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Despite excellent short-term graft survival after renal transplantation, the long-term graft outcome remains compromised. It has
become evident that a combination of sustained alloreactivity and calcineurin-inhibitor- (CNI-) related nephrotoxicity results in
fibrosis and consequently dysfunction of the graft. New immunosuppressive regimens that can minimize or eliminate side effects,
while maintaining efficacy, are required to improve long-term graft survival. In this perspective mesenchymal stromal cells (MSCs)
are an interesting candidate, since MSCs have immunosuppressive and regenerative properties. The first clinical trials with MSCs
in renal transplantation showed safety and feasibility and displayed promising results. Recently, the first phase II studies have been
started. One of the most difficult and challenging aspects in those early phase trials is to define accurate endpoints that canmeasure
safety and efficacy ofMSC treatment. Since both graft losses and acute rejection rates declined, alternative surrogatemarkers such as
renal function, histological findings, and immunological markers are used to measure efficacy and to provide mechanistic insight.
In this review, we will discuss the current status ofMSCs in renal transplantation with a focus on the endpoints used in the different
experimental and clinical studies.

1. Introduction

Renal transplantation has improved life expectancy and
quality of life for patients with end-stage renal disease.
Improvements in surgical techniques and the introduc-
tion of novel immunosuppressive agents have improved
the short-term outcome after transplantation markedly in
the past decades [1]. Long-term graft survival, however,
remains suboptimal, even in patients with low immunolog-
ical risk for rejection [1, 2]. It has become evident that both
immunological and nonimmunological factors adversely
affect renal structure, including ischemia/reperfusion injury
(IRI), subclinical rejections, viral nephropathy, and cal-
cineurin inhibitor (CNI) overexposure [3], causing tubu-
lar atrophy and interstitial fibrosis (IF/TA). In addition,
the currently used immunosuppressive drugs have sev-
eral side effects including diabetes, hypertension, and
nephrotoxicity and carry an increased risk for malignan-
cies and (opportunistic) infections. Consequently, there is

a strong interest in novel immunosuppressive therapies
that have minimal side effects and prevent or reverse IF/
TA in the allograftwith the aim to prolong (allograft) survival.

A promising novel therapeutic option in this respect is
the clinical application ofmesenchymal stromal cells (MSCs).
MSCs have important effects on the innate and adaptive
immune system and possess anti-inflammatory properties
[4]. In addition, MSCs can enhance repair by secreting
antifibrotic and proangiogenic factors, which makes them
attractive for potential use in renal transplantation. Animal
studies in solid organ transplantation predominantly investi-
gated cell-product efficacy andmechanisms of action. Several
studies demonstrated a prolongation of allograft survival after
MSC therapy [5–7] and an inhibition of the rejection process
[8, 9]. In humans, rationale for use ofMSCs in renal recipients
includes a reduction in severity of IRI, prevention and rever-
sal of acute transplant rejection, and reversal or stabilization
of chronic transplant inflammation and fibrosis. In addition,

Hindawi Publishing Corporation
Journal of Immunology Research
Volume 2015, Article ID 391797, 14 pages
http://dx.doi.org/10.1155/2015/391797

http://dx.doi.org/10.1155/2015/391797


2 Journal of Immunology Research

adding MSCs to the immune suppressive regimen might
facilitate CNI withdrawal with the aim of preserving renal
function and structure [10, 11].

The early phase I clinical trials with MSCs focused
primarily on safety and feasibility, with additional clinical
parameters to get an impression on the biological effect of
MSC therapy [12–17]. Phase II clinical trials, with a focus
on efficacy of MSC treatment, have been started recently
[11, 18]. One of the most difficult aspects is to define accurate
endpoints, which can be considered to predict reliable the
outcome after renal transplantation and which can measure
efficacy of MSC treatment. The gold standard clinical end-
points in renal transplantation are patient and graft survival,
biopsy proven acute rejections (BPAR), and renal allograft
function [19]. However, substantial improvements in patient
and kidney survival and declining acute rejection rates, have
shifted the endpoints to alternative surrogate markers, such
as histological findings and immunological markers [19, 20].
The most relevant endpoint markers might differ among
clinical trials, depending on the rationale of using MSCs in
renal transplantation. In this review, the current status of
MSCs in renal transplantation is discussed with the focus on
the chosen endpoints.

