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Abstract

We have seen important strides in our understanding of mechanisms underlying stroke recovery, yet effective
translational links between basic and applied sciences, as well as from big data to individualized therapies, are needed
to truly develop a cure for stroke. We present such an approach using The Virtual Brain (TVB), a neuroinformatics
platform that uses empirical neuroimaging data to create dynamic models of an individual’s human brain; specifically,
we simulate fMRI signals by modeling parameters associated with brain dynamics after stroke.

In 20 individuals with stroke and 11 controls, we obtained rest fMRI, T1w, and diffusion tensor imaging (DTI) data.
Motor performance was assessed pre-therapy, post-therapy, and 6–12 months post-therapy. Based on individual
structural connectomes derived from DTI, the following steps were performed in the TVB platform: (1) optimization of
local and global parameters (conduction velocity, global coupling); (2) simulation of BOLD signal using optimized
parameter values; (3) validation of simulated time series by comparing frequency, amplitude, and phase of the
simulated signal with empirical time series; and (4) multivariate linear regression of model parameters with clinical
phenotype. Compared with controls, individuals with stroke demonstrated a consistent reduction in conduction
velocity, increased local dynamics, and reduced local inhibitory coupling. A negative relationship between local
excitation and motor recovery, and a positive correlation between local dynamics and motor recovery were seen.

TVB reveals a disrupted post-stroke system favoring excitation-over-inhibition and local-over-global dynamics,
consistent with existing mammal literature on stroke mechanisms. Our results point to the potential of TVB to
determine individualized biomarkers of stroke recovery.
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Significance Statement

The development of schemes to acquire neuroimaging big data is fostering a greater understanding of brain
function. Yet we are lacking quantitative tools to translate these insights to the individual level, particularly
associated with neurological disease. We address this challenge using the neuroinformatics platform, The
Virtual Brain, to model individualized brain activity. This approach enables the linkage of macroscopic brain
dynamics with mesoscopic biophysical parameters, wherein we demonstrate the capacity of large-scale
brain models to track and predict long-term recovery after stroke. Our results establish the basis for a
deliberate integration of computational biology and neuroscience into clinical approaches for elucidating
cellular mechanisms of disease, opening new venues for the development of individualized therapeutic
interventions.
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Introduction
Previous research has provided key insights into the

disease process in stroke. Studies in mammals have un-
covered basic mechanisms of ischemic injury, inflamma-
tory responses, and cellular recovery (Carmichael, 2012;
Nudo, 2013). In humans, researchers have suggested
predictive imaging biomarkers for disease progression
and recovery, mapped associated changes in brain net-
works, and developed new rehabilitative therapies (Reiss
et al., 2012). Despite this, stroke remains a major source
of disability in the United States, with �6.5 million people
living with stroke, with some level of hemiparesis present
in �50% (Go et al., 2014). This is neither the fault of
mammal nor human studies, as both are constrained by
their respective study populations. Studies in mammals
are well controlled yet homogeneous, limiting their trans-
lational abilities. Human studies reflect the population at
hand, yet often rely on indirect measures, obscuring the
full picture. Although both share a common goal of curing
stroke via the repair and reorganization of the injured
brain, what is missing is a translational bridge to effec-
tively span the divide between basic mechanisms and
dynamic human brain systems.

At the same time, the neuroscience community is im-
mersed in collecting large datasets to provide greater
understanding of brain function and dysfunction. Such
initiatives span normal function (Human Connectome
Project), development (NIH Pediatric Database), and brain
disorders, such as Alzheimer’s disease (ADNI) and mental
illness (Research Domain Criteria Project). Although these
initiatives provide the necessary empirical foundation,
quantitative tools are missing to integrate these multiple
datasets to “reconstruct” the brain, and provide the link
between these data and those from a single person.

Over the last 6 years, a neuroinformatics platform has
been developed: The Virtual Brain (TVB) (Sanz Leon et al.,
2013). The defining feature of TVB is that it generates
personalized functional neuroimaging data based on in-
dividual structural connectome data to create personal-
ized virtual brains. These models are specific to each
individual person, and contain the connectivity between

parts of the brain and the dynamics of local neural pop-
ulations. TVB uses structural MRI data to create the cus-
tom brain surface, diffusion-weighted MRI data to infer
the anatomical connections between brain areas, and
then functional MRI data as the target to modify the
parameters of the model to reproduce the observed func-
tional data. The neuroinformatics architecture of TVB
houses a library of models, which catalogues the biophys-
ical parameters that produce different empirical brain
states (Ritter et al., 2013). Global biophysical parameters
represent biological mechanisms governing dynamics be-
tween brain regions, whereas the local biophysical pa-
rameters describe the properties of small populations of
neurons integrating dynamics at the local mesoscopic
level. That is, modeling in TVB comprises multiple scales
of brain dynamics that are invisible to brain imaging de-
vices, and therefore TVB acts as a “computational micro-
scope”, allowing the inference of internal states and
processes of the system.

TVB thus offers a novel platform to formulate biologi-
cally interpretable hypotheses on the effects of stroke and
its recovery based on biophysical mechanisms governing
brain dynamics. Beyond the direct clinical implications of
network dysfunction in stroke, these insights can contrib-
ute a first step to the understanding of fundamental mech-
anisms of the brain’s structure–function relationship. TVB
has been established and applied to normative datasets
(Deco et al., 2012) and for learning and plasticity (Roy
et al., 2014), yet a proof of concept needs to be estab-
lished based on pathological states.

