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Stress tolerance of Xerocomus badius 
and its promotion effect on seed germination 
and seedling growth of annual ryegrass 
under salt and drought stresses
Binghua Liu1,2†  , Xinghong Liu1†, Fangchun Liu1,3*, Hailin Ma1,3*, Bingyao Ma1,3 and Lin Peng1

Abstract 

Comparative evaluations were conducted to assess the effects of different pH levels, NaCl-induced salt stress, and 
PEG-induced drought stress on the mycelial growth of Xerocomus badius. The results showed that X. badius mycelium 
grew well at a wide pH range of 5.00 ~ 9.00. Although the mycelium remained viable, mycelial growth of X. badius 
was significantly inhibited with increasing salt and drought stresses. Furthermore, a soilless experiment in Petri dishes 
was performed to investigate the potential of X. badius to induce beneficial effects on seed germination and seedling 
growth of annual ryegrass (Lolium multiflorum Lam.) under salt and drought stresses. Seed priming with X. badius 
enhanced the seedling growth of L. multiflorum Lam. under NaCl-induced salt stress and PEG-induced drought stress. 
However, X. badius did not significantly improve the seed germination under non-stress and mild stress conditions. 
It suggested that X. badius inoculation with seeds was not essential for seed germination under non-stress and mild 
stress conditions, but contributed highly to seedling growth under severe stress conditions. Therefore, seed prim-
ing with X. badius on ryegrass could be an effective approach to enhance plant tolerance against drought and salt 
stresses. X. badius could be a good candidate for the inoculation of ectomycorrhizal plants cultivation programs in 
mild saline and semiarid areas.
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Introduction
Abiotic and biotic stresses influence plant growth, sur-
vival and productivity. Drought and high salinity are 
the two most important environmental factors that 
negatively affect seed germination, seedling growth and 
development, and ultimately influence crop yield, food 
quality and global food security. Application of stress tol-
erant plant growth promoting fungi (PGPF) may enhance 
crop seed germination, seedling establishment, plant 
growth, and productivity under adverse environmental 

conditions (de Zelicourt et al. 2013; Guerrero-Galán et al. 
2019; Hossain et al. 2017; Kumar and Verma 2018; Tomer 
et al. 2016; Vijayabharathi et al. 2016; Vimal et al. 2017; 
Yan et al. 2019).

Mycorrhizal fungi are one of the commonly occur-
ring microorganisms in soil, and more than 80% of land 
plants naturally establish mutualistic symbiotic rela-
tionships with these fungi (Bonfante and Genre 2010). 
Mycorrhizal fungi play an increasing vitally impor-
tant role in host plants growth promotion, in inducing 
plant stress tolerance and agricultural sustainability 
under various environmental stress conditions (Behie 
and Bidochka 2014; Bonfante and Genre 2010; Courty 
et  al. 2010; Garcia et  al. 2016; Hossain et  al. 2017; 
Javeria et  al. 2017; Shen et  al. 2018; Yan et  al. 2019). 
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Ectomycorrhizal (ECM) fungi, about 7000 to 10,000 
species in the world, play a vital role in plants nutri-
ent cycle by establishing mutual symbiosis with plants’ 
roots (Becquer et  al. 2019; Cairney 2012; Taylor and 
Alexander 2005). Application of the beneficial myc-
orrhizal fungi in agricultural practices promises to be 
a fundamental tool for sustainability of crop produc-
tion (Owen et al. 2015; Prasad et al. 2016; Tomer et al. 
2016). In order to develop controlled ectomycorrhiza-
tion practices that are suitable for the inoculation of 
field plants and are efficient in promoting host plants’ 
growth under specific environmental conditions, it is 
necessary to isolate potential ECM fungi and evaluate 
their biological, physiological and symbiotic character-
istics, as well as the specificity that they have with cer-
tain hosts, under the controlled laboratory conditions.

Here, we investigated the effects of different pH lev-
els, salt stress and drought stress on mycelial growth of 
ECM fungus Xerocomus badius (synonyms for Boletus 
badius and Imleria badia) (Species Fungorum 2019) 
in the tolerance test. Based on the findings from the 
tolerance test with X. badius and the verified mutual-
istic symbiosis between Lolium multiflorum Lam. and 
X. badius driven by seed inoculation (Liu et  al. 2019), 
we propose that X. badius is expected to enhance stress 
tolerance of L. multiflorum Lam. under drought and 
salt stresses. Therefore, symbiotic tests were carried out 
to investigate the effect of seed-priming with the spore 
suspensions of X. badius on seed germination and 
seedling growth of L. multiflorum Lam. under differ-
ent NaCl-induced salt stress and PEG-induced drought 
stress conditions.

