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Cryptococcus neoformans is a ubiquitous opportunistic fungal pathogen typically causing
disease in immunocompromised individuals and is globally responsible for about 15% of
AIDS-related deaths annually. C. neoformans first causes pulmonary infection in the host
and then disseminates to the brain, causing meningoencephalitis. The yeast must
obtain and metabolize carbon within the host in order to survive in the central nervous
system and cause disease. Communication between pathogen and host involves
recognition of multiple carbon-containing compounds on the yeast surface:
polysaccharide capsule, fungal cell wall, and glycosylated proteins comprising the
major immune modulators. The structure and function of polysaccharide capsule has
been studied for the past 70 years, emphasizing its role in virulence. While protected by
the capsule, fungal cell wall has likewise been a focus of study for several decades for its
role in cell integrity and host recognition. Associated with both of these major structures
are glycosylated proteins, which exhibit known immunomodulatory effects. While many
studies have investigated the role of carbon metabolism on virulence and survival within
the host, the precise mechanism(s) affecting host-pathogen communication remain ill-
defined. This review summarizes the current knowledge on mutants in carbon metabolism
and their effect on the host immune response that leads to changes in pathogen
recognition and virulence. Understanding these critical interactions will provide fresh
perspectives on potential treatments and the natural history of cryptococcal disease.
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1 INTRODUCTION

Cryptococcus neoformans is an opportunistic fungal pathogen that primarily infects
immunocompromised individuals and causes about 15% of AIDS-related deaths (Rajasingham
et al., 2017). In 2006, there were an estimated 957,900 cases of cryptococcal meningitis resulting in
624,700 deaths within 3 months amongst those with HIV/AIDS (~65%mortality) (Park et al., 2009).
As of 2014, global estimates of infection involving cryptococcal meningitis were estimated at
223,100 cases annually, resulting in approximately 181,100 deaths (Rajasingham et al., 2017).
While incidence has decreased in the post-ART (antiretroviral therapy) era, mortality remains high
for those who become infected, particularly within developing countries.
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Infection by C. neoformans occurs through inhalation of
basidiospores or desiccated yeasts which are produced from
growth on plant detritus or bird droppings (Giles et al., 2009;
Walsh et al., 2019). Pulmonary infection occurs first, followed by
systemic dissemination including invasion of the central nervous
system (CNS). Virulence factors and fitness attributes that allow
C. neoformans to be pathogenic include thermotolerance, capsule
production, melanin production, pH tolerance, and the ability to
utilize multiple carbon sources. These adaptive traits assist
C. neoformans in temporarily evading host immune responses to
infection and allow persistence in immunocompromised individuals.
2 VIRULENCE FACTORS AND
FITNESS ATTRIBUTES

2.1 Capsule
The capsule serves as both an offensive and defensive structure,
protecting the yeast from environmental and host damage, as
well as directly inhibiting host immune responses (O’meara and
Alspaugh, 2012). Production of polysaccharide capsule is an
essential part of C. neoformans virulence, making up about 25%
of the total virulence composite (Mcclelland et al., 2006). With
very few exceptions, acapsular strains are severely attenuated in
murine infection (Fromtling et al., 1982; Chang and Kwon-
Chung, 1994; O’meara et al., 2010). Production of capsule
prevents desiccation and protects from oxidative stress
produced by both its natural predator, the amoeba, and host
phagocytic cells (Dykstra et al., 1977; Ophir and Gutnick, 1994;
Steenbergen et al., 2001; Zaragoza et al., 2008; Chrisman et al.,
2011). Synthesis of capsule is dynamically influenced by host-
associated environmental conditions such as dehydration
(Aksenov et al., 1973), neutral or alkaline pH (Zaragoza and
Casadevall, 2004), high or low levels of carbon dioxide (Granger
et al., 1985; Zaragoza et al., 2003) and iron deprivation
(Vartivarian et al., 1993). Capsule size, composition, density,
porosity and resultant immunoreactivity are variable, based on
the host environment and age of the fungal cells, emphasizing the
importance of morphology and fluidity to virulence within the
host (Feldmesser et al., 2000; Gates et al., 2004; Charlier et al.,
2005; Zaragoza et al., 2006; Cordero et al., 2011).