2. Preclinical Studies Of MSCs: Endpoints
Mainly Focused on Graft Survival and
Prevention of Rejection

MSCs are involved in a variety of physiological processes,
including immune modulation and repair of injury [21,
22]. The immune modulatory potential of MSCs has most
extensively been studied.MSCs inhibit T cell proliferation via
several mechanisms including indoleamine 2,3-dioxygenase
(IDO) activity, and the production of prostaglandin E2 and
transforming growth factor- (TGF-) 𝛽 [23–25]. Furthermore,
MSCs alter cytokine secretion profiles of näıve and effector T
cells [26–28]. Recently, it was shown that MSCs suppress not
only the Th1 functions but also the Th17-mediated activation
and proliferation through soluble and cell-dependent factors
[29, 30]. Besides their effects on T cells,MSCs have additional
targets in the immune system. They inhibit the interleukin-
(IL-) 2 and IL-15 driven natural killer (NK) cell proliferation
and interferon- (IFN-) 𝛾 production [31–34] as well as
the dendritic cells (DC) generation from peripheral blood
monocytes in vitro [28, 35, 36]. Interestingly, intravenous
injection of MSCs significantly affected the ability of DCs to
prime T cells in vivo because of their inability to home to
draining lymph nodes [37]. In addition, MSCs have immune
regulatory activities and are capable of inducing generation
of CD4+CD25+FoxP3+ regulatory T cells via both cell contact
dependent mechanisms and via the secretion of TGF-𝛽1 and
prostaglandin E2 [38].

Data on the role of MSCs in B cells are less extensively
studied. MSCs have been shown to inhibit the differenti-
ation of B cells; however, it remains elusive whether this
is a direct or indirect effect [39]. There is also evidence
that MSCs induce B cells with regulatory functions [40].
Recently, Franquesa et al. found that adipose tissue derived

MSCs exert an indirect effect on B cell proliferation through
immunomodulation of T cells and a direct effect on B cells by
inhibiting plasmablast differentiation and induction of IL-10-
producing regulatory B cells [41].

In vivo, several studies investigated the effects of MSCs
in experimental models of solid organ transplantation. Most
studies focused their endpoints on efficacy including pro-
longed graft survival [5–7] and inhibition of the rejection
process [8, 9]. In addition to these endpoints, an important
aim of the experimental studies was to elucidate mechanisms
involved. Zhou et al. observed a prolonged heart allograft
survival, which was associated with a suppressed allogeneic T
cell response [6], where Casiraghi et al. found an association
of prolonged cardiac graft survival in mice with the genera-
tion of regulatory T cells [7]. de Martino et al. investigated
whether MSCs can downregulate the immune response and
control the acute cellular rejection after rat kidney transplan-
tation [8]. The MSC-treated rats had an improved kidney
function and histologically tubular damage and vasculitis
was diminished. In addition, MSCs reduced the number of
ED1+ and CD8+ cells, showing that MSCs indeed can down-
regulate the immune response and attenuated histological
damage.

Casiraghi et al. investigated in amurine kidney transplant
model the best timing of autologous MSC infusion and
explored the mechanism of the immune modulatory and/or
inflammatory activities of MSC according to timing of MSC
infusion [42]. They found that pretransplant MSC infu-
sion significant prolonged kidney graft survival compared
to posttransplant MSC infusion. In addition, the MSCs
infused pretransplantation localized into lymphoid organs
where they promoted early expansion of the regulatory T
cells, in comparison to posttransplant infusion where MSCs
localized in the graft. These results suggest that MSCs may
modulate the immune response by shifting the balance
between regulatory T cells and effector T cells to a more
tolerogenic profile.This findingwas confirmed in a studywith
kidney allograft mice by Ge et al., where CD4+CD25+Foxp3
were essential for tolerance induction [43]. In addition, the
same group investigated the mechanisms for kidney allograft
tolerance and found that the generation of regulatory T cells
through IDO-expressingMSCs could be a potentmechanism
involved.

