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Background. Diffuse large B cell lymphoma (DLBCL) is a life-threatening malignant tumor characterized by heterogeneous clinical,
phenotypic, and molecular manifestations. Given the association between immunity and tumors, identifying a suitable immune
biomarker could improve DLBCL diagnosis. Methods. We systematically searched for DLBCL gene expression microarray
datasets from the GEO database. Immune-related genes (IRGs) were obtained from the ImmPort database, and 318
transcription factor (TF) targets in cancer were retrieved from the Cistrome Cancer database. An immune-related classifier for
DLBCL prognosis was constructed using Cox regression and LASSO analysis. To assess differences in overall survival between
the low- and high-risk groups, we analyzed the tumor microenvironment (TME) and immune infiltration in DLBCL using the
ESTIMATE and CIBERSORT algorithms. WGCNA was applied to study the molecular mechanisms explaining the clinical
significance of our immune-related classifier and TFs. Results. Eighteen IRGs were selected to construct the classifier. The multi-
IRG classifier showed powerful predictive ability. Patients with a high-risk score had poor survival. Based on the AUC for three-
and five-year survival, the classifier exhibited better predictive power than clinical data. Discrepancies in overall survival
between the low- and high-risk score groups might be explained by differences in immune infiltration, TME, and transcriptional
regulation. Conclusions. Our study describes a novel prognostic IRG classifier with strong predictive power in DLBCL. Our
findings provide valuable guidance for further analysis of DLBCL pathogenesis and clinical treatment.

1. Introduction

Diffuse large B cell lymphoma (DLBCL) accounts for 30–
58% of all diagnosed non-Hodgkin lymphomas. The inci-
dence of DLBCL in Europe is approximately 3.8/100,000
per year [1–3]. DLBCL is an intricate and aggressive tumor
with heterogeneous phenotypic, clinical, and molecular man-
ifestations [4–6]. Following existing chemotherapeutic
approaches, the survival rate of patients with DLBCL has
increased to 50–60%; however, nearly 40% of patients do
not benefit fully due to the heterogeneous nature of this
malignancy [7]. Hence, there is a strong need for the identi-
fication of new biomarkers to be applied in direct clinical

therapy and to improve DLBCL prognosis [8, 9]. Based on
advances in gene sequencing technology and numerous gene
expression profiles, the prognosis in DLBCL patients has
been closely associated with the tumor microenvironment
(TME) [10–12]. The TME is composed of immune cells,
inflammatory mediators, mesenchymal cells, and extracellu-
lar matrix molecules [12–17]. A fraction of infiltrating
immune cells influences the growth and progression of
tumors, defining a patient prognosis [18, 19]. At the same
time, gene expression affects a variety of immune cells infil-
trated in the TME [20–22]. In recent years, a novel immuno-
therapy approach based on kinase inhibitors that target B cell
receptor signaling as well as PD-L1 and PD-1 blockade has
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Figure 1: Continued.
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proven successful against DLBCL [11, 23–26]. However, only
a few DLBCL patients benefited from these new therapies,
whereas others exhibited little or no response. Hence, analyz-
ing the association between immune-related genes (IRGs)
and overall survival (OS) may reveal the prognostic value of
IRGs and novel biomarkers. The ESTIMATE algorithm uses
gene expression signatures to quantify the infiltration of stro-
mal and immune cells in tumor samples [26]. The CIBER-
SORT deconvolution algorithm uses gene expression
profiles to detect immune cell phenotypes in bulk tumor
samples with complex cell types [27]. Based on the link

between DLBCL and immune cells, our study is aimed at
constructing an IRG classifier capable of predicting the out-
come of DLBCL patients. ESTIMATE and CIBERSORT were
employed to assess the role of the TME in DLBCL.