2.1.1 Composition and Synthesis
Glucose acquisition and carbon metabolism are intrinsically
related to capsule polysaccharide synthesis. Increased
concentration of glucose in growth media results in increased
capsule production and secretion, as does the substitution of
glucose in media with mannitol, highlighting the dependence of
capsule production on carbon acquisition and metabolism
(Cleare and Casadevall, 1999; Guimaraes et al., 2010). In
addition to the enzymes involved in synthesis and modification
of these sugar donors (Griffith et al., 2004; Moyrand and Janbon,
2004), the transferases that incorporate these sugars into the
polysaccharide chains of capsule are required for appropriate
capsule structure and subsequent biological functions (Wills
et al., 2001; Cottrell et al., 2007).
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Cryptococcal capsule is composed of polysaccharide chains
organized into fibers which are attached to and extending from
the fungal cell wall (Cleare and Casadevall, 1999; Maxson et al.,
2007b; Frases et al., 2009). Polysaccharide is secreted from the
cell and is incorporated at the capsule edge (Zaragoza et al.,
2006). These polysaccharide chains decrease in concentration
moving outward from the cell wall, creating a somewhat
permeable outer layer and a dense inner layer that prevents
cell wall recognition by antibodies and complement (Gates et al.,
2004; Bryan et al., 2005; Charlier et al., 2005; Maxson et al.,
2007a; Maxson et al., 2007b; Frases et al., 2009; Pontes and
Frases, 2015). This architectural organization confers a
hydrophilic quality to the capsule which provides the ability to
form a protective hydrogel or biofilm. It also contributes to the
overall negative charge of the cell, which is believed to suppress
phagocytosis (Nosanchuk and Casadevall, 1997; Martinez and
Casadevall, 2015; Aslanyan et al., 2017; Vij et al., 2020).

The two primary polysaccharides making up this barrier are
glucuronoxylomannan (GXM) and glucuronoxylomannogalactan
(GXMGal), with GXM being the predominant component
accounting for ~90% of polysaccharide composition (Cherniak
and Sundstrom, 1994; Cherniak et al., 1998b; Mcfadden et al.,
2006; Zaragoza et al., 2009). Synthesis of capsule polysaccharide
involves the polymerization of simple sugars into an elongated
carbohydrate chain within the cell prior to transport across the
cell wall. One of the essential components of GXM is UDP-
glucuronic acid, converted from UDP-glucose by UDP-glucose
dehydrogenase. Mutants of UDG1 (UDP-glucose dehydrogenase)
lack any detectable capsule, as well as the ability to grow at 37°C,
the normal temperature at which C. neoformans thrives (Griffith
et al., 2004; Moyrand and Janbon, 2004). GXM is composed of an
a(1,3) mannose backbone, while GXMGal is composed of an
a(1,6) galactan backbone – both modified through the addition of
side groups including xylose, mannose and glucuronic acid
residues that form six different conformations designated as
motifs 1-6 (M1-M6) (Cherniak et al., 1998b; Kozel et al., 2003;
Heiss et al., 2009). These modifications alter the secondary
structure of the polysaccharides, reduce molecular flexibility and
create heterogeneity among different strains as well as within a
population of a single strain (Todaro-Luck et al., 1989; Belay et al.,
1997; Mcfadden et al., 2007).

Both types of host antigen presenting cells (e.g. macrophages
and dendritic cells) express pattern-recognition receptors which
interact with pathogen-associated molecular-patterns (PAMPs)
allowing for the generation of an immune response (Takeuchi
and Akira, 2010). The toll-like receptor (TLR) family of PAMPs
are membrane-bound and their binding triggers pro-
inflammatory responses from within the cell including the
expression of TNF-a and IFN-g (O’mahony et al., 2008;
Campuzano and Wormley, 2018). Cell-surface TLR2 and TLR4
recognize capsular polysaccharides GXM and GXMGal, while
endosomal TLR9 recognizes fungal genomic DNA, specifically
unmethylated CpG motifs (Nakamura et al., 2008). Activation of
TLR9 results in recruitment of phagosomes and is required for
elimination of the fungal pathogen by the adaptive immune
system, however TLR2 and TLR4 are not involved in host
defense (Nakamura et al., 2008; Ramirez-Ortiz et al., 2008;
March 2022 | Volume 12 | Article 861405
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Miyazato et al., 2009; Zhang et al., 2010; Biondo et al., 2011; Qiu
et al., 2012). C-type lectin receptors (CLRs) are also important for
fungal recognition. These receptors also bind polysaccharides, but
more specifically they can bind a-mannans (Dectin-2), mannose
(CD-206/mannose receptor), mannosylated mannoproteins (DC-
SIGN), and chitin (CD-206/MR) (Campuzano and Wormley,
2018). Interestingly, CD206 is a pattern recognition receptor
that recognizes terminal mannose residues such as those on C.
neoformans, and its expression is also upregulated in alternatively
activated (M2) macrophages. Binding of C. neoformans to CD206
by these cells results in phagocytosis and subsequent intracellular
growth of the yeast. The critical adaptor molecule CARD-9
responds to CLR activation and is required for M1 activation of
macrophages (Campuzano et al., 2020). The resulting signaling
cascade leads to M1 activation, dendritic cell maturation, and
increased ROS and cytokine production (Figure 1).