Another important physiological function of MSCs is
their role in angiogenesis and fibrosis. MSCs were shown to
produce angiogenic factors that promote stabilization of the
vessels, including vascular endothelial growth factor (VEGF)
and angiopoietin-1 (Ang1) [44, 45]. In addition, MSCs can
release hepatocyte growth factor and bone-morphogenic
protein-7 (BMP-7), which are potent inhibitors of fibrosis
[46]. Interestingly, in a rat kidney allograft model, Franquesa
et al. observed a therapeutic effect of MSCs attenuating
the progression of IF/TA when this process was already
in progress [47]. Besides a reduction in IF/TA, MSC-
treated animals demonstrated fewer macrophages infiltrat-
ing the parenchyma, lowered expression of inflammatory
cytokines in combination with increased expression of anti-
inflammatory factors.
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The above described studies provide us important mech-
anistic information onMSCs in the transplant setting. Trans-
lation of the findings of experimental studies into the human
situation is, however, difficult. The underlying disease of the
renal recipient, the concomitant use of immunosuppressives,
the difference in inflammatory responses between animals
and humans [48], and numerous other factors which are of
relevance for the human situation are not taken in account in
the animal studies.

3. Safety Aspects Related to MSCs in Human
Renal Transplantation

Safety is in general defined as a relative freedom from danger,
risk, or harm. It should be clear that the safety of the patient
is paramount.MSC isolation, expansion, harvesting, and cry-
opreservation should be performed under strict GMP con-
ditions. In the different laboratories final cell products have
to undergo control quality tests before release including via-
bility, sterility, endotoxin content, mycoplasma contamina-
tion, fluorescence-activated cell sorting (FACS) analysis, and
tests to ensure genetic stability. In addition, clinical studies
should be performed under ethically approved protocols and
appropriate Data Safety Monitoring Board oversight. Serious
adverse events (SAEs) and suspected unexpected serious
adverse reactions (SUSARs) should be carefully recorded and
reported to the proper authorities. Here potential risks related
to the MSC infusion, including direct toxicity of the MSC
infusion, malignancies, risks for over immune suppression,
and immunogenicity are discussed.

3.1. Potential Toxicity Related to the Infusion. To date, no
direct toxicity related to the infusion itself or immediate
adverse effects have been observed in the numerous clinical
trials with MSCs for different clinical indications [49]. We
are, however, still awaiting long-term effects. There is no
uniform score yet, which can be used to assess safety in
cell-based trials. In our phase I trial the WHO criteria were
used to monitor toxicity and adverse events [14]. Of interest,
Dillmann et al. proposed a scoring system to evaluate safety
of intravenous and intraportal infusion of stem cell products
after liver transplantations. The so-called MiSOT-1 score
was designed to identify unacceptable treatment-emergent
adverse events in phase I/II trials [50].This score is developed
to identify very serious adverse events; however, it is also of
importance to identify the less severe adverse events, which
are more likely to occur. For renal transplantation, no such
score is developed yet.

3.2. Uncontrolled Proliferation. Renal transplant recipients
have already an increased risk of malignancies due to the
concomitant use of immunosuppressive medication [51].The
most common malignancies occurring in transplant recip-
ients are skin cancers, especially squamous cell carcinomas
[52]. The incidence of these carcinomas increases with the
duration of immunosuppressive therapy and registry data
shows that ultimately 50 percent of thewhite transplant recip-
ients are affected [53]. This well-known risk of malignancies

in combination with the proangiogenic, antiapoptotic, and
immune modulatory properties of MSCs may act together as
tumor promoters. In vitro and in vivo studies have shown that
MSCs have a potential for mal differentiation into neoplastic
cells as well as the possibility to promote growth of the
tumor cells [54, 55]. MSCs were shown to migrate to the
site of microscopic tumor lesions and to incorporate into
tumor vessels [55]. By contrast, in several animalmodels with
preestablished neoplastic disease, including non-Hodgkin’s
lymphoma models [56], gliomas [57], and Kaposi’s sarcoma
[58], the infusion of MSC exerted antineoplastic properties.
However, since these are studies in immune compromised
mice this may not simply be extrapolated to humans. In
humans quite a large cohort of patients is exposed to MSC
therapy and none of them developed new malignancies so
far [59]. Even in patients where MSCs are used for hema-
tological malignancies no tumors occurred [59]. However,
most clinical trials have a short follow-up period and the
inclusion of ill patients with poor prognosis could have biased
the outcomes. We suggest that patients who have received
MSC therapy should be monitored closely and there must be
a low threshold for further research, for example, a CT or PET
scan.