2. Materials and Methods

2.1. DLBCL Datasets and Preprocessing. We systematically
searched for DLBCL gene expression microarray datasets
from the Gene Expression Omnibus (GEO, https://www
.ncbi.nlm.nih.gov/geo/) database of publicly available clinical
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Figure 1: Construction of the multi-IRG prognostic classifier. (a) Venn diagram of 1170 IRGs that overlapped between GSE31312 and
GSE32918 cohorts. (b) Venn diagram of 25 survival-associated IRGs that overlapped between GSE31312 and GSE32918 cohorts. (c)
Eighteen IRGs selected by LASSO regression analysis. The two dotted vertical lines indicate the minimum and 1-standard error criteria
employed to identify the best values. (d) LASSO coefficients of the 25 survival-associated IRGs. The red vertical line represents the best
value based on the minimum criterion, which resulted in 18 nonzero coefficients. (e) Risk score distribution. (f) Survival overview of patients.

Table 1: IRGs from the prognostic classifier associated with OS in the training set.

Gene
Univariate Cox regression analysis

LASSO coefficient
HR 95% CI P value

BTC 3.1 (1.6-6.2) 0.00094 0.830224972

THPO 2.9 (1.7-4.7) 3:60e − 05 0.357970287

GDF2 2.6 (1.8-3.7) 6:80e − 08 0.690707974

IFNA16 2.5 (1.5-4.3) 0.00092 0.329279706

HTR1A 2.2 (1.2-4) 0.0091 0.085717233

PSMD3 1.8 (1.1-2.8) 0.01 0.237502741

OXTR 1.7 (1.1-2.4) 0.0097 0.309158016

CALR 1.4 (1.1-1.7) 0.0019 0.038964007

CDK4 1.4 (1.1-1.8) 0.019 0.294461221

FABP5 1.2 (1-1.4) 0.019 0.211964852

PTPRC 0.86 (0.75-0.99) 0.029 -0.021611294

IL21R 0.86 (0.75-0.99) 0.033 -0.03685637

S100A11 0.8 (0.67-0.94) 0.0082 -0.039060903

TNFRSF4 0.78 (0.65-0.94) 0.0076 -0.01261923

PSMD14 0.74 (0.64-0.87) 0.00016 -0.20684683

CTLA4 0.68 (0.5-0.92) 0.013 -0.216324726

STC2 0.67 (0.46-0.96) 0.029 -0.543558507

NFATC2 0.54 (0.41-0.71) 7:80e − 06 -0.410010832

HR: hazard ratio; 95% CI: 95% confidence interval.
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Figure 2: Continued.
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annotations. Illumina gene expression profiles were obtained
using Illumina HumanRef-8 WG-DASL v3.0 for one cohort
of samples (GSE32918), and Affymetrix gene expression pro-
files based on Affymetrix Human Genome U133 Plus 2.0

(HG-U133 Plus_2.0) were obtained for two cohorts
(GSE10846 and GSE31312). The following steps were applied
for dataset screening. (i) The raw CEL files from Affymetrix
datasets were subjected to the robust multiarray average
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Figure 2: Kaplan-Meier (KM) survival curves, time-dependent ROC curves, and risk scores for patients in the training and independent
external validation datasets based on the multi-IRG classifier. (a) KM survival curve of the low- and high-risk groups in the GSE31312
cohort. (b) Area under the ROC curve (AUC) of the GSE31312 cohort at three and five years. (c, d) KM survival curve and ROC curves
for the GSE32918 cohort. (e, f) KM survival curve and ROC curves for the GSE10846 cohort. (g, h) Comparison of prognostic accuracy
between the multi-IRG classifier and other clinicopathological characteristics in the GSE31312 cohort based on ROC curves at three (g)
and five (h) years.
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Figure 3: Continued.
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algorithm in Affy software [28] to perform background
correction and quantile normalization. Moreover, oligonu-
cleotides per transcript were summed up with the median
polish algorithm [29]. The Illumina matrix files were sub-
jected to quantile normalization using Lumi software. (ii)
The HG-U133 Plus_2.0 probes were annotated using the
hgu133plus2.db package. The Illumina HumanRef-8 WG-
DASL v3.0 probe annotation sequences were obtained
from the GPL8432 Platform (https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GPL8432). (iii) For multiple
probes corresponding to the same gene, we used the genes
with the largest average value. (iv) Complete gene expres-
sion profiles and follow-up information on patients were
provided. As a result, 1022 DLBCL samples were selected,
including 470, 140, and 412 samples obtained from the
studies by Visco et al. [30], Barrans et al. [31], and Lenz
et al. [12], respectively.