The addition of xylose side groups among the remaining
mannose residues varies between serotypes (Cherniak et al.,
1980; Merrifield and Stephen, 1980). Side chains of glucuronic
acid, along with the xylose residues, create two hydrophilic
fringes that hide the mannan backbone from opsonization.
Antigenic differences due to these substitutions and their
locations have allowed for the categorization of Cryptococcus
variations by serotype: A, B, C, D, and hybrids AD and BD
(Cherniak et al., 1980; Ikeda et al., 1985), however molecular
techniques have determined that serotyping alone is insufficient
for determining cryptococcal species (Hagen et al., 2015). For
example, the structure of C. neoformans serotype D has gaps
between the additions of sugar groups that allow for exposure of
mannan for immune recognition. In contrast, serotype A
contains sugar groups arranged in a continuous band, creating
an even more occluded surface against antibody binding (Kuttel
et al., 2020). Urai and colleagues showed that infection with
cryptococcal strains containing additional xylose, such as C.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
gattii (e.g. strain JP02) result in significantly lower immune
recognition and stimulation compared to those with fewer
xylose additions such as C. neoformans (e.g. strain H99) (Urai
et al., 2015). The arrangement of acetyl groups along the mannan
backbone further reduces polysaccharide flexibility and provides
a structural conformation that is preferentially bound by anti-
capsular antibodies (Kuttel et al., 2020). An immunostimulatory
comparison of capsular polysaccharides showed O-acetylation of
GXM is associated with increased recognition by antigen
presenting cells as well as increased secretion of pro-
inflammatory cytokines (Urai et al., 2015). Due to the lack of
recognition, deacetylated mutants are more capable of evading
phagocytosis resulting in hypervirulence compared to wild-type
(Janbon et al., 2001). O-acetylation of capsule polysaccharides
also plays an important role in virulence as it impairs
chemotactic recruitment of neutrophils and their endothelial
adhesion (Ellerbroek et al., 2004).

2.1.2 Growth and Immune Interaction
The exact mechanism of capsular growth has not been
elucidated, but clearly occurs as a result of specific
environmental stimuli (Zaragoza and Casadevall, 2004). Many
of the capsule-inducing stressors involve nutrient deprivation,
which is interesting considering the large metabolic
requirements of polysaccharide accumulation (Trevijano-
Contador et al., 2017). Contact with phospholipids, such as
those found on macrophages or amoebae, is a trigger for
capsular growth, along with other environmental stimuli that
signal a threat to Cryptococcus, including elevated pH, CO2, and
serum (Granger et al., 1985; Chrisman et al., 2011). Inositol
catabolism has recently been shown to be essential to capsule
growth and structure. Readily available inositol as a carbon
source increases the size of the capsule, leading to greater
virulence. Of clinical significance, inositol is abundant in the
FIGURE 1 | Interaction with the immune system. The first cells to interact withC. neoformans are dendritic cells and macrophages, particularly alveolar macrophages. These
antigen presenting cells sound the alarm to naïve T-cells, who will respond by mounting either a protective or non-protective response based on the initial local cytokine environment.
T-cell differentiation leads to either the incompatible M1 response by macrophages that results in clearance of the yeasts, or the compatible M2 response that results in dissemination
of the yeasts to interior body sites. The cytokine responses and triggers that lead to dormancy are also as yet undetermined and an important area for future investigations. Figure
adapted from (Mukaremera and Nielsen, 2017) to show possible links between host-pathogen communication and dormancy. Created with Biorender.com.
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brain, allowing the yeasts to colonize this host organ (Wang et al.,
2021) (Figure 2).

GXM has the ability to self-aggregate through divalent metal
cations (such as calcium) which leads to the enlargement of
capsule in a concentration dependent manner (Mcfadden et al.,
2006; Nimrichter et al., 2007; Frases et al., 2008). The
exopolysaccharides added during growth are different in size
and mass compared to those in the steady-state capsule (Yoneda
and Doering, 2008; Frases et al., 2009). In situations where
capsule size must be reduced in adaptation to environmental
changes, capsule does not appear to degrade, and no capsule
degrading enzymes have been identified in C. neoformans.
Instead, cells invest energy in producing buds with smaller
capsules by modifying cell wall attachments of capsule during
bud formation rather than degrade capsular polysaccharides
(Zaragoza et al., 2009).