3.3. Opportunistic Infections. Opportunistic infections are
another important aspect related to safety. In the study of Tan
et al. a significant decrease in opportunistic infections was
seen with MSC induction. However, 151 of the 154 patients
in this study had a cytomegalovirus (CMV) negative sero-
logical status, probably explaining the low incidence of CMV
infections in their population [18]. In contrast, in our safety
and feasibility study a relatively high number of opportunistic
infections were found, in 3 out 6 patients, which might
be related to the immunosuppressive effects of MSCs [14].
Other clinical trials in the context of graft-versus-host disease
(GVHD) or hematopoietic stem cell transplantation (HSCT)
also showed a trend to more infections after MSC therapy. In
a study by vonBahr et al. in 31 patients withGVHDandMSCs
a high rate of infections was seen. However, most patients in
this study were patients with steroid-refractory GVHD and,
since there was no matching control group, infections could
not be fairly compared [60]. In addition, MSC coinfusion
after HSCT caused a higher 1-year incidence of infections,
particularly fungal infections [61].Thus frequent and accurate
monitoring of infectious complications remains essential.

3.4. The Role of Allogeneic MSCs in the Transplant Setting. In
humans, allogeneic MSCs have several advantages compared
to autologous MSCs. Allogeneic MSCs are directly available
which makes them applicable for patients who need a
treatment without a delay. Another benefit of using allogeneic
MSCs is that the product can be easily standardized and,
therefore, provides more comparable results [62]. However,
a potential danger of allogeneic MSCs and in particular
donor-derived MSCs could be sensitization. Donor-MSCs
can trigger an antidonor immune response against the graft
and may lead to an increased risk for allograft rejection. In
animal models, allogeneic MSCs had the capacity to induce
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antidonor immune response via indirect antigen presentation
pathways and accelerated rejection of the graft [63]. Although
the immunogenicity of allogeneic MSCs needs further study
to prove safety in clinical trials, a recent clinical pilot
study with donor-MSCs showed that it was safe to reduce
the conventional Tacrolimus dose in living related kidney
transplant recipients. Unfortunately, anti-human leukocyte
antigen (HLA) specific antibodies were not obtained in this
study [15].

Taken together, clinical trials with MSCs have to deal
with a lot of safety aspects, given the significant challenges
in processing MSCs. In addition, since transplant recipients
have already an increased risk of (opportunistic) infections
and malignancies due to the concomitant immunotherapy,
it is very difficult to determine the additional risk of MSC
infusions [51]. The key requirements in those early phase
studies, therefore, include MSCs culturing with accurate
manufacturing standards, sharing scientific expertise and
early clinical data, monitoring study by an independent
expert panel, and closely monitoring patient for a longer
period of time.

4. Measuring Efficacy in Clinical
Trials with MSCs

Since patient and kidney survival have markedly improved,
and acute rejection rates have declined, these endpoints are
nowadays difficult to use in the clinical setting. For example,
to assess biopsy proven acute rejection (BPAR) rates as
primary objective, sample size calculations indicate that at
least 320 patients are necessary for a prospective randomized
controlled trial to detect a reduction of 50% in rejection
rate (assuming a rejection rate of 20% in the control group)
with two-tailed significance of 0.05 and 80% power (chi-
quadrate test). The production of MSCs is labor-intensive
and costly, and such a design would be a great, if not almost
impossible, challenge.Therefore, surrogate endpoint markers
are usedwhich can predict BPARand graft survival, including
histological findings, measurement of renal function, and
immunological and cardiovascular markers depending on
the design of the trial [19, 20]. According to the indication
of MSC therapy the focus of the various endpoints might
differ. For example, when assessing IRI, short-term endpoints
such as renal function and BPAR will provide the most
insight in efficacy. On the other hand, when assessing chronic
allograft injury, the endpoints will be more focused on long-
term outcomes and will include patient and graft survival,
histology, and renal function. Other endpoints, including
immune monitoring and biomarker studies, will apply for all
studies, although the focus on the markers chosen may vary
between trials. Therefore, it is of importance to establish the
rationale first, and then the most relevant efficacy endpoints
should be determined accordingly.

