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Simple inorganic structures comprised of iron and sulfur are called [Fe-S] clusters. They likely
represent one of the earliest prosthetic groups associated with the emergence of life on earth
and continue to have essential roles in sustaining many metabolic processes in almost all
existing life forms. For example, proteins that contain one or more [Fe-S] clusters, generally re-
ferred to as [Fe-S] proteins, are involved in a wide variety of important cellular functions, in-
cluding energy transformations, catalysis, and regulation of gene expression. In recent years,
the assembly of [Fe-S] clusters and their trafficking within biological systems has captured the
attention of researchers because defects in the process can lead to disruption of important met-
abolic processes, which, in humans, is often manifested in a variety of pathological conditions
[1].

Two central players involved in biological [Fe-S] cluster formation include an L-cysteine
desulfurase (designated IscS in bacteria or Nfs1 in eukaryotes) and an assembly scaffold (desig-
nated IscU in bacteria or Isu in eukaryotes). IscS/Nfs1 delivers S in the form of an enzyme-
bound persulfide to IscU/Isu upon which nascent [Fe-S] clusters are formed prior to their de-
livery to target proteins or intermediate carriers (Fig 1) [2-4]. Given the early evolutionary
emergence of [Fe-S] clusters, as well as their critical metabolic function, it is not surprising that
the primary structures and mechanistic features of the IscS/Nfs and IscU/Isu orthologs are con-
served throughout nature. Nevertheless, some fundamental differences between the prokaryot-
ic and eukaryotic systems have become apparent. For example, the eukaryotic Nfs L-cysteine
desulfurase requires an additional subunit, Isd11 [5], for basal activity, but the bacterial ortho-
log IscS does not [6].

Another difference in prokaryotic versus eukaryotic [Fe-S] cluster assembly that has con-
founded the research community involves the role of a protein called Frataxin (designated Fxn
in humans, Yth1 in yeast, and CyaY in bacteria) [7,8]. Frataxin has been the subject of intense
investigation for many years because defects in its formation are associated with a debilitating
human neurodegenerative disease known as Friedreich’s ataxia [1]. Yeast loss of Yfh1 function
is linked to dysregulation of Fe homeostasis and defects in [Fe-S] cluster formation [9]. In con-
trast to the important function of Yfhl in yeast, complete loss of the bacterial ortholog, CyaY,
does not exhibit a profound phenotype [10,11]. These apparently contradictory results were
reconciled by biochemical analyses obtained using in vitro IscS-IscU or Nfs-Isd11-Isu directed
[Fe-S] cluster assembly. In these studies, it was shown that the bacterial Frataxin ortholog
CyaY inhibits [Fe-S] cluster assembly by slowing IscS mediated S delivery to IscU, whereas the
eukaryotic Frataxin ortholog stimulates [Fe-S] cluster assembly by acceleration of Nfs/Isd11
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Fig 1. Frataxin involvement in [Fe-S] cluster biogenesis in E. coli and S. cerevisiae. Cysteine
desulfurases IscS and Nfd1/Isd11 are shown in yellow, and the frataxin orthologs CyaY and Yfh1 are shown
in red. The wild-type scaffold proteins IscU lle'®® and Isu1 Met'*' are indicated in blue, while the variant
proteins are in orange (IscU Met'®® and Isu1 lle'*"). In E. coli, CyaY has been shown to inhibit in vitro
assembly of Fe-S cluster on wild-type IscU (indicated by red bar), and is required for in vivo [Fe-S] cluster
biogenesis in strains containing IscU Met'%® (indicated by black bar). In S. cerevisiae, Yfh1 facilitates [Fe-S]
cluster assembly on the wild-type Isu1 (indicated by black bar), while a strain containing Isu1 lle’*' does not
require Yfh1 for in vivo [Fe-S] cluster biogenesis.

doi:10.1371/journal.pgen.1005192.g001

mediated S delivery to Isu (Fig 1) [7,12,13]. Work described in the articles by Yoon et al. [14]
and Roche et al. [15] now provide remarkable in vivo complements to the pioneering biochem-
ical studies.

Although Yfh1 inactivation causes severe metabolic defects in yeast, the Dancis group was
able to isolate a fast-growing strain that bypasses the Yth1 requirement [16]. The spontaneous
suppressor mutation leading to Yth1 independence is localized within isul and results in sub-
stitution of the Isul Met'*' residue by Isul Ile'*'. This result was particularly intriguing be-
cause the Escherichia coli IscU residue corresponding to Isu Met'*' is naturally occupied by
IscU Tle'%. Yoon et al. now report on an exhaustive study on suppression of the yeast Yfh1 de-
letion phenotype by using both directed mutagenesis and genetic selection strategies [14]. They
find that suppression of the Yfh1 deletion phenotype can only be accomplished by substitu-
tions at the Met'*' position and only by substitution of an Ile, Leu, Cys, or Val residue. Re-
markably, bioinformatic analyses reveal that these four amino acids are also, by far, the most
highly represented and naturally occurring residues at this position among almost all IscU-
containing prokaryotes. In contrast, examination of a vast number of eukaryotic Isu primary
structures reveals that Isu Met'*! is strictly conserved. A second approach that provided further
evidence on the correlation between Yfh1 dependence and the Isu Met'*' residue involved het-
erologous expression of the E. coli IscU in a yeast Yth1 depletion strain. These experiments
demonstrated that the wild-type E. coli IscU could be used to rescue the yeast phenotype asso-
ciated with the lack of Yth1, but the IscU Met'**-substituted form could not.

Building on the observation that the yeast Yth1 deletion phenotype is suppressed by substi-
tution of Isu Met'*" with the corresponding bacterial IscU Tle'*® residue, Roche et al. asked the
reciprocal question [15]. Namely, does substitution of the E. coli IscU Ile'*® residue by Met'*®
render [Fe-S] cluster assembly dependent on the presence of CyaY, the bacterial ortholog of
yeast Yth1? The answer to that question is yes. Roche et al. also explored the phylogenic con-
servation at the IscU residue'®® position as a way to gain clues into the evolutionary emergence
of the Yfth1-dependent eukaryotic Isu form. Interestingly, it was found that the Rickettsia are
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one of very few bacteria that naturally carry an Iscu Met'%®. Given the endosymbiotic lifestyle

of the Rickettsia, and its possible role in primordial acquisition of mitochondria, Roche et al.
make the credible suggestion that the dependence of “Frataxin” for [Fe-S] cluster synthesis was
acquired from bacteria, rather than independently within the established Eukaryotic lineage.

These two complementary studies have led to the amazing observation that substitution of a
single amino acid carried within the ancient IscU family of proteins can lead to a profound al-
teration in the function of an associated accessory component, as either an activator or as an
apparent inhibitor of the cluster assembly process. They also provide strong in vivo evidence to
support a growing body of elegant biochemical studies that have demonstrated an important
role for the Frataxin family of proteins in modulating intermolecular S-transfer during [Fe-S]
cluster biosynthesis. Finally, they highlight the central importance of the IscU-type of molecu-
lar scaffold that, save for the effects of one amino acid variation, appears to have a structure
and mechanism that has been conserved through time and throughout nature.
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