As the first structure to interact with the immune system, the
capsule must not only be able to mitigate the immune response
through structural changes, but also create a protective barrier
that allows for growth and dissemination. The capsule is able to
dramatically increase its size quickly after introduction of C.
neoformans into the lungs (Feldmesser et al., 2001). Murine
capsule studies have shown both size and compositional
differences in capsules produced in different organs that can be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
attributed to the specific environments encountered in different
tissues (Casadevall et al., 1992; Rivera et al., 1998; Garcia-
Hermoso et al., 2004; Charlier et al., 2005). Capsular
heterogeneity, even within a single population, can result in
changes in immunoreactivity to specific monoclonal antibodies
(Kozel et al., 2003; Garcia-Hermoso et al., 2004; Mcfadden et al.,
2007). Capsule inhibits phagocytosis by monocytes in the
absence of opsonization, preventing internalization of the yeast
necessary for antigen presentation and subsequent T-cell
activation (Vecchiarelli et al., 1994a; Vecchiarelli et al., 1994b;
Syme et al., 1999; Vecchiarelli et al., 2003). Phagocytic inhibition
may be due to the glucuronic acid residues in capsule imparting a
negative charge across the cell surface, potentially causing an
electrostatic repulsion from the host immune cells (Nosanchuk
and Casadevall, 1997). Capsule structure may alter antibody
binding in terms of affinity and specificity, as well as localizing
antibodies deep within the capsule, reducing opsonization
effectiveness. Additionally, C. neoformans also has been shown
to metabolize opsonins through degradation by secreted
proteases (Chen et al . , 1996). Once opsonized and
phagocytosed, capsule protects the yeast from oxidative
damage (Zaragoza et al., 2008) while also interfering with the
maintenance of pH within the phagolysosome (De Leon-
Rodriguez et al., 2018). The phagolysosomal membrane may
be maintained, releasing C. neoformans via non-lytic
phagosomal extrusion, or it may rupture, releasing yeasts into
the cytosol where they can replicate undetected (Alvarez and
Casadevall, 2006; Ma et al., 2006; Voelz and May, 2010).

Unlike macrophages, dendritic cells do not require activation
for C. neoformans killing and can quickly kill yeasts within the
phagolysosome through oxidative and non-oxidative
mechanisms (Wozniak et al., 2006). Additionally, they are
significantly more efficient in antigen presentation to T-cells
(Syme et al., 2002). Cryptococcal antigens (e.g. mannoproteins)
induce IL-12 and TNF-a secretion in dendritic cells, promoting a
protective TH1 response (Pietrella et al., 2005). However, the
extracellular environment during cryptococcal infection
naturally induces a non-protective TH2 response, including
increasing the accumulation of immature dendritic cells in
proximal lymph nodes (Osterholzer et al., 2009).

Encapsulated yeasts as well as purified capsular polysaccharides
have been shown to inhibit the expression of host cytokines and
chemokines (Lupo et al., 2008). Extracellular C. neoformans
alters macrophage NF-kB protein synthesis resulting in
repression of macrophage cell proliferation and pathogen-
induced apoptosis (Ben-Abdallah et al., 2012). Purified capsule
polysaccharides can trigger apoptosis of both macrophages and
T-cells, which reduces the secretion of pro-inflammatory
mediators from these cells (Pericolini et al., 2006; Chiapello
et al., 2008; Monari et al., 2008; Villena et al., 2008).
Furthermore, GXM has the ability to directly inhibit T-cell
proliferation and responses (Yauch et al., 2006). Intracellular
C. neoformans is able to modify the polarization of macrophages
by altering their cytokine profiles. As the yeasts reside in the
macrophages, they work to maintain a naïve-type state of the
macrophages. iNOS expression is also upregulated by
the intracellular yeasts (Subramani et al., 2020). Therefore,
FIGURE 2 | Central carbon metabolism pathways. C. neoformans uses
glycolysis, gluconeogenesis, the tricarboxylic acid cycle, and the glyoxylate
shunt for growth and survival in the host. Various gene deletion mutants have
been created at important enzymatic points in these pathways to investigate the
effect on virulence. Of great importance is the ability to use these intermediates
and products to assemble the capsule and cell wall, major carbon-based
virulence factors of Cryptococcus. Created with Biorender.com.
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Cryptococcus has the insidious ability to hide within the host by
manipulating the cytokine environment of the host.