4.1. Histopathological Evaluation of Renal Biopsies after MSC
Treatment. Since MSCs have anti-inflammatory and remod-
eling properties both in vitro and in vivo endpoints focusing
on these processes are of paramount importance. Therefore,

tissue analysis should include quantification of fibrosis and
of inflammatory processes in the graft [2, 64, 65]. Pathologic
evaluation of IF/TA is central in assessing the severity of
chronic injury and it has been suggested that early histologi-
cal detection of IF/TA may be a surrogate marker for the risk
of graft failure [66]. In humans, a widely used histological
scoring system is the Banff ’07, which has grown to be the
standard setting for pathologist to evaluate renal transplant
biopsies.The Banff scoring system is updated on regular basis
in response to emerging data and technologies and discussed
by several pathologist, clinicians, and scientists. However, the
Banff has also some limitations; the precise quantification
of interstitial fibrosis is difficult with the Banff since the
score is semiquantitative and studies showed that there
might be a wide interobserver variability [67–69]. Another
surrogate quantitative marker for the degree of fibrosis is
computerized image analysis of fractional interstitial fibrosis
of Sirius red stained biopsies. Sirius red staining is specific for
collagen types I and III, which represent 80% and 15–20%,
respectively, of the total collagen synthesized by fibroblasts
[70]. Encarnacion et al., examined Sirius red stained tissue
of 49 renal transplant recipients with established chronic
allograft nephropathy and demonstrated that it significantly
correlated with GFR measured by iothalamate clearance.
Furthermore, several studies have indicated that Sirius red
staining is an accurate and reproducible method to measure
the degree of fibrosis [70, 72–74].

4.2. Renal Function. Renal function is used in the follow-up
to detect graft dysfunction and to evaluate treatment. Inmost
studies, renal function is estimated by serumcreatinine levels.
An analysis of more than 100.000 renal transplant recipients
showed that creatinine values at 6 months and 1-year were
correlated with long-term graft survival [75]. However, a
major disadvantage of serum creatinine is that it is dependent
on age, body weight, race, and sex. In absence of a renal
biopsy, measured glomerular filtration rate (GFR) provides
the most accurate analysis of renal function. In clinical
practice, GFR can be estimated using different formulae,
for example, MDRD (modification of diet in renal disease),
CKD-EPI, and Cockcroft-Gault, or measured with 24-hour
urine collection or radiological evaluation. The estimated
GFR equations methods have been shown to improve the
accuracy in the prediction renal function compared to serum
creatinine alone. In a systematic review by Shaffi et al. it
was shown that the CKD-EPI and MDRD equations are
most accurate available equations in solid organ transplant
recipients [76].

GFR can also be measured using 24-hour urinary crea-
tinine values. Urine collection is a relatively precise method;
however, it requires accurate collection of 24-hour urine for
the patients. Another method to measure the GFR is by
radiological evaluation with inulin, iothalamate, or iohexol.
Those substances are freely filtered by the glomerulus and is
neither secreted nor reabsorbed by the renal tubule. Of these,
inulin clearance is the historical gold standard; however,
this technique is intensive and its usefulness in clinical
practice is limited. Iohexol, a nonradiolabeled contrast agent,
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is also currently used as a measure of GFR by calculating its
plasma clearance after intravenous bolus injection. Iohexol
clearance is a good alternative to inulin and showed a high
degree of reproducibility over a wide range of renal function
[77].

In renal transplant recipients, however, the performance
of the GFR equation is suboptimal and it seems that tubular
dysfunction contributes to this disagreement in measured
and estimated GFR [78]. The greater the disturbed tubular
function, the greater the difference between measured GFR
and estimated GFR [79]. So the best method to assess renal
function in renal transplant recipients remains by measuring
GFR instead of estimating, especially in patients with tubular
dysfunction. In trials with MSCs the determination of the
renal function is of importance for both follow-up of renal
function and assessing safety of the MSCs.