2.2. IRG Retrieval.We obtained a list of IRGs from the Imm-
Port database (https://www.immport.org/home). Different
IRGs including chemokines, cytokines, and genes relevant
to the immune response were reserved. Overlapping genes

between GSE31312, GSE32918, and IRGs were selected for
further study. The 470 samples from GSE31312 were selected
as the training set for model development, whereas
GSE32918 and GSE10846 were chosen as validation sets.

2.3. Univariate Cox Regression and Least Absolute Shrinkage
and Selection Operator (LASSO) Analysis. To identify
survival-associated IRGs from the 1170 overlapping ones,
we performed univariate Cox regression analysis on con-
tinuous variables in cohorts GSE31312 and GSE32918.
Only IRGs with a significant value of P < 0:05 were
selected as survival-related IRGs. Based on 349 candidates
from the GSE31312 cohort and 71 from the GSE32918
cohort, 25 overlapping genes were identified as survival-
associated IRGs. The GSE31312 expression data of the 25
IRGs were integrated into LASSO regression to identify
prognostic signatures. Specifically, the LASSO regression
model was built into a multi-IRG-based classifier (contain-
ing 18 IRGs) to predict the OS of patients in the training
set. LASSO regression was carried out using the “glmnet”
package in R. To estimate the prognostic significance of
the IRG classifier, we used the “survivalROC” package in
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Figure 3: Risk score is an independent prognostic factor for DLBCL patients and may affect their chemotherapeutic response. (a, b) Forest
plots of univariate and multivariate Cox regression analyses of DLBCL patients in the GSE31312 cohort. (c, d) Forest plots of univariate and
multivariate Cox regression analyses of DLBCL patients in the GSE32918 cohort. (e, f) Forest plots of univariate and multivariate Cox
regression analyses of DLBCL patients in the GSE10846 cohort. (g) Stacked bar plot showing the chemotherapeutic response among the
low- and high-risk groups. CR: complete response; PD: progressive disease; PR: partial response; SD: stable disease.
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Figure 4: Continued.
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Figure 4: Continued.
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R, thereby obtaining the receiver operator characteristic
(ROC) curves of the three cohorts. The area under the
curve (AUC) at different times was calculated and com-
pared to validate the performance of the classifier.

Patients were classified into the low- and high-risk groups
by the median risk score of each series. Kaplan-Meier
(KM) survival curves were used to analyze the survival
of DLBCL patients.
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Figure 4: Development and validation of a nomogram. (a) Nomogram combining risk score and other clinicopathological covariates. (b, c)
Calibration plots indicating the correspondence between real observations and nomogram-predicted three-year (b) and five-year (c) survival
probabilities of the GSE31312 cohort. (d, e) Calibration plots indicating the correspondence between real observations and nomogram-
predicted three-year (d) and five-year (e) survival probabilities of the GSE10846 cohort. (f, g) ROC curves describing the accuracy of the
OS nomogram. In the training cohort, the AUC was 0.799 for three-year OS (f) and 0.823 for five-year OS (g). (h, i) ROC curves
describing the accuracy of the OS nomogram. In the GSE10846 cohort, the AUC was 0.751 for three-year OS (h) and 0.754 for five-year
OS (i). (j, k) ROC curves integrating age and subtype with the multi-IRG classifier to predict the outcome of DLBCL in patients from the
GSE32918 cohort. The AUC was 0.719 for three-year OS (j) and 0.718 for five-year OS (k).
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Figure 5: Continued.
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2.4. Development and Validation of a Nomogram for
Prognosis Prediction in DLBCL Patients. Next, we developed
a clinically applicable method to predict the prognosis of
individuals with DLBCL. Based on the results of multivariate
Cox regression analysis for OS, we integrated the risk score
and other clinicopathological covariates to build a nomo-
gram in the GSE31312 cohort. Predictive factors included
the risk score, age, sex, subtype, stage, ECOG performance
status, and the number of extranodal sites. The nomogram
was verified in the GSE10846 cohort using calibration and
ROC curves.

