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ABSTRACT
GRAS transcription factors play important roles in many processes of plant devel-
opment as well as abiotic and biotic stress responses. However, little is known about
this gene family in bread wheat (Triticum aestivum), one of the most important crops
worldwide. The completion of a quality draft genome allows genome-wide detection
and evolutionary analysis of the GRAS gene family in wheat. In this study, 188 TaGRAS
genes were detected and divided into 12 subfamilies based on phylogenetic analyses:
DELLA, DLT, HAM, LISCL, SCL3, SCL4/7, SCR, SHR, PAT1, Os19, Os4 and LAS.
Tandem and segmental duplications are the main contributors to the expansion of
TaGRAS, which may contribute to the adaptation of wheat to various environmental
conditions. A high rate of homoeolog retention during hexaploidization was detected,
suggesting the nonredundancy and biological importance of TaGRAS homoeologs.
Systematic analyses ofTaGRAS indicated the conserved expression pattern and function
of the same subfamily during evolution. In addition, we detected five genes belonging
to the LISCL subfamily induced by both biotic and abiotic stresses and they may be
potential targets for further research through gene editing. Using degradome and ChIP-
seq data, we identified the targets of miR171 and histone modifications and further
analyzed the contribution of epigenetic modification to the subfunctionalization of
TaGRAS. This study laid a foundation for further functional elucidation of TaGRAS
genes.

Subjects Agricultural Science, Bioinformatics, Molecular Biology, Plant Science
Keywords Wheat, GRAS, Neofunctionalization, Subfunctionalization, Biotic and abiotic stress,
Gene expression

INTRODUCTION
Bread wheat (Triticum aestivum, AABBDD) is a major food crop worldwide. Wheat is
derived from two allopolyploidization events of three diploid progenitor species: Triticum
urartu (AA), an Aegilops speltoides-related grass (SS≈BB) and Aegilops tauschii (DD)
(Pont et al., 2019). Therefore, bread wheat has a huge and complex genome, making
genomic studies challenging. However, the completion of a high-quality draft genome
greatly promotes the genome-wide research, such as studies on homoeolog expression
bias in various developmental stages by RNA-seq, functional genetic element detection by
epigenomic maps and ancestry tracing of modern wheat by exome sequencing (IWGSC,
2018; Krzywinski et al., 2009; Li et al., 2019b; Pont et al., 2019).
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GRAS is a transcription factor family that has been identified in many plant species
(Huang et al., 2015; Liu & Widmer, 2014; Tian et al., 2004; Xu et al., 2016). In soybean
(Glycine max), 117 GRAS genes were identified, and these GmGRAS genes might have
been under strong purifying selective pressures during evolution (Wang et al., 2020).
Sixty-two GRAS members were observed in barley (Hordeum vulgare L.), and 74.2% of
them were intron-free (To et al., 2020). GRAS originated from a horizontal gene transfer
event from soil bacteria, which was one of the key molecular signals allowing the ancestors
of terrestrial plants to adapt to the terrestrial environment (Cheng et al., 2019). It was named
based on the first detected members GAI (gibberellic acid insensitive), RGA (repressor of
GA1-3 mutant) and SCR (scarecrow) (Laurenzio et al., 1996; Peng et al., 1997; Silverstone,
Ciampaglio & Sun, 1998). Most of the GRAS proteins consist of 400 to 700 amino acids,
and share a conserved C-terminal GRAS domain. The GRAS domain is composed of five
motifs: LHRI (leucine heptad repeat I), LHRII (leucine heptad repeat II), VHIID, SAW,
and PFYRE. VHIID exists in all of GRAS proteins, and combines with LHRI and LHRII
to form the LHRI-VHIID-LHRII complex, which may be vital in interactions between
proteins (Hirsch & Oldroyd, 2014; Itoh et al., 2002). The variable N terminus contains
subfamily-specific molecular recognition features in the intrinsically disordered region,
which act as bait during molecular recognition events (Sun et al., 2011).