The general, objective of this study was (1) to evalu-
ate the stress tolerance of X. badius under different pH 
values, salt concentrations and drought, that could be 
helpful in determining optimized protocols for the veg-
etative propagation under laboratory conditions, and to 
(2) verify the improvement effect of seed priming with 
fungus suspension on seed germination and seedling 
growth of L. multiflorum Lam. under drought and salt 
stressed conditions, that could have important implica-
tions for the use of these fungi as inoculants on agricul-
tural crops.

Materials and methods
Plant material, fungus strain and inoculum preparation
Seeds of L. multiflorum Lam. and ECM fungus X. badius 
(Preservation No. cfcc5946) were obtained from the Xin-
rui Seed Industry Limited Company and China Forestry 
Culture Collection Center, respectively. Fungus mainte-
nance, incubation, inoculation, and seeds pretreatment 
followed the methods of Liu et al.. (Liu et al. 2019).

Effect of pH, salt, and drought stress on mycelial growth 
of X. badius
Three single-factor (pH, salt, or drought) experiments 
were performed. Five pH values, namely, 5.00, 6.00, 7.00, 
8.00, and 9.00, were implemented to study the effect of 
pH on the mycelial growth of X. badius. Prior to steri-
lization, the pH level of the potato dextrose agar (PDA) 
medium was adjusted with an electronic pH meter 
(PHS-3C, INESA Ltd, Shanghai, China) by adding HCl 
(1.00  mol L− 1) or KOH (1.00  mol L− 1). Salt stress was 
imposed by adding 0.20% (w/v), 0.40% (w/v), 0.60% 
(w/v), and 0.80% (w/v) NaCl (corresponding to 34.22, 
68.45, 102.67 and 136.89 mmol L− 1) to the PDA medium 
(pH = 6.50) before sterilization. X. badius growing at the 
absence of NaCl was used as the control. Drought stress 
was induced using 0.00% (w/v), 5.00% (w/v), 10.00% 
(w/v), 15.00% (w/v), and 20.00% (w/v) polyethylene gly-
col with a molecular weight of 6000 (PEG-6000) to adjust 
the water potential of the PDA medium (pH = 6.50) 
to approximately − 0.16, − 0.27, − 0.45, − 0.72, and 
− 1.07  MPa, respectively. As PEG reduces agar solidi-
fication, fungal isolates were grown in liquid medium 
(potato dextrose medium). To avoid submersion, a steri-
lized grit support was placed in the Petri dish with the 
liquid medium just covering the grit, and a fiber filter was 
placed on the grit with an inoculation on the filter.

All colonies were cultured in Petri dishes (diameter: 
9.00  cm) filled with 10.00  mL of the modified culture 
medium as described above. Mycelial plugs with diam-
eter of 5.00  mm were taken from the 7-day-old colony 
edge by using a sterilized mechanical puncher and trans-
ferred to the different tested media. At least six replicates 
were performed for each treatment. The inoculated Petri 
dishes were sealed with a strip of parafilm and main-
tained in the dark at 25.00 ± 1.00  °C and 60.00% rela-
tive humidity for 10 days in an incubator with constant 
humidity.

Effect of X. badius inoculation on seed germination 
and seedling growth of L. multiflorum Lam. under salt 
and drought conditions
For each treatment, 30 X. badius-inoculated or non-inoc-
ulated seeds of L. multiflorum Lam. were sown in each 
Petri dish (diameter: 9.00 cm) with two layers of humid 
filter paper covered at the bottom. Two days after sowing, 
salt and drought were applied to the X. badius-inoculated 
and non-inoculated seeds. Salt stress was applied by 
adding 0.00% (w/v), 0.40% (w/v), and 0.80% (w/v) NaCl 
(according to the preliminary experiment) in the steri-
lized deionized water. Drought was imposed by adding 
0.00% (w/v), 10.00% (w/v), and 20.00% (w/v) PEG-6000 
in the sterilized deionized water. All Petri dishes were 
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placed in a random position on a shelf in the laboratory. 
The experiment lasted for 2 weeks, during which all seed-
lings were watered every other day with NaCl, PEG-6000 
solution, or sterilized water (control) and supplied twice 
a week with sterilized half-strength Hoagland’s solution 
(pH = 6.50) (Hoagland and Arnon 1950). In the mean-
time, the residual solution was poured out, and the filter 
papers were changed to avoid the effects of ion accumu-
lation. To avoid edge effects, all Petri dishes were rotated 
weekly.