4.3. Biomarkers and Immune Monitoring Strategies. There
is a critical need for biomarkers, which can early iden-
tify the diagnosis and the treatment response, and which
can predict the outcome of (surrogate) endpoints in renal
transplantation. A biomarker is defined as any objectively
measurable parameter used to quantify a normal biological
or pathological process. Intensive research has been done
studying several biomarkers in kidney injury, including
neutrophil gelatinase-associated lipocalin (NGAL), kidney
injury molecule-1 (KIM-1), interleukin-18, and liver-type
fatty acid-binding protein (L-FABP). Of these markers KIM-
1 is of particular interest since KIM-1 is one of the best-
characterized biomarkers in renal disease and transplantation
[80, 81]. Moreover, KIM-1 is a marker of proximal tubular
injury and it has been shown to promote apoptotic and
necrotic cell clearance and to play an important role in
renal recovery and tubular regeneration [82]. Upon ischemic
injury, KIM-1 is upregulated and shed into the urine and
extracellular space. Two to three days after injury a peak
concentration is seen, congruent with the timing of repair
[83, 84]. In the setting of MSC therapy, Franquesa et al.
studied in a rat model the long-term beneficial effect of MSC
injection in chronic allograft nephropathy and measured
gene expression of KIM-1. A decreased expression of KIM-1
was found, indicating an injury blockage by theMSC therapy
[47].

In addition to KIM-1, genomic and proteomic platforms
have provided various promising new biomarkers during the
last few years. A strong focus on development of biomarkers
that can monitor safety, immune modulation, and regener-
ation should be the aim in MSC based trials. However, it is
of importance to realize that there is no routine application
of any of the biomarkers markers in clinical transplantation
yet. In addition, the validation is still insufficient, probably
due to the heterogeneity of the patients with kidney injury,
the underlying etiologies and treatment strategies, and the
patient’s comorbidities. In addition, kidney injury is not
a single disease entity but a multifactorial process [85].
Therefore, a single biomarker that reflects physiological and
pathophysiological processes in the injured kidney has been
proven to be a difficult quest.

Immune monitoring by flow cytometry is crucial in
the evaluation of novel therapies in renal transplantation.
Recently, the One study consortium has developed an
immune monitoring strategy to compare the efficacy of
different cell therapies, including procedures for whole blood
leukocyte subset profiling by flow cytometry. This is a
standardized method to monitor patients in clinical trials
and facilitates fair and meaningful comparisons between
trials, particularly trials of novel therapies, such as MSC
therapy [86].They developed 6 panels to analyze the immune
response: panel 01 includes the general immune status; panel
02, theT cell subsets and the𝛼𝛽+T cells and 𝛾𝛿+T cells; panel
03, the T cell activation; panel 04, the T cell memory and
regulatory T cells; panel 05, the B cell subsets; and panel 06,
the dendritic cell subsets. Using the standardized strategy of
leukocyte profiling as proposed by the One study consortium
to identify changes in leukocyte subsets will make it feasible
to detect the effects of MSC therapies within and between
multicenter trials and also between different clinical trials.
In addition, functional assays, such as the mixed lymphocyte
reaction (MLR) and measurements of different cytokines,
should be performed to analyze donor-specific lymphocyte
proliferation after MSC treatment.

4.4. Measuring Cardiovascular Endpoints. Cardiovascular
disease is a major cause of morbidity and mortality after
renal transplantation. Since the risk of graft failure especially
declined, measuring cardiovascular mortality and morbidity
is becoming increasingly relevant.

Compared to the general population, patients with
chronic kidney disease have a higher cardiovascular risk [87].
Previous studies have shown that there is an independent
and graded association between a reduced estimated GFR
and the risk of cardiovascular events [88]. This increased
cardiovascular risk is partly due to the high prevalence of
traditional risk factors, such as hypertension and diabetes.
The association of kidney functionwith cardiovascular risk is,
however, also independent of these traditional cardiovascular
risk factors [87].

In renal transplant recipients cardiac disease is the cause
of death for 18–30% as shown in registry data [89, 90]. Renal
transplant recipients have a high prevalence of traditional
cardiovascular risk factors including diabetes, hypertension,
dyslipidemia, and cardiovascular disease at the time of trans-
plantation. Following transplantation immunosuppressive
therapy such as steroids and calcineurin inhibitor therapy
may further aggravate the existing risk factors or promote
the development of new risk factors [91–93]. In addition,
there are specific transplant-related risk factors such as acute
rejection, delayed graft function, and poor kidney allograft
function which further contribute to an increased risk for
cardiovascular events [94–98].