Host surfactant proteins A and D (SP-A, SP-D) are an
important part of the innate immune response; they bind to
microbial surfaces and modulate leukocyte functions (Crouch
and Wright, 2001). SP-D can bind purified GXM with high
affinity but has a lower affinity for whole cryptococcal capsule,
which is interesting considering GXM is the primary component
of capsule (Van De Wetering et al., 2004). In cryptococcal
infection, SP-A does not play an important role in clearance of
fungal infection, however SP-D facilitates aggregation of
microorganisms, increasing mucociliary clearance as well as
promoting phagocytosis and killing in phagocytic cells.
However, binding of C. neoformans by SP-D can also inhibit
this process, increasing fungal burden and promoting systemic
dissemination (Van De Wetering et al., 2004). Interestingly, SP-
D is found at higher levels in the lungs of patients with AIDS,
possibly contributing to the progression of disease amongst this
group (Jambo et al., 2007). GXM prevents SP-D mediated
aggregation which would typically facilitate pathogen
clearance. SP-D may also selectively bind secreted capsule over
attached capsule thereby reducing the potential for opsonization
of attached capsule and subsequent immune interaction with
yeast cells (Van De Wetering et al., 2004). Paradoxically, fungi
bound with SP-D are protected from macrophage destruction
and have increased survival (Geunes-Boyer et al., 2009; Geunes-
Boyer et al., 2012). In these instances, Cryptococcus provides an
excellent example of a pathogen using host defenses to
its advantage.

Changes in capsular structure that occur during infection are
necessary for transmigration into the CNS and are visible via
immunofluorescence as soon as six hours post-intravenous
inoculation (Charlier et al., 2005). Counterintuitively, an
intriguing study of capsular mutants showed that a C.
neoformans hypercapsular mutant was less virulent and showed
lower levels of brain dissemination than a hypocapsular mutant
(Pool et al., 2013). It has been hypothesized that capsule size is
indicative of starvation stress in Cryptococcus (Casadevall et al.,
2019), therefore neurotropism may result from the nutritionally
richer environment of the deep tissues as compared to the lungs.
In contrast to this hypocapsular mutant data, acapsular strains are
easily phagocytosed and destroyed by immature dendritic cells
and result in the upregulation of antigen-presenting molecules,
showing the necessity of capsule in virulence and survival of C.
neoformans (Vecchiarelli et al., 2003).

Capsule attachment has been recently shown to be regulated
by Rim101, a transcription factor primarily involved in pH
response. GXM is able to be secreted in a rim101D mutant, but
the capsule is much thinner, producing a hypocapsular strain. In
a mouse inhalation model, the rim101D mutant was surprisingly
hypervirulent, resulting in decreased mouse survival compared
to wild-type and rim101D + RIM101 strains (O’meara et al.,
2010). The rim101D strain was shown to produce a very different
immune response than the wild-type strain. There was a much
greater influx of inflammatory infiltrate in the lungs of the
rim101D mutant, and additionally the cells composing the
infiltrate differed from wild-type. The infiltrate consisted more
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
heavily of neutrophils and eosinophils in the rim101D mutant-
infected lungs, whereas in wild-type infection, the inflammatory
cells mainly consist of lymphocytes and monocytes, with few
neutrophils and eosinophils (O’meara et al., 2013). Cytokine
levels and profiles differed as well: rim101D had higher cytokine
levels than wild-type, with IL-12, IFN-g-inducible protein 10 (IP-
10), VEGF, and TNF-a all significantly increased with rim101D
infection (O’meara et al., 2013).

Expression of mannoproteins MP98 and MP88 was also
increased in the rim101D strain, suggesting that the altered
capsule regulation correspondingly impacts the antigen profile
of C. neoformans. Mannoproteins are structural components in
the inner cell wall of C. neoformans and also play an antigenic
role (Vartivarian et al., 1989). They are known to be the
predominant antigens involved in activating cell-mediated
immunity in cryptococcosis (Murphy, 1988). MP98 and MP88
are known to stimulate T-cell responses in the host reaction to
Cryptococcus (Levitz et al., 2001; Huang et al., 2002), which may
at least partially explain the hypervirulence phenotype in
this mutant.

2.2 Cell Wall
2.2.1 Composition and Immune Interaction
The cell wall of Cryptococcus is a two-layered structure that sits
above the plasma membrane and serves to control cellular
permeability in addition to mitigating mechanical and osmotic
stresses (Baker et al., 2007; Ponton, 2008; Doering, 2009; O’meara
and Alspaugh, 2012; Gow et al., 2017; Agustinho et al., 2018;
Wang et al., 2018). In fungi, the cell wall is composed of glucans,
chitin, chitosan, glycosylated proteins, and melanin (Casadevall
and Perfect, 1998). Glucans are the most important structural
polysaccharides of the cell wall and are synthesized in the plasma
membrane by a series of enzymes called glucan synthases. The
inner layer is mostly fibers of b-glucan and chitin arranged parallel
to the plasma membrane, while the outer layer contains a-glucan
and b-glucan (Sakaguchi et al., 1993; Doering, 2009; O’meara and
Alspaugh, 2012). Alpha-1,3-glucan is required to anchor the
capsule to the cell wall, and is required for virulence (Reese and
Doering, 2003; Reese et al., 2007).