Measurements of colony diameter (CD) and colony average 
growth rate (CGR)
After 7 days of incubation, the CD in different media was 
measured in the perpendicular direction using a beveled 
straightedge. The average of two diameter measurements 
along the perpendicular axes was used to estimate the 
colony size during the incubation period. The CGR was 
determined as the average increase in diameter divided 
by the total number of incubation days.

Measurements of seed germination rate (GR), shoot 
height (SH), and seedling total fresh weight (FW) 
One week after sowing, the cumulative number of ger-
minated seeds in the different treatments was recorded, 
and the GR, which was defined as one hundred times the 
number of germinated seeds divided by the total number 
of seeds, was calculated. At the end of the experiment, 
the seedlings in the different treatments were harvested 
separately, washed in running tap water to remove the 
chemical substances, and divided into shoot and root 
portions. The SH and FW were measured.

Statistical analyses
The experiments were performed using a completely 
randomized design. All the measurements were con-
ducted in sextuplicate at least. Data were presented as 
mean ± standard deviation. Statistical analysis was car-
ried out using the SPSS-13.0 for Windows (Standard 
released version 13.0 for Windows; SPSS Inc., IL, USA). 
One-way analysis of variance (ANOVA) was used to eval-
uate the effects of different pH values, salt concentrations 
and drought on mycelial growth of X. badius. Two-way 
ANOVA was used to evaluate the effects of X. badius 
inoculation and salt or drought stress on seed germina-
tion and seedling growth of L. multiflorum Lam.. Tuk-
ey’s honestly significant difference (HSD) post hoc test 
(P ≤ 0.05) was performed to test the existence of statis-
tical differences for the same parameter among different 
treatments.

Results
Effect of pH on mycelial growth
One-way ANOVA showed that the pH level of the 
medium had no significant influence on the mycelial 
growth of X. badius (P > 0. 05, Table 1). X. badius myce-
lium had the ability to grow well at a wide pH range of 
5.00 ~ 9.00. After 7 days of incubation, X. badius cul-
tured in the medium with pH 8.00 showed the largest CD 
(7.14 cm) and the highest CGR (1.43 cm day− 1), and the 
smallest CD (6.83 cm) and lowest CGR (1.37 cm day− 1) 
were observed in medium with pH 5.00. However, statis-
tical analysis showed no significant difference (P > 0.05) 
in the CD and CGR among the media with different pH 
levels.

Effect of salt stress on mycelial growth
The NaCl concentration of the culture medium had sig-
nificant negative effect on the mycelial growth of X. 
badius (P < 0.001, Table  2). Significant differences in 
the CD and CGR of X. badius were observed among 
the media with different NaCl concentrations (P ≤ 0.05, 
Table 2). X. badius in the control medium (without NaCl) 
grew best, as manifested by the largest CD (7.56 cm) and 
highest CGR (1.51  cm day− 1). By contrast, the mycelial 
growth of X. badius in the presence of NaCl was signifi-
cantly inhibited and decreased with increasing NaCl con-
centration. X. badius in 0.80% NaCl medium showed the 
smallest CD (5.83 cm) and lowest CGR (1.17 cm day− 1).

Effect of drought stress on mycelial growth
PEG-induced drought stress had significant effect on 
the mycelial growth of X. badius (P < 0.001, Table 3). The 
CD and CGR of X. badius in the control (− 0.16  MPa) 
were 8.27  cm and 1.18  cm day− 1, respectively. The 
CD (8.18  cm) and CGR (1.17  cm day− 1) of X. badius 
in 5.00% PEG (− 0.27  MPa) medium were not signifi-
cantly different (P > 0.05) from those of the control. By 

Table 1  Influence of  the  medium pH on  mycelial growth 
of X. badius 

Data are presented as mean of at least six replicates ± standard deviation. Small 
letters in the same column show statistically significant differences among 
different pH treatments for the same parameter at P ≤ 0.05 based on Tukey’s 
HSD post hoc test

pH Colony diameter (cm) Colony average 
growth rate (cm 
day− 1)

One-way ANOVA

5.00 6.83 ± 0.25a 1.37 ± 0.05a 0.988

6.00 6.91 ± 0.35a 1.38 ± 0.07a

7.00 7.00 ± 0.29a 1.40 ± 0.06a

8.00 7.14 ± 0.31a 1.43 ± 0.06a

9.00 6.89 ± 0.32a 1.38 ± 0.06a
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contrast, the mycelial growth of X. badius was signifi-
cantly inhibited by 10.00∼20.00% PEG-induced drought 
stress (− 0.45 ∼ − 1.07  MPa). Incubation in 20.00% 
PEG (− 1.07  MPa) medium produced the smallest CD 
(2.28 cm) and lowest CGR (0.33 cm day− 1).