The classification of the GRAS family is slightly different based on phylogenetic
relationships. Initially, GRAS proteins were divided into eight subfamilies in Arabidopsis,
including LS, LISCL, HAM, PAT1, SCL3, SHR, SCR and DELLA (Tian et al., 2004).
However, 117 GmGRAS genes were divided into nine subfamilies in soybean (Glycine
max), including DELLA, HAM, LAS, LISCL, PAT1, SCL3, SCL4/7, SCR and SHR (Wang et
al., 2020). Brachypodium distachyon included another subfamilies: DLT (Niu et al., 2019).
There are three other subfamilies in populous trichocarpa: Os19, Os4 and PT20 (Liu &
Widmer, 2014). In Citrus sinensis, 50 GRAS genes were divided into 11 subfamilies, and
subfamily CsGRAS34 was sweet orange-specific (Zhang et al., 2019). The most common
expansion mechanisms of the GRAS gene family are tandem and segmental duplications,
that might involve neofunctionalization, subfunctionalization or specialization during
evolution, which play important roles in functional divergence (Huang et al., 2015; Keller
et al., 2020; Liu et al., 2018).

GRAS proteins were found to play diverse roles in plant development. However,
members of the same subfamily have conserved protein structures and may have similar
biological functions. It is now well known that DELLA is a negative regulator of the
GA (gibberellin) signaling pathway, and GA can release its inhibition by degrading
DELLA (Hirano, Ueguchi-Tanaka & Matsuoka, 2008; Willige et al., 2007). In wheat, the
development and utilization of the wheat semidwarfing allele Rht1 (reduced height1,
including Rht-B1 and Rht-D1), which belongs to the DELLA subfamily, triggered a
world-famous ‘‘Green Revolution’’ and spectacularly increased wheat yield. Rht1 alleles
were not only used to increase lodging resistance under high fertilizer applications, but
also to enhance the harvest index by increasing grain numbers per ear (Tan, Koval &
Ghalayini, 2013; Wu et al., 2011). Reduced height in wheat carrying Rht-B1b or Rht-D1b
was the result of reduced sensitivity to GA resulting from base substitution (Peng et al.,
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1999). RGL2 participated in flower and ovule development through the GA pathway in
Arabidopsis (Gómez et al., 2019). SCR and SHR positively regulate the formation of root
radial organization. They participate in cortex/endodermal formation, and mutation of
SCR or SHR leads to only a single cell layer between the epidermis and pericycle. SCR
regulates cell division but not cortex and endodermis specification, while SHR participates
in both processes (Haelariutta et al., 2000; Laurenzio et al., 1996). In Salvia miltiorrhiza,
the SHR member SmGRAS1 is preferentially expressed in the root periderm, and activates
SmKSL1 expression by directly binding to the GAREmotif in its promoter , thus promoting
tanshinone biosynthesis (Li et al., 2019a). BrLAS is primarily expressed in roots and axillary
meristems. Overexpression of the Brassica rapa gene BrLAS in Arabidopsis plants resulted
in delayed bolting, flowering time, senescence, decreased fertility and enhanced drought
resistance (Li et al., 2018b).

In addition, GRAS participates in light signal transduction. Expression level reduction
of TaSCL14, a member of the LISCL subfamily, leads to dwarfed plants, decreased
photosynthetic capacity, earlier leaf senescence and reduced resistance to photooxidative
stress (Chen et al., 2015). Phytochrome photoreceptors enable plants to sense divergent
signals to adapt to various environmental changes. The GRAS family proteins PAT1
and SCL13 act as mediators in the light signaling pathway. SCL13 is a positive regulator
in response to continuous red light in the downstream of phyB (phytochrome B). In
Arabidopsis, downregulation of SCL13 displayed reduced sensitivity to red light (Torres-
Galea et al., 2006). PAT1 is involved in the signal transduction of phyA, and null-function
mutation of PAT1 leads to reduced resposes to continuous far-red light (Bolle, Koncz &
Chua, 2000). In addition, downregulation of the PAT1 subfamily gene, GRAS2, decreases
fruit weight by restraining cell expansion in tomato (Solanum lycopersicum) (Li et al.,
2018a). Morever, GRAS controls tillering in rice. For example, mutation of GRAS family
geneMOC1 (Monoculm1) results in the failure of tiller buds formation, and plants have only
a main culm (Li et al., 2003). Two GRAS proteins, NSP1 (nodulation signaling pathway
1) and NSP2, promote the initiation of nodules, and miR171h targets NSP2 to prevents
the overcolonization of arbuscular mycorrhizal fungi in roots (Lauressergues et al., 2012;
Murakami et al., 2006). miR171 cleavaed the transcripts of HAM1, and disruption of this
process induces abnormal embryogenesis, leading to the abnormal phenotypes in seedling
shoots including fused cotyledons, asymmetric tricots or no cotyledons (Takanashi et al.,
2018).