2.5. Comparison of Infiltration of Stromal and Immune Cells
between Low- and High-Risk Groups. To explore potential
mechanisms underlying variations in OS between the low-
and high-risk groups, we used ESTIMATE to obtain a micro-
environment score for each sample of the three cohorts [26].
The difference in microenvironment between the two groups
was analyzed using the Wilcox test [32]. Finally, we sepa-
rately plotted KM curves for the low- and high-immune
score groups in the three cohorts according to their cutoff
values. The cutoff values were determined using the “survmi-
ner” package in R based on the relationship between patient
OS and immune score in each independent cohort. The R
package “MaxStat,” which iteratively tests all probable cutoff
points to determine the value that achieves the maximum
rank statistic, was applied to dichotomize the immune score
and allocate patients to the low- and high-immune score
groups in each cohort and thus diminish the computational
batch effect.

2.6. Comparison of Leukocyte Subtypes between Low- and
High-Risk Groups. To calculate the fraction of immune cells
in the two groups of DLBCL patients, we employed the
LM22 gene signature, which distinguished 22 human
immune cell phenotypes, including B cells, natural killer
cells, T cells, myeloid subsets, and macrophages [27]. The
results were analyzed by CIBERSORT with a perm value set
to 1000; patients with P > 0:05 were excluded from further
investigation. The Wilcox test was used to analyze the dif-
ference in leukocyte subtype between the two groups. Fur-
thermore, the correlation among the 22 leukocyte subtypes
in DLBCL patients was calculated. Only correlation coeffi-
cients whose absolute value was greater than 0.15 were
considered significant.

2.7. Weighted Correlation Network Analysis (WGCNA) and
Transcription Factor (TF) Regulatory Network. To reveal
the potential molecular mechanisms associated with the clin-
ical significance of our IRG classifier, we explored the regula-
tory mechanisms of the 18 IRGs included in the classifier.
First, the GSE31312 expression profiles of 318 TFs were sub-
jected to WGCNA. We defined the first principal component
of every gene module by its eigengenes, which we regarded as
representative TFs. Gene significance (GS) represented the
correlation between module memberships and clinical charac-
teristics and was defined as the median P value (GS = lg P) of
every TF. Risk score-correlated modules were defined by P <
0:01, and a higher GS value was selected for further study. Fur-
thermore, to calculate the correlations between TFs of the highly
related modules and our classifier IRGs, only genes with
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Figure 5: TME and immune infiltration in DLBCL patients. Upper panels: violin pots comparing the immune and stromal scores by the
Wilcox test for low- and high-risk DLBCL patients. The white points represent mean values. Lower panels: KM curves of the low- and
high-immune score groups in the three cohorts: (a, b) GSE31312 cohort; (c, d) GSE32918 cohort; (e, f) GSE10846 cohort.
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Figure 6: Continued.
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absolute values of correlation > 0:4 and P < 0:001were retained
and built into a network using Cytoscape. Finally, functional
enrichment analyses based on gene ontology (GO) and Kyoto
encyclopedia of genes and genomes (KEGG) pathways were
performed to examine the potential molecular mechanism of
these genes.

2.8. Statistical Analysis. All analyses were carried out in R
version 3.6.1 and corresponding packages.

3. Results

3.1. Construction of the Prognostic Multi-IRG Classifier. Uni-
variate Cox regression analysis of the 1170 IRGs overlapping
between GSE31312, GSE32918, and IRG datasets
(Figure 1(a)) identified 349 IRGs from GSE31312 and 71
IRGs from GSE32918 as survival-associated IRGs based on
P < 0:05 (Figure 1(b)). Twenty-five survival-associated IRGs
were found to overlap between these two cohorts and were
integrated into LASSO regression to identify prognostic bio-
markers (Figures 1(c) and 1(d)). Finally, 18 IRGs were
selected to build the multi-IRG classifier (Table 1). Based
on the LASSO coefficients and expression levels of these 18
IRGs, we determined the median risk score for every patient
in the training cohort and allocated them to either the low- or
high-risk groups (Figures 1(e) and 1(f)). Based on KM sur-
vival analysis, we found that patients with high-risk scores
had markedly shorter OS than those in the low-risk group
(P < 0:0001, Figure 2(a)). To examine the prognostic signifi-

cance of the classifier, we introduced ROC curves. The AUC
in the training cohort was 0.741 and 0.758 for three- and five-
year survival, respectively (Figure 2(b)).