Of interest, MSCs have also been used for several cardio-
vascular indications. As shown in various animalmodels with
a myocardial infarction MSCs can reduce or reverse fibrosis
and contribute to cardiac repair [99–105]. Also in heart
allograft models, MSCs were beneficial and resulted in long-
term allograft acceptance [106, 107]. Currently, in humans,
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Figure 1: Desired objectives in clinical studies with MSCs in renal transplantation. Preclinical studies with MSC in the transplant setting
start with small animals to investigate safety, efficacy, and mechanisms of actions. Then studies move on to prove the concept in humanized
animals and larger animals. Human phase I studies address safety and feasibility in a low number of patients and determine the direction of
further research. Phase II studies focus on both safety and efficacy parameters, which include patient and graft survival, BPAR, renal function,
histology, and cardiovascular disease. Surrogate markers, such as immune monitoring and functional immune assays, are used to determine
mechanisms of action. BPAR: biopsy proven acute rejection.

many ongoing trials investigate MSCs for cardiovascular
disease and therapeutic beneficial effects have been suggested
[108–110]. In renal transplantation the administration of
MSCs might also have an indirect effect on cardiac function
by decreasing the side effects of the currently used immuno-
suppressive drugs and improving renal function.

5. Current Clinical Status of MSCs in
Renal Transplantation

Numerous clinical trials with MSCs for various indications
have been published so far, and different phases I and II
trials are underway (Tables 1 and 2). Most clinical studies
in renal recipients have focused so far primarily on safety
and feasibility endpoints [12–17]. Safety in the different trials
was defined as MSC infusion toxicity and/or adverse events
related toMSCs with a follow-up period until 12 months after
transplantation. Although the primary endpoints mainly
focused on safety, the different studies have also assessed
endpoints that provided insights into the mechanisms of
actions of MSCs, as shown in Figure 1.

Different studies have focused on the role of autologous
MSCs in the induction phase. MSC infusion was safe and
clinically feasible [12, 13, 17, 18], although timing of the
infusion seemed to be of major importance. In a pilot study
by Perico et al. safety and clinical feasibility of autologous

MSCs were tested in 2 kidney transplant recipients. MSC
infusion was shown to be feasible, allowing enlarging of
regulatory T cells in the peripheral blood, while restricting
the memory CD8+ T cell expansion [12]. However, both
patients given autologous MSCs after transplantation devel-
oped renal insufficiency, whichwas not observedwhenMSCs
were administered before transplantation [13].

In our phase 1 clinical study, safety and feasibility of autol-
ogous MSC therapy was studied in patients with subclinical
rejection or an increase in IF/TA in their renal biopsy at
24 weeks after renal transplantation (compared to the renal
biopsy at 4 weeks). In total 6 of the 15 patients received MSC
treatment, since not all patients met the inclusion criteria
[14]. MSCs from patients with end-stage renal disease had
similar phenotypical and functional characteristics compared
to MSCs from healthy controls, as also reported for adipose
tissue derived MSCs [111–113]. The MSC infusion was well
tolerated and therewere no adverse events related to the treat-
ment itself. In addition, the initial results suggested immune
suppression after MSC therapy. All patients that received
MSCs demonstrated a profound reduction in proliferation of
patient peripheral bloodmononuclear cells (PBMC) 12 weeks
after MSC infusion upon stimulation with donor specific
PBMCs, while the response to third-party PBMCs was more
variable. In addition, three patients developed opportunistic
viral infections (2 CMV, 1 BK nephropathy), which might
be related to the MSC treatment. In 2 patients with allograft
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rejection, there was a clinical indication to do a third biopsy.
In both patients the infiltrate had disappeared and there were
no signs of fibrosis after the MSC infusion [14].

In a recent clinical pilot study by Peng et al. allogeneic
donor-derived MSCs were administered in 6 renal recipients
for the first time. MSC infusion combined with low-dose
Tacrolimus was safe and prevented acute rejection after renal
transplantation [15]. Lee et al. also studied the safety and
feasibility of allogeneic donor-MSCs injected directly into
the bone marrow of the recipient’s right iliac bone in 7
HLA-mismatched kidney transplant recipients. Two patients
suffered from an acute cellular rejection, and one patient had
an antibody-mediated rejection 9 days after transplantation
[16]. In a recently registered safety study from our center
renal transplant recipients will receive two doses of allogeneic
third-party MSCs 6 months after transplantation (Clini-
calTrials.gov identifier: NCT02387151). Primary objective is
to evaluate whether allogeneic MSCs are safe by assessing
BPAR and graft loss after MSC treatment. In addition, the
development of de novo donor-specific antibodies (DSA)will
be monitored. In this protocol specific criteria to minimize
the risk of sensitization will be used, which includes no HLA
sharing with the HLA mismatches of the kidney donor and
no antibodies to the MSCs.