Although great progress has been made in the identification of GRAS proteins in plants,
to the best of our knowledge, the evolution and expression profiles of the entire GRAS
family in wheat have not been described in detail. In this study, we detected TaGRAS genes
genome-wide and performed a comprehensive analysis of their phylogeny, gene structure,
chromosomal location and expression patterns in different developmental stages and under
various stresses. In addition, we analyzed epigenetic regulation of TaGRAS expression. This
work provides valuable information for further functional studies in wheat.
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MATERIALS & METHODS
Genome-wide detection and sequence analysis of TaGRAS
The CDS and protein sequences of both high and low confidence bread wheat (Triticum
aestivum cv. Chinese Spring) genes were downloaded from https://urgi.versailles.inra.
fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/. High-confidence genes indicated
genes with complete gene models (genes contain both start and stop codons) and very
good sequence homology to plant proteins from SwissPort and Poaceae proteins in
trEMBL but no good sequcence homology in transposon database TREP. Low-confidence
genes indicated that genes which have incomplete gene models but high identity to
plant proteins from SwissProt; or genes with complete gene models but no significant
homology to TREP, UniPoa or Unimagdatabases; or incomplete gene models with very
high identity to the annotated Poaceae protein in SwissProt or trEMBL but not in the
TREP database. Besides, low confidence genes including genes with incomplete gene
models and no significant homology to any genes in SwissProt, trEMBL or TREP database.
The complete and detailed parameters can be referred to the previous literature (IWGSC,
2018). The GRAS protein sequences of Arabidopsis (32), rice (Oryza sativa, 56), barley
(Hordeum vulgare L., 62) and Brachypodium distachyon (48) were retrieved from previous
studies (Niu et al., 2019; Tian et al., 2004; To et al., 2020). These sequences were merged
together to query bread wheat proteins by BLASTp. Proteins with Evalue ≤ 1e−5, identity
≥60 and length coverage ≥50% were used to detect the exaistance of GRAS domains
with HMMER 3.0 and the Hidden Markov Model (HMM) profile of the GRAS domain
(PF03514, http://pfam.xfam.org/, Evalue ≤1e−5) (Finn et al., 2016; Mistry et al., 2013).
Then, these candidate GRAS genes were examined to confirm the existence of GRAS
domain in SMART (http://smart.embl-heidelberg.de/), PFAM (http://pfam.xfam.org/)
and Conserved Domain Database (CDD) in NCBI (https://www.ncbi.nlm.nih.gov/).
Proteins with truncated, lacking, or anonymous GRAS domain were eliminated. The
confirmedGRAS genes were named based on an abbreviation for the species name Triticum
aestivum (Ta) and their order on the chromosomes. The subcellular localization of GRAS
proteinswere predicted inWoLFPSORT (https://wolfpsort.hgc.jp/). Exon-intron structures
were constracted in Gene Structure Display Server (GSDS, http://gsds.cbi.pku.edu.cn).
ExPASy (https://web.expasy.org/compute_pi/) was used to calculate isoelectric point
and molecular weight. Phylogenetic tree was constructed with MEGA 5.0 based on
the maximum likelihood method using 1000 bootstraps (Hall, 2013). The phylogenetic
tree was subsequently visualized in iTOL (https://itol.embl.de/). Homoeologous genes
between the A, B and D subgenome of wheat were detected based on the phylogenetic
tree and previous classifications (Ramírez-González et al., 2018; Schilling et al., 2020).
The chromosomal location was displayed with circos (Krzywinski et al., 2009). Ka (non-
synonymous substitution) and Ks (synonymous substitution) was calculated using ParaAT
(Parallel Alignment and back-Translation) software with MAmethods (Zhang et al., 2012).

Expression profiles in different tissues and under stress conditions
The expression level (TPM, transcripts per million) of TaGRAS genes were downloaded
from http://www.wheat-expression.com/, and the heatmap was generated with R packages
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‘‘pheatmap’’ (scale=‘‘none’’, cluster_rows=F, cluster_cols=F).TaGRAS geneswere classified
as 10 clusters with kmeans according to expression level, and then the clusters were divided
into groups that preferentially expressed in reproductive, vegetative or ubiquitous tissues.
Homoeolog expression patterns were performed as previously described (Krzywinski et al.,
2009). Briefly, TPM of triad with 1:1:1 ratio between the three subgenomes was extracted,
and the triads with summed TPM lower than 0.5 were discarded. The euclidean distance of
normalized expression level of triads was calculated and the triads were classified based on
the shortest distance as A/B/D dominant, A/B/D suppressed or balanced profiles. Ternary
plot was generated with R package ‘‘vcd’’.