The objective of the present study using the TVB plat-
form was to determine changes in local and global bio-
physical parameters to better understand individualized
brain dynamics after stroke. In this approach, the model
parameters act as a means to assess brain health, anal-
ogous to blood samples assessing physical health, and
hence, parameter changes could ideally be used as po-
tential biomarkers of stroke and/or stroke recovery. So
far, such biomarkers have mostly focused on stable ar-
chitectures, from behavior to fine anatomical and func-
tional levels (Burke and Cramer, 2013). In contrast, our
aim is to create a synergistic amalgamation of mathemat-
ical models with neuroimaging, where the biomarker de-
rives from the dynamical model itself.

Methods
Subjects

Twenty volunteers with chronic stroke (ages 23–74, 8
females) in the middle cerebral artery (MCA) territory and
11 age-matched controls were included in the study. This
study and all procedures for recruitment and consent
were approved by the Institutional Review Board of the
University of Chicago and the University of California
Irvine Medical School. Demographic details and stroke
characteristics of our cohort can be found in Table 1.

Motor performance was assessed with the following:
the Functional Ability Scale of the Wolf Motor Function
Test (WMFT), Nine-hole peg test, the Fugl–Meyer upper
arm test, and the Motor Activity Log (MAL-14). These
assessments were collected at baseline (pre-therapy), af-
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ter 1 month of intensive hand therapy (post-therapy) and
6–12 months after therapy (maintenance).

Brain imaging
Imaging data were acquired on a 3 Tesla Philips

Achieva scanner using the following sequences:
(1) High-resolution anatomical images were acquired

with a 3D magnetization-prepared rapid acquisition gra-
dient echo (MP-RAGE) sequence: FOV� 250 � 250, res-
olution�1 � 1�1 mm, SENSE reduction factor �1.5, TR/
TE�7.4/3.4 ms, flip angle�8, sagittal orientation, number
of slices�301 covering the whole brain.

(2) Diffusion tensor imaging (DTI) was acquired with the
following sequence: FOV�224 � 224, TR/TE�13030/55, 72
slices, slice thickness� 2 mm, resolution�0.875 � 0.875 � 2,
2 mm post-processing iso-voxel with b�1000 s/mm2 (and
b�0), 32 diffusion directions.

(3) Functional imaging acquisition at rest covering the
whole brain (37 slices) was acquired using single-shot
echo-planar MR (EPI) with slice thickness � 4.0 mm,
FOV� 230 � 230, voxel size � 2.8� 2.8 mm, TR/TE�
2000/20 ms, duration� 5 min.

Virtual brain transplantation
Because of mechanical deformation consequent to

large cortical strokes, the anatomical parcellation on T1w
images using semiautomated methods is very difficult to
achieve. Hence, a “virtual brain transplant” process was
performed in accordance with a previous approach
(Solodkin et al., 2010). This method replaces the cortical
lesion with the homologous image from the contralesional
hemisphere from the same subject. With this, brain par-
cellation is possible using semiautomatized software. The
process consisted of the following steps:

(1) Lesion segmentation by hand. (2) Using the AFNI
3dcalc function (Cox, 1996), the homologous region in the

nonlesioned hemisphere was dissected and transplanted
into the stroke region, effectively filling in the missing por-
tions of the brain. (3) Manual corrections were then done in
the interface between the native and transplanted T1-w
images by visually examining each voxel and making voxel
intensities uniform using AFNI’s 3dLocalStat and 3dcalc
commands. (4) The brain was then parcellated into 96 cor-
tical and subcortical regions. The original parcellation based
on a macaque template (Van Essen, 2004) was transformed
to the human MNI template via PALS (Van Essen, 2005). To
increase accuracy, the deformation process was carried out
using landmarks (based on CARET) and functional activation
patterns considered homologous between the two species
(Van Essen and Dierker, 2007).

Diffusion tensor imaging
Preprocessing of DTI data consisted of the following: (1)

motion correction using the FSL eddy current correction
(Leemans and Jones, 2009), (2) generation of a binary brain
mask from the b0 image and application of the mask to all
diffusion images using the Brain Extraction Tool from FSL
(Smith, 2002), (3) fitting of a diffusion tensor at each voxel
using FSL’s dtifit function, (4) nonlinear coregistration of T1
data to the MNI brain and coregistration of T1 images to their
respective DTI images producing an MNI to DTI transforma-
tion using ANTS (Avants et al., 2011), (5) white and gray
matter segmentation performed on the MNI-to-T1 atlas us-
ing FAST (Zhang et al., 2001), and (6) parcellation of the gray
matter into 96 regions as described above and registration
of these regions to the DTI using the T1-to-DTI transforma-
tion with a nearest neighbor interpolation.