3.2. Validation of the Multi-IRG Classifier for Survival
Prediction in External Cohorts. To validate the classifier,
KM survival analysis and ROC curves were generated for
the GSE32918 and GSE10846 cohorts. In the GSE32918
cohort, high-risk patients tended to have shorter survival
(P = 0:0032, Figure 2(c)), and the AUC at three and five years
highlighted the predictive prognostic power of the multi-IRG
classifier (Figure 2(d)). A similar result was obtained with the
KM survival (P < 0:0001, Figure 2(e)) and ROC (Figure 2(f))
curves of the GSE10846 cohort. Furthermore, the AUC at
three and five years revealed that the IRG-based classifier
had better predictive power than other clinical characteristics
(Figures 2(g) and 2(h)).

3.3. Univariate and Multivariate Cox Regression Analyses of
Prognostic Factors and OS in DLBCL Patients. In the
GSE31312 cohort and two testing sets, we comprehensively
considered clinical characteristics, such as subtype, age, gen-
der, and stage, to perform univariate and multivariate Cox
regression analyses. This allowed us to determine the signifi-
cance of the multi-IRG classifier on OS. The multi-IRG clas-
sifier was found to be an independent prognostic tool for
DLBCL (Figures 3(a) and 3(b), GSE31312; Figures 3(c) and
3(d), GSE32918; and Figures 3(e) and 3(f), GSE10846). A
two-tailed Fisher test revealed a remarkably different
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Figure 6: Violin plots comparing the infiltration of 22 leukocyte subtypes in low- and high-risk DLBCL samples by theWilcox test. The white
points represent mean values: (a) GSE31312 cohort; (b) GSE32918 cohort; (c) GSE10846 cohort.
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Figure 7: Continued.
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chemotherapeutic response between the low- and high-risk
groups. Specifically, the high-risk group tended to have a
poor response and worse prognosis than the low-risk group
(P = 0:0023, Figure 3(g)).

3.4. Development and Validation of a Nomogram. To predict
the individual probability of OS and help clinicians provide
better care to DLBCL patients, a nomogram that integrated
the multi-IRG classifier and other clinical features was con-
structed (Figure 4(a)). A calibration curve was generated to
evaluate the accuracy of the nomogram. The combined
nomogram performed well in predicting the three- and
five-year survival rates of patients from the GSE31312
(Figures 4(b) and 4(c)) and GSE10846 (Figures 4(d) and
4(e)) cohorts, with a prediction probability close to the
observed one (Figures 4(b) and 4(e)). In the training cohort,
the AUC was 0.799 and 0.823 for three- and five-year sur-
vival, respectively. The nomogram performed far better than
stage, subtypes, ECOG, and other clinicopathological fea-
tures when determining a patient’s prognosis (Figures 4(f)–
4(i)). Even when limited information about the GSE32918
cohort, such as age and subtype, was combined with our
multi-IRG classifier, the prognostic accuracy of DLBCL was
substantially improved (Figures 4(j) and 4(k)). Thus, the
multi-IRG classifier provided additional prognostic value to
existing clinicopathological predictors of DLBCL.

3.5. Different Immune Infiltration Scores and Leukocyte
Subtypes Define Low- and High-Risk Groups. We introduced
the ESTIMATE algorithm to determine the immune and
stromal scores of the three cohorts (Figure 5). In the training
cohort, the high-risk score group tended to have a lower
immune infiltration score than the low-risk group (Wilcox
test P = 1:1e − 07, Figure 5(a)). The results were consistent
with the GSE32918 (Wilcox test P = 4:8e − 06, Figure 5(c))
and GSE10846 (Wilcox test P = 2:3e − 15, Figure 5(e))
cohorts. Based on the cutoff values of the immune score, we
separately performed KM survival analysis on the low- and
high-immune score groups (Figure 5(b), GSE31312;
Figure 5(d), GSE32918; and Figure 5(f), GSE10846). The
results confirmed a reduced survival in the low-immune score
group compared to the high-immune score group, thus indi-
rectly verifying the poor prognosis of the high-risk score group.
Next, the CIBERSORT algorithm was applied to evaluate the
proportions of 22 leukocyte subtypes in the three DLBCL
cohorts (Figure 6). The low- and high-risk score groups con-
sisted of distinct immune cell types. Memory B cells, naïve B
cells, CD4 memory-activated T cells, CD8 T cells, follicular
helper T cells, and M2 macrophages accounted for a consider-
able proportion of the DLBCL immune cell infiltration.