ChIP-seq data analysis
The ChIP-seq raw data (H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac
and H3K9me2) were downloaded from Gene Expression Omnibus Database (accession:
GSE121903) (Li et al., 2019b). Trimmomatic was used to remove the reads with low quality.
Then the clean reads were mapped to the reference sequence of bread wheat (IWGSC,
v1.0) with bowtie2 (Bolger, Lohse & Usadel, 2014; IWGSC, 2018). To ensure the accuracy of
results, reads from PCR duplication or with mapping quality below 20 were removed. The
reads-enriched regions (peaks) of each mark were detected with MACS (v1.3.7) (Zhang
et al., 2008). The peaks with at least 1 base pair overlapped between biological replicates
were identified as the credible peaks. Target genes were defined as genes with a peak in
the gene body. The TPM data of corresponding stage seedling were downloaded from
http://www.wheat-expression.com/, (Table S7). Genes with TPM higher than 0.5 were
recorded as expressed genes.

Degradome data analysis
To detected the targets of miR171, the degradome data of 21 and 28 DPA (days post
anthesis) grains were downloaded from NCBI Gene Expression Omnibus (accession:
GSE65799) (Zhang et al., 2015a). The degradome data of seed embryos, seedling leaves,
seedling roots and grains of 8 days after pollination were downloaded from NCBI SRA
database (accession: SRP040143) (Sun et al., 2014). First of all, low-quality reads were
removed with Trimmomatic (Bolger, Lohse & Usadel, 2014). CleaveLand4 was used to
predictthe targets of miR171, the targets with alignment score above 4.5 were removed
(Addo-Quaye, Miller & Axtell, 2009).

RESULTS
Detection of TaGRAS in bread wheat
In this study, 188 TaGRAS genes were detected and their molecular weights varied from
26.69 to 164.81 kDa (Table S1). These genes were named from TaGRAS1 to TaGRAS188
according to their chromosomal location. The longest TaGRAS protein was TaGRAS82,
which had 819 amino acids, while the shortest was TaGRAS172 with only 245 amino
acids. The subcellular localization of TaGRAS proteins were predicted by WoLFPSORT.
42.0% (79/188) of TaGRAS proteins were predicted to be located in nucleus. As previously
confirmed, TaGRAS179 (TaMOC1-7A) was predicted to be located in the cell nucleus
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(Zhang et al., 2015b). The isoelectric point of TaGRAS proteins ranged from 4.73 to 10.21,
of which 158 were below 7.00, suggesting that most TaGRAS were slightly acidic, and
different TaGRAS proteins played roles in different microenvironment.

Phylogenetic and gene structure analysis of TaGRAS gene families
To analyze the evolutionary relationship of the GRAS protein in Arabidopsis, B. distachyon,
rice and wheat, a phylogenetic tree was constructed using the maximum likelihood method
with MEGA5.0 (Hall, 2013) (Fig. 1). TaGRAS genes were divided into 12 subfamilies:
SHR (containing 12 members), PAT1 (20), DELLA (18), LISCL (70), SCL3 (16), DLT
(3), SCR (12), LAS (6), SCL4/7 (3), HAM (18), Os4 (7) and Os19 (3). Consistent with
the exon-intron structure in grapevine, rice and tomato, 60.0% (114/188) of TaGRAS
genes had no intron (Fig. S1) (Huang et al., 2015). The exception was the subfamily PAT1,
which had a significantly higher number of exons than other subfamilies (Fig. 2A). When
considering the Ka/Ks, none of the TaGRAS genes were under positive selection. The genes
from subfamily DELLA, LAS, SCL4/7, SCR and SHR were under strict purifying selection
pressure compared with PAT1and LISCL (Fig. 2B).