Chitin is synthesized by an enzyme called chitin synthase
from N-acetylglucosamine (GlcNAc) and is deposited into the
extracellular space next to the plasma membrane. In
Cryptococcus species, chitin is a minor component of the cell
wall but it does contribute strength and plays a crucial role in
capsular architecture (Doering, 2009; Zaragoza et al., 2010).
Chitin also has the ability to modulate host immune responses
(Wiesner et al., 2015). The deacetylated form of chitin, chitosan,
is more soluble and flexible than chitin, making up 3-5 times
more of the cell wall (by dry weight) than chitin and is necessary
for cryptococcal virulence (Upadhya et al., 2016). As the density
of the cell wall changes, so does the ratio of chitosan to chitin
(Banks et al., 2005). Chitosan is important for maintaining the
integrity of the cell wall and normal capsule width; mutants
deficient in chitosan display a “leaky” phenotype and are unable
to retain melanin within the cell wall (Baker et al., 2007).

Changes to antigenic structures due to alterations in carbon
metabolism have been elucidated in other pathogenic fungi. In
March 2022 | Volume 12 | Article 861405
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Candida albicans, glucose is preferred carbon source, but
alternative non-fermentable carbon sources such as lactate,
acetate and citrate can be assimilated through gluconeogenesis,
glyoxylate shunt, and b-oxidation. Interestingly, growth of
Candida on alternative carbon sources also modifies the
composition and architecture of the cell wall, resulting in
altered host recognition and immune cell interactions (Ene
et al., 2012; Ene et al., 2013). When grown in host-derived
blood or serum, Candida exhibited a dramatic reduction in the
length of mannan chains, as well as a reduction in cell wall
structural complexity (Lowman et al., 2011). With lactate as a
sole carbon source, biomass was significantly reduced and cell
walls were thinner, with the b-glucan and chitin layer
dramatically reduced. Although these components maintained
the same proportions, these cells displayed alterations to cell wall
porosity and hydrophobicity (Ene et al., 2012), both of which
could potentially affect pathogenicity. The observed changes
result in decreased host recognition and phagocytosis, while
those yeasts that are engulfed show increased macrophage
killing and escape (Brown et al., 2014). This phenotype results
in increased virulence and fungal burden and the promotion of a
non-protective M2 phenotype as indicated by the increased
secretion of IL-10 (Ene et al., 2012; Ene et al., 2013)
(Figure 1). Since many of the cell wall components are
recognized by pattern-recognition receptors on antigen
presenting cells, alterations in the cell wall structure may result
in the inability of PAMPs to bind their antigenic targets and
generate a protective immune response (Lewis et al., 2012).
3 CARBON SOURCES AT
SITES OF INFECTION

C. neoformans can rapidly acclimate to environments with
variable nutrient sources, allowing it to grow and proliferate
within not only the external environment, but also the many
different environments within the host. Pathogen fitness and
virulence is directly related to nutrient acquisition and
metabolism, particularly the utilization of carbon (Ramachandra
et al., 2014). Ex vivo, Cryptococcus lives in detritus and bird feces,
both of which have readily available carbon and nitrogen sources
(Barkal et al., 2016). As pathogenic yeasts move into a mammalian
host, they must find alternate ways of providing the energy and
substrates needed for cellular processes (Barelle et al., 2006).
Nutrient availability and environmental conditions are
continually shifting, and vary by early and late infection, as well
as by tissue type during dissemination (Hu et al., 2008). In fact,
identical clinical isolates (based on multi-locus sequence typing)
from an initial and relapse infection were shown to have
significant phenotypic differences in metabolic profiles and
dissemination patterns while maintaining similar levels of
virulence (Ormerod and Fraser, 2013). This suggests that
specific host-generated stresses, such as alterations to carbon
source availability within a tissue, result in gene expression
changes that are maintained clonally amongst cells within an
isolated environment and persist in long-term infection.
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The primary carbon metabolism pathways influencing virulence
of C. neoformans within the host include glycolysis,
gluconeogenesis, b-oxidation, the tricarboxylic acid (TCA) cycle
and the glyoxylate shunt (Cherniak et al., 1998a). In yeasts,
peroxisomes are important for catabolic metabolic functions
including b-oxidation and the glyoxylate shunt (Sibirny, 2016).
Utilization of monosaccharides such as fructose, glucose and
mannan requires peroxisomal processing (Idnurm et al., 2007).
Many of the products and intermediates of carbon metabolism are
utilized for the generation of structural features such as the cell
wall and capsule (Wang et al., 2018).