3.6. Associations among TME Components in DLBCL
Patients. To explore the potential associations among TME
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Figure 7: Potential connections among TME components in DLBCL patients. (a, c) Chord diagram of the correlation among 22 leukocyte
subtypes in patients from the GSE31312 cohort (a) and GSE10846 cohort (c). The red edge indicates a positive correlation between the
two cells, while the green one indicates a negative correlation, and node size indicates the number of cells interacting with the designated
cell. (b, d) Heatmap of the correlation among 22 leukocyte subtypes in patients from the GSE31312 cohort (b) and GSE10846 cohort (d).
(e) Heatmap of 22 immune cell proportions and immune infiltration, including immune and stromal scores.
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components in DLBCL patients, we performed correlation
tests on 22 infiltrating immune cells in DLBCL (Figure 7).
In the GSE31312 and GSE10846 cohorts, M1 macrophages,
memory B cells, resting mast cells, CD4 memory-activated
T cells, resting NK cells, CD8 T cells, and gamma delta T cells
were at the core of the correlation network (Figures 7(a) and
7(c)). The correlation heatmap suggested that CD4 memory-
activated T cells correlated positively with gamma delta T
cells and negatively with memory B cells (Figures 7(b) and
7(d)). Additionally, there was a strong positive correlation
between resting mast cells and activated NK cells. However,
resting mast cells correlated negatively with memory B cells
(Figures 7(a)–7(d)). Combining the ESTIMATE and CIBER-
SORT algorithms, we found that the high-immune cell infil-
tration group in DLBCL presented higher immune and
stromal scores, but lower tumor purity than the low-
immune cell infiltration group (Figure 7(e)).

3.7. TF Regulatory Network. TFs were integrated into
WGCNA to explore the potential regulatory mechanisms
related to the clinical significance revealed by the multi-IRG
classifier. Based on the scale-free R2 (R2 = 0:93) and average
linkage hierarchical clustering, we determined the soft-
thresholding power and identified six TF modules
(Figures 8(a)–8(c)). The yellow module, containing 15 TFs,
exhibited the strongest association with the risk score of
DLBCL patients. The green and turquoise modules, con-
taining 14 and 141 TFs, respectively, were also closely con-
nected with the patient risk score (Figures 8(d)–8(h)). TFs
of the three modules were correlated with the 18 IRGs

used to construct the classifier. Based on filtering criteria
(absolute values of correlation > 0:4 and P < 0:001), we
built a regulatory network in Cytoscape, which clearly
demonstrated the regulatory relationships among these
IRGs (Figure 9(a)). PTPRC, PSMD14, FABP5, GDF2,
STC2, S100A11, and BTC represented the seven hub genes.
Functional enrichment analysis identified the following
GO biological processes: regulation of hemopoiesis, connec-
tive tissue development, and regulation of growth
(Figure 9(b)).TheKEGGpathwayswere significantly enriched
in transcriptional misregulation in cancer, Epstein-Barr virus
infection, humanpapillomavirus infection, Th17 cell differen-
tiation, thyroid hormone signaling pathway, inflammatory
bowel disease, and Kaposi sarcoma-associated herpesvirus
infection (Figure 9(c)).

4. Discussion

As the most common subtype of non-Hodgkin lymphoma,
DLBCL is an aggressive and heterogeneous tumor. Substan-
tial progress has been made in the immunotherapy of DLBCL
[33–35]. Several studies have demonstrated that the TME
influences growth and progress of tumor cells and is associ-
ated with patient prognosis [10, 11, 26, 36]. The identification
of immune infiltrating components could improve patient
prognosis and result in biomarkers for predicting the out-
come of DLBCL patients receiving immunotherapy or other
treatments [10, 37–40].