Chromosomal location of TaGRAS
A total of 188 TaGRAS genes unevenly distributed on wheat chromosomes with
homoeologous group 4 had a higher density of genes, which was significantly higher
than expected (56/188, 29.8%; χ2test, P < 0.001; Figs. 3A, 3B). The enrichment in
homoeologous group 4 was mainly the result of tandem duplication (two TaGRAS
genes were separated by no more than three genes, Table S1). For example, TaGRAS89-94,
TaGRAS111-116 and TaGRAS129-135were tandemly duplicated clusters on chromosomes
4A, 4B and 4D respectively. In addition, the presence of TaGRAS in chromosomal segment
C was significantly less frequent than all wheat genes (data from Ramírez-González et al.,
2018), as only two subfamilies had genes located in this region, indicating that they were
preferentially distributed on the distal end of chromosomes (1.60% vs 10.67%; χ2test,
P < 0.001; Table S2). In contrast, in subfamily LAS, no gene was located in distal telomeric
segments (segment R1 and R3, Table S2), indicating a subfamily-specific location pattern.

TaGRAS genes exhibit a high rate of homoeolog retention
When considering the total number of GRAS genes, the wheat GRAS gene number was
higher than that of B. distachyon, rice or Arabidopsis even when polyploid level was
considered (188/3>48, 56, 32, Fig. 3C). The increase was mainly the result of amplification
of the LISCL, DELLA and PAT1 subfamilies. Gene duplication events contributed to the
expansion of these subfamilies. For example, the BRADI1G15123 gene from the LISCL
subfamily of B. distachyon was sister to 23 wheat genes. This was the result of segmental
and tandem duplication in the ancestor species of Triticum (before polyploidization of
wheat). In some cases, the expansion was supported by low-confidence genes, such as
BRADI3G24210, which was sister to four wheat genes, including one low-confidence gene
(TaGRAS160, TraesCS5B01G604500LC, Fig. 1).

To further explore the evolution of TaGRAS genes during the polyploidization of wheat,
we detected the homoeologous relationship in detail. As shown by the phylogenetic tree, in
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Figure 1 Phylogenic tree of GRAS proteins from bread wheat, Arabidopsis, rice and Brachypodium
distachyon. The protein sequences of GRAS from bread wheat, Arabidopsis, rice and Brachypodium dis-
tachyon were used to perform multiple sequence alignment with ClustalW and MEGA 5.0 was used to
generate phylogenic tree. The subfamilies were indicated with different colors.

Full-size DOI: 10.7717/peerj.10811/fig-1

71.4% (35/49) of the subclades, oneB. distachyon gene and one rice genewere closely related
to a triad of wheat homoeologs (genes had a 1:1:1 correspondence across the three A, B
and D subgenomes) (Fig. 1). For example, Os03g15680 and BRADI1G67340 were sister to
the triads TaGRAS88 (TraesCS4A01G088500), TaGRAS117 (TraesCS4B01G215700) and
TaGRAS136 (TraesCS4D01G216200).We noted thatTaGRAS genes of subfamilies SCL4/7,
LAS, DLT and SCR all presented as triads. Moreover, compared with all of annotated wheat
genes (data from Ramírez-González et al., 2018), TaGRAS had a higher proportion of genes
belonging to triads (79.8% vs 35.8%) (Table S3), suggesting a high rate of homoeolog
retention during hexaploidization.
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Figure 2 Exon number and Ka/Ks analysis of TaGRAS. (A) Exon number of TaGRAS subfamilies (*,
P < 0.05, Wilcoxon rank sum test). (B) Distribution of Ka/Ks in subfamilies of TaGRAS.

Full-size DOI: 10.7717/peerj.10811/fig-2

Gene expression profiles of TaGRAS in various tissues
GRAS proteins are transcriptional regulators that play important roles in plant growth
and development (Cheng, 2004; Fleck & Harberd, 2002; Hirsch & Oldroyd, 2014; Tyler et
al., 2004). To detect the expression pattern of TaGRAS, RNA-seq data were analyzed.
Approximately 69.7% of TaGRAS were expressed in at least one developmental stage
(131/188, TPM>0.5, Fig. 4A, Table S4). The majority of genes from the same subfamily
displayed similar expression patterns. In general, the gene expression levels of subfamily
PAT1, except for TaGRAS149, were much higher than those of other subfamilies (Fig. 4A,
Table S4). In addition, genes from subfamily PAT1 were expressed at high lever in all of the
investigated tissues, although there was a slight decrease in grains (Fig. 4A, Table S4). Os19,
DLT and SHR subfamily genes were preferentially expressed in roots, consistent with their
roles in root development. All of the genes from LAS were hardly expressed in different
tissues except for the quite low level in roots (Fig. 4A, Table S4). We further hierarchically
clustered the genes according to TPM as previously described (Schilling et al., 2020). Fig.
S2 showed that the largest subfamily LISCL contained genes from nine clusters, which
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Figure 3 Chromosomal location and number of TaGRAS subfamily genes. (A) The chromosomal loca-
tion of TaGRAS. The subfamily genes were indicated with same color as Fig. 1. The outer track indicated
each chromosome, and the inner track indicated chromosomal segment (Light grey: C; grey: R2a and R2b;
dark grey: R1 and R3). The inner links indicated homoeologous genes. (B) TaGRAS gene number located
on each chromosome. (C) Gene number of each subfamily in wheat, rice, Arabidopsis and Brachypodium
distachyon. (D) Gene number ratio of each subfamily is shown for wheat: rice, wheat: Arabidopsis and
wheat: Brachypodium distachyon.