Tractography and structural connectivity matrix
generation

Probabilistic tractography was performed to trace the
fiber bundles associated with pairs of cortical regions in

Table 1. Demographics and stroke characteristics of the stroke cohort

Subject Age Sex Handedness
Affected
hemisphere

Affected
hand

Stroke
location

Stroke
volume,mm3

1 41 F Right Right ND Cort 22495.0
2 54 F Right Left D Cort/subcort 49078.0
3 57 M Right Left D Cort/subcort 17411.0
4 57 M Right Left D Cort/subcort 38703.0
5 54 F Right Left D Subcort 27677.0
6 50 M Right Right ND Subcort 3570.0
7 23 M Right Left D Subcort 560.0
8 55 F Right Right ND Cort 6781.0
9 68 M Right Left D Subcort 1988.3
10 56 F Right Left D Subcort 6239.7
11 46 M Right Left D Subcort 325.0
12 56 F Left Right D Cort/subcort 60669.0
13 37 M Right Left D Cort/subcort 83406.2
14 62 M Right Left D Subcort 22154.8
15 57 M Right Right ND Cort/subcort 25392.0
16 66 M Right Left ND Cort/subcort 19927.0
17 61 M Right Left D Subcort 978.0
18 74 M Right Left D Cort/subcort 63642.0
19 67 F Right Right ND Subcort 588.0
20 74 F Right Left D Cort/subcort 44892.0

D, Dominant hemisphere; ND, non-dominant hemisphere; Cort, cortical, Subcort, subcortical.
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the MNI space, which were defined as edges in the net-
work (Ritter et al., 2013; Zalesky and Fornito, 2009).Two
connectivity measures were extracted: (1) capacities, de-
picting the maximum rate of transmission of information
through edges, were calculated using the number of
streamlines at the minimum cross-sectional area of an
edge (Zalesky and Fornito, 2009); and (2) distances, de-
fined by the lengths of each edge, were calculated by
averaging the lengths of all streamlines in an edge. These
measures were used to generate two 96 � 96 structural
connectivity matrices. Quality assurance to reduce false-
positives was performed on each structural connectivity
matrix by a trained neuroanatomist (A.S.).

Resting state fMRI preprocessing
Preprocessing was done in AFNI (Cox, 1996) and in-

cluded the following steps: motion correction of functional
and anatomical datasets (Cox and Jesmanowicz, 1999),
3D spatial registration to a reference acquisition from the
rsfMRI run, registration of functional images to the T1-w
volume, de-spiking and mean normalization of the time
series, motion correction (�1 mm; Johnstone et al., 2006)
and regression of CSF and white matter signals to remove
slow-wave components (eg, physiological noise; Lund
et al., 2006).

Resting state fMRI postprocessing
Average time series were extracted for each of 96 MNI

regions. For each subject, a 96 � 96 functional connec-
tivity matrix was generated by calculating the pairwise
correlation of the time series for each region (Ritter et al.,
2013) using the “corr” function in MATLAB.

Modeling in TVB
The Virtual Brain (TVB v1.08; Fig. 1) was used for all

simulations (Sanz Leon et al., 2013) where the principal
empirical input to the platform is the structural connectiv-
ity matrix derived from each individual subject’s tractog-
raphy. Based on this input, TVB simulates field potentials
by integrating global dynamics with a local (mesoscopic)
model that determines the dynamics within brain regions.
Following, BOLD signals are derived from the generated
field potentials. In this work, we used the Stefanescu-Jirsa
3D (SJ3D; Fig. 2) local model, as the resulting mean field
model does not rely heavily on synaptic delays (Stefa-
nescu and Jirsa, 2008; Jirsa and Stefanescu, 2011; Sanz-
Leon et al., 2015), making it compatible with the poor time
resolution associated with BOLD signals. Specifically, the
SJ3D model is derived from populations of bursting neu-
rons and includes six states describing excitatory and
inhibitory dynamics via the inclusion of a variety of bio-
physical parameters defining the local mean fields (for a
list of the parameter values used in the present study see
Table 2; Hindmarsh and Rose, 1984; Stefanescu and
Jirsa, 2008).
The following sequential steps were performed for each
individual subject:

(1) Importing of a subject-specific connectivity matrix
into the TVB platform.

(2) Selection of the SJ3D local model.
(3) Parameter space estimation (exploration and fitting).

We sequentially performed systematic parameter space
explorations and fitting to determine the optimal values for
global and local parameters in all subjects. (1) Parameter
space exploration: we used heat maps of global variance

Figure 1. Simulation workflow in TVB. Graphic representation depicting the sequential steps of TVB modeling. A, Empirical inputs
(structural connectome) are generated from DTI tractography based on T1-w brain parcellation. B, Subsequent parameter exploration
at the global and local levels (w, Weights; cv, conduction velocity; c, global coupling). C, Once parameter values are obtained, the
BOLD signal is simulated. D, The efficacy of the simulation is calculated by correlating it to the empirical signals.
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(mean variance of time series across all brain regions) to
constrain the range of values for each model parameter
(Fig. 3). The range of values considered is assessed based
on those values with high global variance flanked by

bifurcation points (Breakspear and Jirsa, 2007). An addi-
tional advantage of this approach is that it is not only
pragmatic but it can also provide information on the de-
gree of variability and sensitivity that parameter values