The presence of glucose blocks the usage of alternate carbon
sources due to a regulatory process called carbon catabolite
repression. In order to transition from glucose metabolism to
alternate sources, there must be activation of the protein kinase
Snf1, a regulator of the carbon catabolite repressor Mig1 (Hu
et al., 2008). This pathway is especially important in the CNS,
where glucose is present in higher concentrations compared to
what is experienced in the lungs or in the blood. Another
transcription factor repressed by the presence of glucose is
Nrg1, a downstream effector in the cAMP pathway, which has
been shown to regulate many genes associated with metabolism
and transport of carbohydrates. In addition to its role in energy
production, Nrg1 appears to show some regulation of capsule
production and cell wall integrity (Cramer et al., 2006). C.
neoformans cells are subjected to glucose deprivation within
the body and must utilize alternate carbon sources (Panepinto
et al., 2005; Hu et al., 2008; Price et al., 2011) which is done
through the upregulation of oxidative phosphorylation (Chun
et al., 2007; Ingavale et al., 2008).

3.1 Respiratory System
Genes associated with lipid degradation and fatty acid catabolism
are elevated at 8 hours (Hu et al., 2008), consistent with
localization of yeasts in the alveoli, where phospholipid-rich
surfactant is an abundant carbon source. Surfactant is primarily
composed of phospholipids, with phosphatidylcholine making
up about 80% of the lipids, and phosphatidylglycerol making up
7-15% of the lipid content. Phosphatidylcholine is the surface-
active component, while phosphatidylglycerol is thought to play
a role in immune response. Surfactant also contains proteins
involved in regulation of the structure and properties of the lipid
film, while others are required for the innate immune response
and inflammation (Agassandian and Mallampalli, 2013).

The expression of genes associated with lipid degradation and
fatty acid catabolism decreases by 24 hours as the yeasts move
into the tissues (Rooney et al., 1994; Feldmesser et al., 2000; Fan
et al., 2005). Lipids are also available intracellularly within
macrophages, which may serve as a carbon source during
intracellular parasitism. The secreted enzyme phospholipase B1
(PLB1) is able to liberate carbon from phospholipids found in
both surfactant and cell membranes, including those of the
phagolysosome helping to promote fungal escape (Wright
et al., 2007). Activity of this enzyme allows for the metabolism
of host-derived fatty acids, but also allows for the incorporation
of these lipids into cellular products. One such metabolite,
arachidonic acid, is not naturally found in cryptococci but is
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obtained from macrophages after phagocytosis (Wright et al.,
2007) and can then be used to produce compounds with
immunomodulatory affects such as the oxylipin prostaglandin
E2 (PGE2) (Erb-Downward and Huffnagle, 2007).

The glyoxylate cycle is an anapleurotic variant of the TCA
cycle and an anabolic process that allows cells to metabolize 2-
carbon compounds (e.g. acetate and ethanol) when simple sugars
are not available (Mccammon, 1996; Kanai et al., 1998), and its
expression has been shown to be enhanced in conditions of low
glucose (Wayne and Lin, 1982) (Figure 1). Since carbon is
already deficient in a host environment, this pathway allows
for energy production without the unnecessary loss of elemental
carbon by utilizing a shunt to bypass some of the traditional steps
of the TCA cycle (Hu et al., 2008; Dunn et al., 2009). Unlike other
carbon utilization pathways, the glyoxylate shunt is not required
for virulence in C. neoformans as it is in other pathogenic
organisms (Lorenz and Fink, 2001; Rude et al., 2002; Idnurm
et al., 2007). Isocitrate lyase (Icl1) is the primary enzyme
controlling the glyoxylate shunt pathway (Fernández et al.,
1992; Barth and Scheuber, 1993; Umemura et al., 1997). In a
human host, levels of Icl1 and another key enzyme, malate
synthase (Mls1), are increased and elimination of these
enzymes resulted in an inability of the yeasts to grow on
acetate as a sole carbon source (Idnurm et al., 2007). Aconitase
and succinate dehydrogenase, enzymes of the TCA and
glyoxylate cycles, were also upregulated in early lung infection
(Hu et al., 2008).