Full-size DOI: 10.7717/peerj.10811/fig-3
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were preferentially expressed in ubiquitous, reproductive, vegetative tissues or even not
expressed. Subfamily DLT preferentially expressed in vegetative tissues (Fig. S2).

As 79.8% of TaGRAS presented as triads, we explored the homoeolog expression
bias in leaf/shoot, root, spikelet and grain. We mainly focused on genes with summed
expression levels above 0.5 TPM across the traid. According to the expression level
and the euclidean distance of A, B and D subgenome homoeologs, the expression bias
was classified as balanced, A/B/D-surpressed or A/B/D-dominant patterns. Consistent
with all of wheat genes (data from Ramírez-González et al., 2018), 62.4% of the triads
of roots showed similar relative abundances from the A, B and D subgenome, namely,
the balanced category (Table S5) (Ramírez-González et al., 2018). In reproductive tissue
spikelets and grains, approximately 60.7% of the triads were assigned to the balanced
category (Figs. 4B, 4C, Fig. S2 and Table S5). In addition, in contrast to previous reports,
a higher proportion of D-homoeolog suppression was observed across all the tissues
(16.2% vs 5.7%). That mainly results from three triads: PAT1 (TaGRAS148-TaGRAS160-
TaGRAS166), DELLA (TaGRAS100-TaGRAS105-TaGRAS123) and LISCL (TaGRAS150-
TaGRAS161-TaGRAS167), which displayed D-homoeolog suppression in all detected
tissues (Table S5).

TaGRAS genes play roles under biotic and abiotic stresses
To explore the function of TaGRAS genes in response to stresses, the TPM data of bread
wheat genes under various treatments were downloaded and analyzed (Table S6).We noted
that five LISCL homoeolog genes, TaGRAS178, TaGRAS180, TaGRAS181, TaGRAS185
and TaGRAS186, were induced by various stress treatments (Fig. S3). They were gradually
induced after inoculation with Fusarium graminearum (accession number, ERP013829,
Fig. 5A). In addition, they showed significant upregulation in leaves and shoots when
infected with stripe rust pathogens, powdery mildew pathogens, chit or flg22 (Fig. 5A).
Moreover, abiotic stress, such as phosphorous starvation, heat and drought stress or
PEG6000 treatment, induced their expression (Fig. 5A). These results imply that these
genes may play an important role in various diseases and abiotic resistance. Three genes of
subfamily SCL4/7 were mainly expressed in roots and upregulation was detected in leaves
after 6 h of heat stress treatment (Fig. 5B). A low-confidence gene from subfamily DELLA,
TaGRAS147, was expressed at a very low level in the developmental stages, but showed
upregulation after 6 h of heat, drought and both stresses, suggesting that the authenticity
of the gene (Fig. 5C).