Here, we developed and validated a novel tool for the
prognostic stratification of patients with DLBCL into the
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Figure 8: WGCNA on TFs of the GSE31312 cohort. (a) Left panel: scale-free topology fit index for soft-thresholding powers. Right panel:
mean connectivity for soft-thresholding powers. (b) Scale-free R2 (R2 = 0:93). (c) Clustering dendrogram of TFs in DLBCL patients. (d)
Distribution of average gene significances and errors in six modules related to risk scores. (e) Pertinence between clinical traits and six
modules. (f) Scatter plots of GS for risk scores corresponding to membership in yellow, green, and turquoise modules, with their
correlation coefficients and P value.
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low- and high-risk groups. The proposed risk score provided
additional prognostic value to existing clinicopathological
predictors of DLBCL. This is the first study to demonstrate
the clinical utility of the multi-IRG signature as a prognostic
tool in patients with DLBCL. Moreover, we propose a
prognostic nomogram that allows for individualized esti-
mation of three- and five-year OS probability among
patients. The multi-IRG classifier and the associated
nomogram may improve surveillance and guide decision-

making regarding the administration of adjuvant chemo-
therapy and treatment duration.

The present study has identified various hub IRGs associ-
ated with OS in DLBCL patients. PTPRC (also known as
CD45), a member of the protein tyrosine phosphatase
(PTP) family, is involved in oncogenic transformation, cell
growth, and differentiation [41]. This protein is an essential
regulator of T and B cell antigen receptor signaling and is
associated with a variety of cancers, including multiple
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Figure 9: Regulatory network analysis. (a) Regulatory network diagram of risk score-relevant TFs and classifier IRGs. The green circular
nodes represent protective genes (HR < 1), the red circular nodes represent dangerous genes (HR > 1), and the triangular nodes represent
TFs. The red edge indicates a positive correlation, while the green one indicates a negative correlation. (b) GO analysis of the genes in the
regulatory network. (c) KEGG analysis of the genes in the regulatory network.
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myeloma, acute myeloid leukemia, and Barrett’s cancer [42–
44]. However, its role in DLBCL remains poorly explored
[45]. This study suggests that PTPRC exerts a protective
effect in patients with DLBCL, possibly through transcrip-
tional regulation. PSMD14 encodes a component of the 26S
proteasome, which is involved in apoptosis, cell cycle, and
DNA damage repair [46, 47]. S100A11 is a member of the
S100 family of proteins and plays an important role in intra-
cellular calcium signaling. Altered expression and rearrange-
ments of S100A11 have been implicated in tumors [48, 49].
Chan found that S100 expressed by antigen-presenting cells
in patients with DLBCL was associated with a high survival
rate [40]. FABP5 belongs to the class of fatty acid-binding
proteins (FABPs) and binds to retinoic acid. This binding
functions as an apoptotic as well as a differentiation signal
in transformed cells [50, 51]. FABP levels are elevated in car-
cinomas, neoplastic skin cells, and gliomas, which are highly
resistant to apoptosis [52–54]. Apoptosis-resistant (BCL-2-
expressing) cells are known to alter the ability of retinoic acid
to induce apoptosis [55]. Therefore, exploring the association
between FABP5 and BCL-2 might reveal the mechanistic role
of BCL-2 in DLBCL and point to potential therapeutic bio-
markers. GDF2 (also known as BMP-9), a member of the
transforming growth factor β superfamily, promotes the pro-
liferation and migration of cancer cells [56]. Cyclin-
dependent kinase 4 (CDK4), a crucial player in cell cycle pro-
gression, is associated with DLBCL. The CDK4 inhibitor abe-
maciclib strongly suppresses cell proliferation and induces
apoptosis in DLBCL [57]. The present results point to a
strong positive correlation between CDK4 and the TFs
KZF1 and NCAPG. Identifying the mechanism underlying
this relationship could accelerate the development of a suit-
able treatment. Functional enrichment analysis indicated
that these genes might be involved in various pathways
related to cancer, including Epstein-Barr virus infection,
human papillomavirus infection, and Th17 cell differentia-
tion. Th17 cells may affect patient prognosis and exert antitu-
mor immune effects during the occurrence and progression
of DLBCL. These cells and related cytokines interact with
other immune cells in the TME to provide direct or indirect
antitumor immunity [58–61].