3.2 Central Nervous System
Dissemination from the lungs to other organs results in exposure
to different nutrient pools and consequently the requirement for
metabolic adaptation in each new environment (Guess et al.,
2018). Glycolysis is the preferred metabolic pathway within the
CNS, however glucose is not always available due to the high
metabolic demand from CNS cells. Although gluconeogenesis is
not the primary method of carbon acquisition within the CNS,
PCK1 (phosphoenolpyruvate carboxykinase) expression is
upregulated in the low glucose concentrations of CSF (Price
et al., 2011) (Figure 1). Additionally, several studies have
indicated that expression of ICL1 is also induced as a result of
significant decreases in CSF glucose concentrations during
cryptococcal meningoencephalitis, promoting utilization of the
glyoxylate shunt for carbon assimilation (Perfect et al., 1980;
Kwon-Chung et al., 2000; Rude et al., 2002). Ethanol and acetate
have been shown to be available in brain tissue and the
subarachnoid space as substrates for the glyoxylate shunt after
their conversion to acetyl-CoA (Chew et al., 2019). While these
pathways are certainly utilized, deletion mutant studies of PCK1,
SNF1 and ACS1 (acetyl-CoA synthetase) suggest that fungal
persistence and disease production within the brain is likely
due to carbon assimilation via glycolysis (Hu et al., 2008; Price
et al., 2011).

Carbon assimilation via glycolysis in the CNS is supported by
the characterization of two glycolysis mutants with significantly
decreased persistence within the CNS: a pyruvate kinase mutant
(pyk1D) and a hexokinase double-mutant (hxk1D/hxk2D) (Price
et al., 2011) (Figure 2). Apparently, blocking either the entry of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
substrates into or exit of substrates from the glycolytic pathway
has severe metabolic consequences impacting yeast survival
within the CNS. Additionally, access to oxygen is necessary for
oxidative metabolism and hypoxic conditions within the brain
tissue require cryptococcal yeasts to colonize the more highly
vascularized areas (mainly gray matter) after crossing the blood-
brain barrier in order to maintain aerobic respiration (Chang
et al., 2007). Oxygen sensing mechanisms are required for the
appropriate transcriptional responses to a low-oxygen
environment, and upon activation alter essential processes in
energy metabolism such as mitochondrial function and
associated carbohydrate metabolism such as the electron
transport chain (oxidative phosphorylation) (Chang et al.,
2007; Ingavale et al., 2008).
4 CONCLUSION

While generally considered a fitness attribute and not a virulence
factor, the ability to use multiple carbon sources is essential for
compatible interactions of pathogenic Cryptococcus species with
their hosts (Figure 3). In addition to being utilized for energy
FIGURE 3 | Determinants of virulence throughout infection course. Several
key genes involved in carbon metabolism have been shown to affect virulence
in C. neoformans. Certain genes involved in capsule and cell wall synthesis
are expressed throughout the course of infection; these include chitin
synthases, UDP-glucose dehydrogenase, and capsule regulation genes.
ACS1 and PCK1 are essential to virulence in lung infection, as they allow C.
neoformans to use the lung environment to make capsule and cell wall.
HXK1, HXK2, and PYK1 are involved in using cerebrospinal fluid as a carbon
source for the yeasts to thrive. SNF1(*) is utilized in both the lung and brain
environments to regulate carbon metabolism. Created with Biorender.com.
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production, carbon metabolism produces several substrates and
products that are incorporated into immunogenic components
such as the cell wall and capsule. Although Cryptococcus is
somewhat unique in its production of polysaccharide capsule,
other immunogenic structures such as glucans and chitin within
the cell wall can also be affected. Impairing the production of
these substrates has been shown to result in various virulence
defects (Moyrand et al., 2002), but relatively few direct
connections have been made between defects in pathogen
carbon metabolism and changes in host immune responses to
this organism. Although lacking a polysaccharide capsule, C.
albicans shares many of the pathways for cell wall production
with Cryptococcus, therefore similar changes to immune
recognition observed in Candida in response to altered carbon
metabolism can serve as a guide to these responses in
Cryptococcus. As one of the primary virulence factors in
Cryptococcus, production of capsule is dependent on the
availability of sugar groups for polysaccharide synthesis.
Capsule morphology has been shown to change in response to
nutrient availability in host pathogenesis resulting in alterations
to capsule antigenicity as yeasts disseminate systemically.
Understanding what responses these carbon metabolites of
Cryptococcus elicit from the host immune system will further
illuminate the mechanisms of disease, and also the processes of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
other outcomes (e.g. fungal clearance vs. dormancy; Figure 1).
The exact structural changes that occur and their role in immune
recognition are fertile ground for future research in this
important emerging fungal pathogen.
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