Figure 2. Equations of the Stefanescu-Jirsa 3D model. A, Evolution equation implemented in TVB to simulate brain activity. The mean
field potential xi(t) of a region i at time t is dependent on the local dynamics f(xi(t)) provided by the Stefanescu-Jirsa-3D model, the
long-range structural connectivity w, which links regions i and j and is provided by the input of individual structural connectivity
matrices (weights), and noise ��t�. Time delays (�t) are distance dependent and are provided by the structural connectivity matrices
(lengths). All mathematical details of the model and its numerical implementation are provided by Sanz-Leon et al. (2015). B, Equations
comprising Stefanescu-Jirsa 3D. The first three equations (�, �, �) represent the excitatory subpopulation of neurons within a local
region, whereas the last three equations (�, �, �) represent the inhibitory subpopulation of neurons in that region. IE and II denote the
input current to the excitatory and inhibitory populations of each node, respectively. The first of each of the two sets of equations
accounts for neuron potentials. The second and third equations account for the transport of ions across the membrane through ion
channels. Note that the dynamics of these populations are dependent on the interactions between inhibitory and excitatory influences
(K12, K21, K11).

Table 2. State variables and parameters of the Stefanescu-Jirsa 3D model and corresponding range of values used in the
present study

Parameter Value Description
a, b, c, d 1, 3, 1, 5 Constants affecting faster ion channels
r 0.006 Constant affecting slower ion channels
s 4 Bursting strength of model
	 and 
 2.2, 0.3 Mean and dispersion of input current in each node
X0 �1.6 Leftmost equilibrium point of X
IE, II Derived from 	 and 
 Models excitability of each node and mode (IE for excitatory input, II for inhibitory input)
Global Coupling 0.01–1.0 Coupling scaling factor for connections between nodes
Conduction velocity 10–100 Scales delay for defined internode distances
�, � 4, 5 Corresponding values for IPs
K12,K21,K11 0.01–1.0 Models coupling between excitatory and inhibitory populations within nodes

Values used for the simulation included global coupling, conduction velocity, and K12, K21, and K11 optimized via parameter space explorations. Default val-
ues were used for all other variables.
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have onto the simulated signals. (2) Parameter fitting: the
final optimal value was subsequently obtained by assess-
ing the specific value for the parameters that resulted in
the best fit between the empirical and simulated signals
based on three metrics described below (Step 6). The
global parameters explored included conduction velocity
and global coupling and the local parameters included K12

(excitatory on inhibitory coupling), K21 (inhibitory on excit-
atory coupling), and K11 (excitatory on excitatory cou-
pling). The local parameters were chosen as they have the
strongest impact on the dynamics of the SJ3D model
(Stefanescu and Jirsa, 2008).

(4) Stochastic network simulation: based on the values
obtained in the parameter space exploration, we gener-
ated field potentials with the same duration (4 min) and
sampling rate (TR�2 s) as the empirical rsfMRI acquisi-
tion. The length of the simulated data was kept equal to
the length of the empirical data to minimize the influence
of variability over the course of the time series, as it is
becoming increasingly patent that values of functional
connectivity are not stable over time (Hutchison et al.,
2013). White noise with Gaussian amplitude (mean � 0,
SD � 1) was added to each node. Numerical integration of
the system was performed using stochastic Heun’s
method (Mannella 2002), with an integration step size of
0.0122 ms.

(5) The BOLD signals were derived from the field po-
tentials using a hemodynamic response function imple-
mented with a gamma kernel (Boynton et al., 1996; Sanz-
Leon et al., 2015).

(6) Assessing reliability of the simulated time series:
comparison between the empirical and simulated BOLD
time series was done in terms of amplitude, frequency,
and phase. Amplitude: we calculated the range of ampli-
tude by identifying the highest and lowest peaks present
in the time series across all regions. Frequency: fast

Fourier transforms of the raw and simulated time series
were obtained using MATLAB’s “fft” function with a sam-
pling frequency of 0.5 Hz, to determine the range, profile,
and peak frequencies (Ritter et al., 2013). Phase: this was
assessed by comparing the functional connectivity matri-
ces of the simulated and empirical time series. We aver-
aged all matrices from healthy controls to obtain a group
control matrix, and calculated the pairwise linear correla-
tion coefficient between the simulated functional connec-
tivity matrix for each individual to the group.

(7) Differences in parameter values between healthy
controls and stroke cases were evaluated with Wilcoxon
sum rank test corrected for multiple comparisons (Bon-
ferroni).

(8) Relationship with clinical phenotype. To determine
whether there was any relationship between TVB param-
eters and the clinical phenotype, multiple linear regression
was performed between model parameters (dependent
variables) and the following independent variables: motor
outcome measures (Fugl–Meyer, WMFT, 9-hole peg, and
MAL-14), patient demographics (age, sex, presence of
depression), and lesion characteristics (size, location,
time after stroke, side of stroke).

Results
Weights of structural connections after stroke
The weights of connections in the control group had a
mean (�SD) of 10.16 � 1.03, (range, 8.75–12.07), and in
the stroke cohort had a mean of 9.76 � 1.57 (range,
6.41–10.35; Fig. 4). Yet, there were no statistical differ-
ences in mean, distribution shape between the groups
(Kolmogorov–Smirnov test; pa � 0.42), or skewness (con-
trols � �0.083; stroke � �0.082; t test, p�0.35 and 0.29,
respectively).