Assessing the immune microenvironment using the
ESTIMATE algorithm, we discovered that the degree of
immune infiltration influenced OS in DLBCL patients in
both the training and validation cohorts. This indicated that
immune infiltration was closely associated with the outcome
of DLBCL. Immune cells of the TME have been proposed for
the prognostic assessment of certain cancers, such as mela-
noma, gastric cancer, liver cancer, and DLBCL [10, 62–65].

Based on the multi-IRG classifier, DLBCL patients
were allocated to the low- and high-risk score groups.
KM analysis indicated that the prognosis was better in
the low-risk group than in the high-risk group, in both
the training and validation cohorts. The Wilcox test
showed that both stromal and immune scores differed sig-
nificantly between the low- and high-risk groups. Specifi-
cally, the scores were higher in the low-risk group, which
was related to greater immune infiltration and a better
outcome. Therefore, we believe that the immune infiltra-

tion and OS of DLBCL patients might be influenced by
the comprehensive expression of these 18 IRGs.

According to the CIBERSORT algorithm, memory B
cells, naïve B cells, CD4 memory-activated T cells, CD8 T
cells, follicular helper T cells, and M2 macrophages were
the main infiltrating immune cells in DLBCL patients of the
three cohorts. The Wilcox test indicated that synthetic
expression of the 18 IRGs could lead to distinct immune cell
infiltration types in DLBCL patients. The proportion of CD4
memory-activated T cells and follicular helper T cells was rel-
atively high in the low-risk group. In contrast, memory B
cells and naïve B cells were relatively more abundant in the
high-risk group. This discrepancy suggests that the shorter
OS of the high-risk group might result from an imbalance
between these four immune cell types. CD4 memory activa-
tion in T cells correlated negatively with memory B cells.
We speculate that infiltrated memory B cells in the high-
risk group may somehow inhibit the infiltration of CD4
memory-activated T cells, thus contributing to the different
prognosis between the low- and high-risk score groups.

Finally, we integrated multiple IRGs to construct a novel
prognostic classifier via LASSO regression analysis, an
unprecedented approach in DLBCL. The proposed risk score
could complement existing clinicopathological predictors of
DLBCL. The classifier was confirmed to have good prediction
performance in the validation cohorts. Notably, few studies
have applied both ESTIMATE and CIBERSORT algorithms
to explore immune infiltration in DLBCL. However, the lack
of further experiments investigating the proportion and spe-
cific cell types of immune infiltration is a limitation of the
present study.

In conclusion, the multi-IRG classifier can effectively
allocate patients with DLBCL to groups with different risks.
Accordingly, IRGs may complement traditional clinico-
pathological risk factors to generate a comprehensive prog-
nostic tool. The proposed nomogram incorporating the risk
score and existing clinical prognostic predictors might facil-
itate personalized follow-up and management of patients
with DLBCL.

Data Availability

The publicly available datasets were analyzed in this study.
Data sets used in this study could be downloaded from NCBI
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih
.gov/geo/) under the accession numbers GSE31312,
GSE10846, and GSE32918. Illumina gene expression profiles
were obtained using Illumina HumanRef-8 WG-DASL v3.0
for one cohort of samples (GSE32918), and Affymetrix gene
expression profiles based on Affymetrix Human Genome
U133 Plus 2.0 (HG-U133 Plus_2.0) were obtained for two
cohorts (GSE10846 and GSE31312). The following steps
were applied for dataset screening. (i) The raw CEL files from
Affymetrix datasets were subjected to the robust multiarray
average algorithm in Affy software [28] to perform back-
ground correction and quantile normalization. Moreover,
oligonucleotides per transcript were summed up with the
median polish algorithm [29]. The Illumina matrix files were
subjected to quantile normalization using Lumi software. (ii)
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The HG-U133 Plus_2.0 probes were annotated using the
hgu133plus2.db package. The Illumina HumanRef-8 WG-
DASL v3.0 probe annotation sequences were obtained from
the GPL8432 Platform (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GPL8432). (iii) For multiple probes corre-
sponding to the same gene, we used the genes with the largest
average value. (iv) Complete gene expression profiles and
follow-up information on patients were provided.
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