cells, (Mann-Whitney test, ***P < 0.001);

Survival analysis (Kaplan-Meier estimate) with the

DMFI as a clinical endpoint in breast cancer patients

spit by PD-L1 IHC expression in tumor (D) and

immune (E) cells.

Fig. S2. Prognostic value of PD-L1 mRNA expression

in cohort 1. Forest plots of HR for DMFI (A), and OS

(B) both in the whole population and within clinical and

PAM50-based subtypes; HR is the relative hazard for a

one-standard deviation increase in the PD-L1 mRNA

expression. Cox regression multivariable models were

adjusted for LN status and tumor size.

Fig. S3. Lymphocytic infiltration and its prognostic

value in cohort 1. (A) Representative tissue areas

immunohistochemically (IHC) stained for CD3 with

low and high lymphocytic infiltration. Original

magnification x400; (B) Survival analysis (Kaplan-

Meier estimate) with the DMFI as a clinical endpoint

in breast cancer patients spit by CD3 IHC expression.

Fig. S4. Correlation matrix depicting PD-L1 transcript

with different absolute fraction scores as derived from

CIBERSORT-based immune cell subpopulations in

cohort 1.

Table S1. Patient characteristics for all patients and

split by PD-L1 total protein expression in cohort 1.

Table S2. Patient characteristics for all patients and

split by PD-L1 mRNA (median) expression in cohort

2.

Table S3. Univariate analysis of PD-L1 IHC expres-

sion with survival outcomes in cohort 1.

Table S4. Multivariable analysis of PD-L1 IHC

expression with survival outcomes in cohort 1.

Table S5. Univariate and multivariable analyses of

PD-L1 mRNA expression with survival outcomes in

both cohorts.

Table S6. Patient characteristics for patients split by

CD3 protein expression (median) in cohort 1.

Table S7. Added prognostic value of PD-L1 mRNA

to GS (categorical) in ER+/HER2� patients in both

cohorts.
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