In a larger study by Tan et al., endpoints were pri-
marily focused on efficacy. Living-related kidney transplant
recipients (𝑛 = 159) were randomized to receive either
MSC induction therapy with standard dose Tacrolimus,MSC
induction with low-dose Tacrolimus, or interleukin-2 (IL-
2) receptor blocker induction therapy with standard-dose
Tacrolimus [18]. The primary outcome was the incidence
of BPAR and renal function (MDRD) within the first year.
BPAR with MSC induction was 8% compared to a relatively
high acute rejection rate of 20% with IL-2 receptor blocker
induction therapy. Although, with MSC induction, more late
acute rejection episodes from 6 to 12 months were seen, up
to 17%. There was no difference in BPAR between the low-
dose and standard-dose Tacrolimus groups. In patients with
MSCs induction a faster renal function recovery during the
first month was seen compared to the standard Tacrolimus
group. However, no improved renal function in the long-
term was found. Secondary endpoints in this study included
patient and graft survival and adverse events. Both patient
and graft survival were comparable; however, the combined
analysis of MSC-treated groups revealed significant decrease
in opportunistic infections compared to the control group, as
described previously.

In our study, which is currently running, autologous bone
marrow MSCs will be used in combination with Everolimus
with the aim of preserving renal structure and function
in renal recipients. We hypothesize that the combination
of MSCs with Everolimus might be an optimal strategy to
facilitate early Tacrolimus withdrawal and reduce fibrosis
compared to standard Tacrolimus dose [11]. Mammalian
target of rapamycin (mTOR) inhibitors, such as Everolimus,
have several benefits beside their immunosuppressive effects,
which supports their clinical applicability. First, it has been
shown that mTOR inhibitors reduce the incidence of CMV

infections [114]. In addition, mTOR inhibitors exert antipro-
liferative effects and reduce the tumor burden [115–117].
In patients with only a single cutaneous squamous cell
especially carcinoma conversion to mTOR inhibitor reduced
the risk for development of future skin malignancies [116,
118, 119]. The primary endpoint in our study is to compare
fibrosis by quantitative Sirius red scoring of MSC-treated
and untreated groups at 6 months compared to 4 weeks
after transplantation. Secondary endpoints focus on adverse
events (including infections), BPAR and graft loss, renal
function measured by iohexol, and progression of subclinical
cardiovascular disease. In addition, immune monitoring will
be performed according to the methods as standardized and
validated in the One study [11, 86].

6. Summary

MSCs could potentially play an important role after renal
transplantation in the prevention of acute rejection episodes,
in the induction of tolerance, and in the prevention of IF/TA.
Several animal models have investigated MSCs for those
different indications and provided insights in the role and
function of MSCs. In humans, the first phase I trials have
been performedmainly with autologous bonemarrowMSCs,
demonstrating safety and feasibility. In addition, results
indicated efficacy in preventing acute rejection, inducing
long-term stable graft function and reducing tubulitis and
IF/TA in small groups of patients. Currently, the first phase
II trials with MSCs are recruiting patients, with an important
focus on the minimization of immunosuppressive drugs in
order to reduce fibrosis and to prolong allograft survival [10,
11]. In addition, studies with (matched) allogeneic MSCs are
planned, which offer the advantage of availability for clinical
use without the delay required for expansion.

One of the most important aspects in clinical trials is
the definition of accurate endpoints. Patient safety is the
cornerstone in each clinical trial. Strict follow-up of the
possible risks of the therapy is needed. Although in current
clinical trials nomajor side effects have been reported, longer
follow-up of the MSC-treated patients is necessary in order
to identify the possible long-term effects. To compare the
effectiveness ofMSCs well defined endpoints and appropriate
controls are needed. Standardization on the different efficacy
endpoints that are measured can cohere the different studies
and facilitate fair andmeaningful comparisons between trials.
In this perspective, the standardized and validated methods
for immunemonitoring, as proposed by theOne consortium,
are a nice example. In general, sharing of procedures and
protocols for safety and efficacy endpoints will allow for
more reliable comparisons between the different clinical
trials.
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