Figure 3. Examples of global parameter space explorations in healthy controls and stroke. Two examples of heat graphs of
global variance (mean variance of the time series across all regions) used to narrow down the range of parameter values more
suitable for modeling in (A) a healthy control and (B) a stroke case. Global coupling is shown on the x-axis and conduction
velocity (m/s) on the y-axis. Colors indicate degree of global variance with hotter colors indicating higher values. White arrows
show the range of values considered for global coupling limited by bifurcation points (yellow). Black arrows point to the range
in conduction velocity considered in each case. Note the higher range of values associated with global coupling and lower for
conduction velocity in the stroke case.
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BOLD simulations generated with TVB correlated
with the empirical BOLD responses
The frequency spectrums of the simulated and the empir-
ical BOLD responses had similar ranges (0–0.25 Hz) and
mean peak (empirical � 0.05 � 0.035 Hz; simulated �
0.03 � 0.023 Hz; Fig. 5). Although the mean amplitudes
were similar (empirical � 8.15; simulated � 9.49), the
range of values was wider in the empirical signals (0.17–
87.43) than those found in the simulated BOLD (3.79–
22.64). The relative phases of the regions within simulated
and empirical time series were similar as assessed by the
mean correlation coefficient between their respective
functional connectivity matrices (mean � 0.27�0.02; pb �
0. 9e-12 Fisher Z-transformation). These validated simu-
lations provided us with specific parameter values at both
the global and the local levels associated with healthy
control subjects and after stroke.

Stroke was associated with reliable changes in
global and local parameters
Although qualitative in nature, the color-coded graphic
representation of the variance distribution done as part of
the parameter space exploration (Table 3; Fig. 3) provides
a glimpse into differences of combined values for the two
global parameters: global coupling (x-axis) and conduc-

tion velocity (y-axis) in healthy controls and in stroke
subjects, with warm colors representing higher variance.
These explorations demonstrated at this early stage of
analysis that the range of optimal parameter values (hot
colors) in controls had similar topology of the distribution
of variance, as well as concrete values. In contrast, stroke
cases displayed high variations in both topology and
values, where although some had similar distribution pat-
terns as the healthy controls, others had scattered, frag-
mented patterns. Similar observations were found with
respect to local parameters (Table 4).

Numerically, differences in parameter values between
healthy controls and the stroke cohort are as follows:

Global parameters
(1) Conduction velocity: the range of modeled conduction
velocities obtained via TVB in healthy controls ranged
from 45 to 90 m/s with a mean of 62 � 10 m/s. In contrast,
the conduction velocities in stroke subjects had a range
between 12 and 80 m/s with a mean of 46 � 21 m/s.
Comparison between the two groups with Wilcoxon rank
sum test (pc � 0.05) was marginally significant after cor-
rection for multiple comparisons.(2) Global coupling (res-
cale factor of incoming activity linking global with local
dynamics): in healthy controls, the mean was 0.053 �

Figure 4. Weights of structural connections in stroke and healthy controls. A, Structural connectivity matrices in a healthy control (left)
and one individual with stroke (right). Dark blue denotes absence of connections while hotter colors indicate stronger weights. B,
Frequency distribution of weight of connections in healthy controls (orange bars) and stroke (blue bars).
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0.009 (range, 0.044–0.047) and in cases with stroke the
mean was 0.061 � 0.016 (range, 0.04–0.09). Wilcoxon
sum rank test showed this difference was significant after
correction for multiple comparisons (pc � 0.013).

In addition, it is important to note that the trend in all
stroke cases where the values were different from those in
controls was consistent: that is, it presented always as a

decrease in conduction velocities (N � 12) and an in-
crease in global coupling (N � 14). The rest of the stroke
cases did not show differences with healthy controls.

Local parameters derived from the Stefanescu-Jirsa3D model
(1) K12 (coupling of excitatory over inhibitory populations
within brain regions): the values of K12 in controls had a

Figure 5. Comparison of simulated and empirical BOLD signals. A, Amplitude: example of a raw simulated (left) and empirical (right)
time series (TS). Amplitudes are indicated by the maxima and minima of the time series. B, Frequency: frequency distribution graphs
(FFT) of the simulated (left) and empirical (right) time series. Note that both empirical and simulated signals have the same range,
profiles, and peaks. C, Phase: functional connectivity (FC) matrix based on simulated time series (left) and the empirical group matrix
(right).
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mean of 0.49 � 0.338 (range, 0.12–0.55) and in stroke the
mean was 0.369 � 0.257 (range, 0.1–0.8). Statistical
comparison between the two groups resulted in pc �
0.17.

(2) K21 (coupling of inhibitory over excitatory popula-
tions): this variable (control mean � 0.804 � 0.17; range,
0.3–0.9) was significantly reduced in the stroke group
(mean � 0.674 � 0.302; range, 0.1–0.9; pc � 0.01).

(3) K11 (influence between excitatory populations):
the values of K11 in controls had a mean of 0.833 �
0.142 (range, 0.6 – 0.95) and in stroke cases had a mean
of 0.613 � 0.301 (range, 0.1– 0.99). Comparison be-
tween the two groups with Wilcoxon sum rank test gave
pc � 0.1.

In summary, compared to values in healthy controls,
there was a higher global coupling and a decrease of local
inhibitory dynamics represented by the local parameter
K21 along with a trend toward a reduction of conduction
velocity.