Epigenetic modification regulated the expression of TaGRAS
According to a previous study, GRAS genes are the targets of miR171 (Llave et al., 2002).
Using degradome data of grains, TaGRAS142, TaGRAS155, TaGRAS169 and TaGRAS171
were predicted to be targets of miR171 (Fig. 6A, Fig. S4 and Table S4). In leaves, miR171
was found to target TaGRAS104, TaGRAS175 and TaGRAS183 (Table S4). In addition to
miRNAs, other epigenetic modifications play important roles in regulating the expression
of genes. Here, we analyzed genes regulated by histone modifications in leaves. Consistent
with the function of H3K9me2 in inhibiting the activation of transposons in centromere
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Figure 4 Expression pattern (TPM) of TaGRAS. (A) Gene expression profile of TaGRAS in different
developmental stage. Heatmap was generated with R package ‘‘pheatmap’’ using parameter scale=‘‘none’’.
The TPM datas was shown in Table S4. (B) Ternary plot showing relative expression abundance of
TaGRAS for triads with 1:1:1 ratio in leaves. Each circle represents a gene triad, and its A, B and D
coordinates consist of the relative contribution of each homologous gene to the expression of the overall
triad. Triads in vertices means single-subgenomic-dominant class, for example the D-dominant region,
while triads near edges and between vertices indicated suppressed classes, for example the A-suppressed
region. Triads in the center region indicated balanced category. The color of each subfamily was same with
color bar in (A). (C) Ternary plot showing relative expression abundance of TaGRAS for triads with 1:1:1
ratio in roots.

Full-size DOI: 10.7717/peerj.10811/fig-4
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Figure 5 Expression pattern of TaGRAS under abiotic and biotic stresses. (A) Expression level change
of five genes from LISCL subfamily under stresses. The original data accession number and the tissues
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stresses. The TPM datas were shown in Table S5.

Full-size DOI: 10.7717/peerj.10811/fig-5

regions, none of the TaGRAS genes were modified by H3K9me2 (Table S7) (Ayyappan et
al., 2015; Kowar et al., 2016). As a repressive mark, H3K27me3 modified 25.0% (32/128)
of the nonexpressed TaGRAS (TPM<0.5), such as TaGRAS37 (Fig. 6B, Table S7) (Molitor
et al., 2014). In contrast, approximately half of the expressed TaGRAS were targets of
H3K36me3, H3K4me3 and H3K9ac (48.3%, 50.0% and 50.0%, respectively, Table S7).
This result was comparable with their enrichment at transcript start sites of activated genes
(Du et al., 2013; Liu et al., 2010; Yang, Howard & Dean, 2014). For example, Rht-B1 was
modified by H3K4me3, H3K36me3, H3K9ac and H3K27ac in leaves (Fig. 6C, Table S7).
Several nonexpressed genes were modified by neither miRNA nor histone modifications.
These genes may be regulated by DNAmethylation (Fig. 6D). Certainly, genetic factors are
also crucial for gene expression regulation, such as cis regulatory elements and mutations,
which require further study.
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DISCUSSION
In this study, we detected 188 TaGRAS genes and divided them into 12 subfamilies. As
previously reported, most of the TaGRAS had no introns except for the genes from the
PAT1 subfamily. TaGRAS was unevenly distributed on chromosomes, with a specifically
high density of homoeologous group 4.

According to the RNA-seq data, many wheat TaGRAS genes have evolutionarily
conserved functions. First, the expression patterns of TaGRAS genes were comparable
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with their homologs in rice and Arabidopsis or other plants. For example, SHR and SCR
in Arabidopsis were reported to regulate cortex/endodermal specification (Haelariutta et
al., 2000; Laurenzio et al., 1996). These subfamily genes of wheat exhibited similar pattern
as they preferentially expressed in root, suggesting that they may play conserved roles in
regulating radial pattern formation (Fig. 4). DLT negatively regulates the grain size of rice
by regulating the number of cells in glume and affecting the development of palea and
lemma (Sun et al., 2013). DLT is expressed in wheat spikelets as well. RHT1 in wheat is
a homolog of rice SLR and maize D8, both of which are negative modulators in the GA
signaling pathway, and utilization of these genes in breeding significantly increased the
yield (Asano et al., 2009; Lawit et al., 2010). Second, TaGRAS exhibited a conserved pattern
between homoeologs in wheat. TaGRAS displayed a high rate of homoeolog retention and
a balanced expression pattern in the triads. A total of 62.4% of TaGRAS genes belonged to
the balanced category in roots, and it is noteworthy that all of the SCR and SHR subfamily
genes were equally expressed in the three subgenomes, suggesting their nonredundant
role in root development (Table S5). The conserved expression pattern and high rate of
homoeolog retention imply the significance of the TaGRAS family in plant development.