Global and local parameters were correlated with
clinical phenotype
Multiple linear regression analysis to establish a relation-
ship between modeling parameters and some clinical

metrics did not show a correlation. The following clinical
elements were considered in this preliminary assessment:
stroke phenotype (size, location, time after stroke, side of
stroke), depression, patient demographics (age, sex), and
severity of impairment.

Next, we assessed the relationship between parameter
values with recovery from stroke immediately after ther-
apy and after 1 year (maintenance) using a multiple linear
regression. This analysis showed a negative relationship
between K12 and Fugl–Meyer scores both post-therapy (t
��2.386; pd �0.038) and at maintenance 1 year later (t
��3.824; pd �0.005). In addition, global coupling had a
positive relationship with the Wolf Motor Function Test (t�
2.461; pd �0.039) at maintenance. Thus, these two pa-
rameters derived from modeling based on pre-therapy
conditions were related to long-term motor gains rather
than the physical features of the stroke or the patient’s
demographics (Fig. 6).

Discussion
The main result of the study showed that the simulation of
BOLD signals using TVB in stroke enables the identifica-
tion of key changes associated with large-scale neural
dynamics in individual patients. Overall, our results

Table 3. Summary of long-range and local parameters used in TVB to simulate BOLD time series in healthy controls and
individuals with stroke

Group Variable Range Mean SD
Wilcoxon
rank sum, p

Control Global variables:
Global coupling 0.044–0.047 0.053 0.009
Conduction velocity 45–90 61.9 9.9
Model variables:
K12 0.12–0.55 0.49 0.338
K21 0.3–0.9 0.804 0.17
K11 0.6–0.95 0.833 0.142

Stroke Global variables:
Global coupling 0.04–0.09 0.061 0.016 0.013
Conduction velocity 12–80 46 21 0.05
Model variables:
K12 0.1–0.8 0.369 0.257 0.17
K21 0.1–0.9 0.674 0.302 0.01
K11 0.1–0.99 0.613 0.301 0.1

Table 4. Statistical table

Comparison of interest Data structure Type of test p
a Weights of connections: stroke vs control Normal �Kolmogorov–Smirnov test 0.42
b Pearson’s correlation coefficients: simulated vs

empirical functional connectivity matrices
Normal after

Z-transformation
t test 0.9e-12

c TVB parameters: stroke vs control Control: non-normal
Stroke: normal

Wilcoxon rank sum test Conduction Velocity: 0.05
Global Coupling: 0.013
K12: 0.17
K21: 0.01
K11: 0.1

d Regression: TVB parameters with subject
demographics, lesion characteristics
and recovery

Normal Multiple linear regression Post-therapy:
K12, Fugl–Meyer: 0.038
Maintenance:
K12, Fugl–Meyer: 0.005
Global coupling, WMFT: 0.039

p, Probability resulting from the Wilcoxon sum rank test comparing parameter values between the two groups.
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showed that, compared to healthy controls, individuals
with stroke have a consistent reduction in conduction
velocity and a relative increase in local-over-global brain
dynamics. Further, the identified parameters were related
to functional outcomes such that these parameters pre-
dicted long-term recovery after therapy. Together, these
results not only back TVB as an effective tool in identifying
dynamic brain changes in stroke spanning multiple
scales, but also specifically identify potential predictors of
recovery in stroke at the individual level. This study sug-
gests that TVB may be a powerful platform for the appli-
cation of large-scale modeling in understanding brain
mechanisms at an individual subject level.

Stroke is related to consistent global and local
parameter changes
The successful simulation of empirical rfMRI data in this
study facilitated a particularly salient finding; the dynamic
model derived from stroke subjects had a significant de-
crease in the local parameter K21 and a consistent global
coupling increase, accompanied by a trend in decreased
conduction velocity. Two aspects of these results are of
special interest: the first relates to the nature of the sta-
tistical outcomes and the second to the biological inter-
pretation of these changes.

(1) Imaging-derived metrics in humans in general have
high variance (Mueller et al., 2013); consequently, analyt-
ical measures have been developed to minimize it (Fischl
et al., 1999). Further, this variance is amplified by stroke
(Rehme et al., 2012), and has compelled researchers to
stratify patients with precise criteria (Cramer, 2010), re-
sulting in low sample sizes and high inter-study variability.
In contrast, even when we used minimal exclusion criteria
when selecting participants, changes seen after stroke
were highly consistent, where all the cases that had a
parameter change with respect to controls had the same
directionality and relatively low variance. Given the high
level of subject variability (as expected for a cohort includ-
ing a large range of clinical phenotypes), we find this
consistency somewhat surprising. However, we are not
suggesting high reliability of our modeling, as the defini-
tive answer will result from expanding the assessment to

a larger population where the predictive value of the
parameter changes can be formally assessed.

(2) Stroke survivors exhibited a significant decrease in
K21, a parameter at the mesoscopic level that represents
the influence of inhibitory on excitatory neuronal popula-
tions. A decrease in K21 thus indicates local disinhibition.
These results are highly consistent with existing data on
the basic mechanisms of stroke at the cellular level. For
example, rodent models of MCA stroke show an imbal-
ance in the density of excitatory and inhibitory receptors
in tissue surrounding the lesion (Schiene et al., 1996).
Specifically, they suggest a decrease in gamma-
aminobutyric acid receptor expression in widespread ip-
silesional cortical areas and a concomitant increase of
N-methyl-D-aspartate receptor expression in the contral-
esional hemisphere.

In the context of stroke in humans, hyperexcitability has
been described in two experimental paradigms:

(1) Studies using TMS to test cortical excitability after
stroke have shown a decrease in the current needed to
elicit motor evoked potentials and an increase in their
amplitude (Hallett, 2007) along with an expansion in the
area producing them (Liepert et al., 2000) suggesting
disinhibition in motor cortices (Shimizu, 2002). Further-
more, decreasing the hyperexcitability via repetitive low-
frequency stimulation (Takeuchi et al., 2005) along with a
reduction of the TMS stimulation area (Liepert et al., 2000)
has been related to motor recovery (Hallett, 2007).

(2) Increased activity in motor and non-motor regions has
been reported in fMRI studies after stroke (Rehme and
Grefkes, 2013). Specifically, increased contralesional activity
has been observed (Weiller et al., 1992; Ward, 2003; Grefkes
et al., 2008). Although this has been explained as a recruit-
ment of supplementary areas to assist movement (Rehme
and Grefkes, 2013), others have related it to widespread
cortical hyperexcitability (Buchkremer-Ratzmann et al.,
1996), suggesting long-range corticocortical inputs (Logo-
thetis et al., 2001) with increased activation via decreased
inhibition (Liepert, 2003; Blicher et al., 2009). Functional
recovery has in turn been associated with the degree of
recovery of activity in the affected cortical areas (Cramer,
2008).

Figure 6. Correlation between modeling parameters and post-therapy motor outcomes. Scatterplots showing correlation between
TVB modeling parameters (x-axis) and post-therapy motor outcomes (y-axis). Clear relationships were found between (A) K12 and
Fugl–Meyer (Post-Therapy), (B) K12 and Fugl–Meyer (Maintenance), and (C) Global coupling and WMFT (Maintenance).
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Complementing the above, our results show a corre-
spondence between local and global levels. Indeed, the
reduction in local inhibitory influence over excitatory pop-
ulations was accompanied by an increase in global cou-
pling, reflecting an imbalance after stroke between global
and local brain dynamics, favoring the latter. That is, local
dynamics exert a stronger influence than global dynamics
following stroke. In this case, the imbalance could be
exacerbated by the decrease in conduction velocity. In-
terestingly, this imbalance has also recently been mod-
eled in other brain diseases. For example, early stages of
schizophrenia have been associated with a breakdown of
local dynamics occurring prior to the disruption of global
dynamics occurring later on in disease progression (Ru-
binov et al., 2009; van den Berg et al., 2012).

A particularly interesting finding was the trend associ-
ated with a decrease in conduction velocity in individuals
with stroke, as it has previously been described through
measurements of central motor conduction times (CM-
CTs) via transcranial magnetic stimulation (TMS) in the
primary motor cortex. Immediately following stroke,
CMCT decreases and correlates with functional measures
(Abbruzzese et al., 1991; Pennisi, 2002) tending toward an
incomplete normalization over the long-term (Heald et al.,
1993). That being said, there is a paucity of information on
decreased conduction velocity on corticocortical connec-
tions. The bulk of knowledge derives from studies in
rodents showing structural changes to axons and oligo-
dendrocytes in the primary lesion and the ischemic pen-
umbra (Rosenzweig and Carmichael, 2015). In addition,
although some degree of remyelination occurs in the
recovery phase, the process is often arrested before com-
pletion (Syed et al., 2008). In human autopsy samples,
there is an increase in nodal and paranodal lengths adja-
cent to lacunar lesions (Hinman et al., 2015), which may
lead to decreased conduction velocities (Rasband, 2011).
Our results thus provide direction for future animal stud-
ies, exemplifying the translational nature of TVB findings.

TVB thus appears to be effective at modeling brain
activity in healthy brains and those impacted by disease
processes, and has the novel capability of studying brain
dynamics at multiple scales, including at a level that has
thus far only been available via animal models or surro-
gate neuroimaging markers in humans. Applying this
method of modeling, which is tied directly to biological
mechanisms, to existing large datasets opens up the
possibility to experiment with expanded models of brain
states, including a myriad of diseases and their potential
treatments.

Potential predictors of motor recovery after stroke
Our results demonstrated that local (K12) and global
(global coupling) parameters, derived from pre-therapy
conditions, were significantly correlated with motor gains
post-therapy and at maintenance. Furthermore, both pa-
rameters point in the same direction, as poor recovery
was associated with an increase in local excitatory influ-
ences and with an emphasis on local dynamics, whereas
values closer to controls correlated with better recovery.

Interestingly, TVB parameters in stroke did not cor-
relate with severity of disease at the pre-stroke time
point, even though the structural connectivity matrix
used in the modeling coincided with this time point. In
addition, other physical features of the stroke (size,
location) or patient demographics (sex, age) did not
correlate with the modeled parameters. Finally, neither
lesion characteristics nor patient demographics corre-
lated with recovery, highlighting the unique predictive
potential of these parameters.