The GRAS subfamily genes participate in regulating a wide range of pathways. The
function of DELLA in GA signaling in Arabidopsis and rice has been well described
(Wang & Deng, 2013). It is vital for the trade-off between adaptation to disadvantageous
environments and plant growth. In general, the accumulation of DELLA reduced the
growth of plants and concentrated the resources of plants on stress resistance, while the
degradation of DELLA mediated by GA promoted the growth under favorable conditions
(Van De Velde et al., 2017). PAT1 is specific for the phyA signaling pathway in Arabidopsis,
and PeSCL7 improved drought and salt resistance in Populus euphratica (Bolle, Koncz &
Chua, 2000; Ma et al., 2010). Members of the HAM subfamily control shoot meristem
maintenance in Petunica hybrid (Stuurman, Jaggi & Kuhlemeier, 2002). In wheat, tandem
and segmental duplication events lead to expansion of the TaGRAS family, especially
the subfamilies PAT1, DELLA and LISCL. The expansion of these subfamilies may be
helpful for improving the adaptability of wheat to various environmental conditions due
to their vital roles in plant development. In wheat, most of the PAT1 subfamily genes
were expressed at a relatively high level in different developmental stage, and five LISCL
subfamily genes were induced by both biotic and abiotic stress (Fig. 4 and Table S6). These
genes may be potential targets for gene editing in further research.

Bias in homoeolog expression potentially represents an early trend of sub- or
neofunctionalization of duplicated gene copies (Ramírez-González et al., 2018). D-
homoeolog suppression in the triads TaGRAS148-TaGRAS160-TaGRAS166 (PAT1)
and TaGRAS150-TaGRAS161-TaGRAS167 (LISCL) seemed to result from the
neofunctionalization ofD-homoeolog. Although hardly expressed in all the detected tissues,
TaGRAS166 was induced by phosphorus starvation (accession number, DRP000768) and
infection with stripe rust pathogen or powdery mildew pathogen (accession number,
SRP041017) in leaves, and TaGRAS167 was induced by Fusarium pseudograminearum
inoculation in spikes (accession number, SRP060670), while their homoeologs were
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relatively stable under stress. Neofunctionalization may be one of the mechanisms of
adaption to environmental changes.

In Arabidopsis, miR171 cleaves mRNAs of SCL6, SCL22 and SCL27, and miR171-GRAS
modules are critical for shoot apical meristem and root indeterminacy maintenance (Llave
et al., 2002; Schulze et al., 2010). Overexpression of miR171c or mutation of its targets
leads to reduced shoot branching, shorter primary roots, accumulation of chlorophyll
and abnormal leaf and flower formation (Wang et al., 2010). SlGRAS24, a member of the
HAM subfamily in tomato, is the target of miR171 (Huang et al., 2015). Overexpression
of SlGRAS24 resulted in shorter and narrower leaves, abnormal axillary bud emergence,
a reduced fruit-set ratio and delayed flowering (Huang et al., 2017). Here, we detected
seven subfamily HAM genes as targets of miR171 by degradome data. Moreover, we
detected the targets of several histone modifications. Activating marks, such as H3K4me3,
H3K9ac and H3K27ac, regulated the highly expressed genes, while the repressive mark
H3K27me3 modified genes that were not expressed or expressed at a very low level (Table
S7). Epigenetic modifications may play a role in the subfunctionalization of TaGRAS genes.
The conclusion is reflected in the triad of the SCR subfamily: TaGRAS31, TaGRAS41 and
TaGRAS52. The protein identity between these genes was higher than 98%, suggesting the
limited genetic diversity. On the other hand, we observed that in seedling leaves, H3K36me3
modified TaGRAS31 and TaGRAS52 but not TaGRAS41 (Table S7). Meanwhile, TaGRAS
4 1 was hardly expressed in the leaves, leading to the B-homoeolog suppression of this triad
(Table S5). The limited genetic variation and difference in H3K36me3 modification levels
indicate that epigenetic regulation contributed to the subfunctionalization of TaGRAS41
in leaves.

In conclusion, TaGRAS genes are vital for wheat development and have significant
potential value in wheat molecular breeding improvement. Our research provides a
theoretical basis for further functional research on TaGRAS genes.

CONCLUSION
Hexaploidy and abundant repetitive sequences result in bread wheat having a large and
complex genome, which makes the whole-genome analysis challenging. GRAS genes
are important for wheat development. Based on our data, we speculate that GRAS
gene duplications might have been crucial in increasing the adaptability of wheat to
different environmental conditions. By transcriptome analysis, we provide a basis for
the identification of gene-editing targets to improve wheat performance. Furthermore,
epigenetic modifications participated in the neo- and subfunctionalization of TaGRAS
genes, which is another direction for evolutionary analysis.
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