The question then becomes to what extent these pa-
rameter estimates can be used as predictors of recovery
at the individual patient level. Although a cross-validation
approach using the current dataset could serve to answer
this question, a new and larger stroke cohort is ideal in
obtaining estimates of the sensitivity and the specificity of
our markers, due to high variance in stroke. However,
there is clear value of our observations even with this
limitation. At present, biomarkers for stroke recovery have
been limited by the use of “substitute or surrogate” mea-
sures derived from brain imaging or electrophysiology,
mainly due to the inability to measure in vivo more ideal
basic elements, ie, at molecular or cellular levels (Burke
and Cramer, 2013). Indeed, such elements may be ob-
served more closely in animal models, but are difficult to
translate to humans due to the limited homology between
species. Specifically, the Stefanescu-Jirsa 3D model used
in this study evolved from the mesoscopic level Hind-
marsh–Rose model. The Hindmarsh–Rose model itself is
rooted in the principles of the Hodgkin–Huxley neuron
equations, in addition to dynamics based on bursting
neurons found in invertebrate circuitry (Hindmarsh and
Rose, 1984). Further, the neural behaviors described by
the Hindmarsh–Rose model have been biologically veri-
fied in other animal models (Selverston and Ayers, 2006;
Gu, 2013). Therefore, although any model of the me-
soscale does not encompass the complexity of brain
processes at the cellular level, there is likely emergence of
behavior from the cellular level to the mesoscopic level,
exhibiting deterministic behavior that can be modeled and
also observed in vivo.

That is, the transition between the macroscopic and
microscopic level is represented by population dynamics
at the mesoscopic level (Mitra, 2014). From this, one
could conclude that the path toward basic biomarkers
should include the intermediate mesoscopic level. Indeed,
TVB allows one not only to estimate parameters at that
level but also to link it to the macroscopic global whole-
brain level. TVB is not unique in considering biophysical
parameters as exemplified by inference models based
on DCM (Moran et al., 2011). Basically, there are no
conceptual differences in the inferential goals between
TVB and DCM but they do differ in the detailed me-
chanics. For example, whereas TVB develops the
model at the level of large-scale networks, DCM fo-
cuses on portions of these networks. Second, and
perhaps the key contrast is that whereas DCM fits the
parameter of the model but does not generate data,
TVB uses the model to generate data, making these two
approaches highly complementary.
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An interesting and unique aspect of TVB is its highly
individualized approach, as parameter estimates are de-
rived from individualized structural connectivity matrices
obtained from each subject, and hence, it can provide the
first step to customize individual therapeutic interven-
tions. For example, our ongoing work is beginning to test
potential “virtual interventions” by modifying specific pa-
rameters changed after stroke and determining the de-
gree of restoration of brain dynamics on each stroke
patient.

A second ability of this modeling approach is to use the
model of an individual patient’s brain connectivity that can
be objectively measured and evaluated as an indicator of
normal biological processes (such as, resting state activ-
ity, rsfMRI), pathogenic processes, or pharmacologic
responses to therapeutic intervention (Biomarkers Defini-
tions Working Group, 2001). Dynamics of rsfMRI are
highly nonstationary (Allen et al., 2014) and existing met-
rics, including the direct correlation between functional
and structural connectivity, are so far incapable of ad-
dressing this issue satisfactorily (Goni, 2014). A number of
studies have therefore used generative modeling to parse
the relationship between structural and functional con-
nectivity. A recent study (Andersen et al., 2014) demon-
strated that the fusion of TVB-like network modeling with
structural neuroimaging explains the nonstationary dy-
namics observed in rsfMRI. Thus, we propose a concep-
tual paradigm shift, in which the dynamic model shifts the
nonstationary functional data from imaging at the meso-
scopic scale to a more deterministic set of coefficients in
a brain model. In other words, complex dynamics cannot
be captured by stationary imaging analyses, but can be
generated by a data-constrained mechanistic model of
brain- circuit dynamics, as seen in the generative model-
ing approach detailed in stroke (Brodersen et al., 2011).
Thus, the mathematical model could be seen as a com-
pact generator of dynamics-based biomarkers, or even as
the biomarker itself. The primary benefit, as we demon-
strated here, is that it becomes easier to understand
disease mechanisms by evaluating the coefficients of the
model.

Of note, the approach used in this study to validate
the simulated time series was to compare frequency,
amplitude, and phase of the simulated and empirical
signals. After the refinement of the TVB models, future
studies will incorporate a larger variety of multidimen-
sional analyses, particularly with respect to temporal
variability in resting state signals. Furthermore, the cur-
rent study determined optimal values of local parame-
ters applied to all brain regions. Future studies will
focus on local parameters for subsets of brain regions,
eg, changing parameters of nodes within and/or around
a stroke lesion to determine how this impacts the re-
sultant simulated brain activity. We also note that the
translational power of our findings depends upon the
reproducibility of parameters for a given brain state, the
answer for which will emerge with expanded applica-
tion of TVB to other cohorts. The results from this study
thus confirm that TVB allows the assessment of bio-
physical variables previously unattainable in human

studies. This method provides a potentially important
and novel application of large-scale modeling, in which
we can probe brain dynamics and biomarkers on an
individual level. Therefore, The Virtual Brain has the
potential to become an important step toward the de-
velopment of individualized medicine in stroke.
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