Effect of X. badius inoculation on seed germination of L. 
multiflorum Lam. under salt and drought conditions
X. badius inoculation (P ≤ 0.001), salinity (P ≤ 0.001) 
and their interaction (P ≤ 0.05) had significant 
effects on the GR (Table  4). In comparison with the 

non-saline treatment, the GRs of both non-inoculated 
and X. badius-inoculated L. multiflorum Lam. seeds 
were decreased by the NaCl-induced salt stress, and the 
non-inoculated seeds showed larger decrease in GR than 
the X. badius-inoculated ones. Compared with the non-
saline condition, 0.40% and 0.80% NaCl induced 17.99% 
and 43.47% decrease in the GR of the non-inoculated 
seeds, respectively. The GRs of the X. badius-inoculated 
seeds decreased by 5.49 and 28.84% under 0.40% and 
0.80% NaCl condition, respectively. Under non-saline 
condition, X. badius had no significant influence on the 

Table 2  Influence of NaCl-induced salt stress on mycelial growth of X. badius

Data are presented as mean of at least six replicates ± standard deviation. Small letters in the same column show statistically significant differences among different 
NaCl-induced salt stress treatments for the same parameter at P ≤ 0.05 based on Tukey’s HSD post hoc test. ***Significant at P ≤ 0.001

NaCl concentration (%) Colony diameter (cm) Colony average growth rate (cm day− 1) One-way ANOVA

0.00 7.56 ± 0.21a 1.51 ± 0.04a 45.669***

0.20 7.16 ± 0.26b 1.43 ± 0.05b

0.40 6.68 ± 0.37c 1.34 ± 0.07c

0.60 6.53 ± 0.28c 1.31 ± 0.06c

0.80 5.83 ± 0.17d 1.17 ± 0.03d

Table 3  Influence of PEG-6000-induced drought stress on mycelial growth of X. badius 

Data are presented as mean of at least six replicates ± standard deviation. Small letters in the same column show statistically significant differences among different 
PEG-induced drought stress treatments for the same parameter at P ≤ 0.05 based on Tukey’s HSD post hoc test. ***Significant at P ≤ 0.001

PEG-6000 concentration (%) Colony diameter (cm) Colony average growth rate (cm day− 1) One-way ANOVA

0.00 8.27 ± 0.16a 1.18 ± 0.04a 96.365***

5.00 8.18 ± 0.09a 1.17 ± 0.05a

10.00 6. 83 ± 0.12b 0.98 ± 0.07b

15.00 5.89 ± 0.23c 0.84 ± 0.06c

20.00 2.28 ± 0.43d 0.33 ± 0.03d

Table 4  Effect of X. badius inoculation on seed germination and seedling growth of L. multiflorum Lam. under different 
NaCl-induced salt conditions

Data are presented as mean of six replicates ± standard deviation. Small letters in the same column show statistically significant differences among different salt stress 
treatments for the same parameter at P ≤ 0.05 based on Tukey’s HSD post hoc test. *, ** and ***Significant at P ≤ 0.05, 0.01, and 0.001, respectively

NaCl concentration (%) Germination rate (%) Shoot height (cm) Seedling 
fresh weight 
(g)

Non-inoculated 0.00 93.29 ± 2.01a 22.61 ± 1.01a 5.64 ± 0.55b

0.40 76.51 ± 1.74b 18.33 ± 1.54bc 4.76 ± 0.62c

0.80 52.74 ± 4.63d 14.67 ± 1.63d 3.22 ± 0.43d

X. badius-inoculated 0.00 90.67 ± 1.89a 26.14 ± 1.29a 7.20 ± 0.18a

0.40 85.69 ± 3.22ab 23.29 ± 1.22a 6.05 ± 0.39b

0.80 64.52 ± 2.98c 18.83 ± 1.98bc 4.27 ± 0.47c

Two-way ANOVA

 Salt 34.710*** 6.408** 383.828***

 X. badius 18.866*** 142.712*** 372.925***

  Salt × X. badius 3.272* 9.544*** 10.846***
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GR of L. multiflorum Lam., but the GR was enhanced by 
X. badius under 0.40% and 0.80% NaCl-induced saline 
conditions. Compared with the non-inoculated seeds, 
the GRs of the X. badius-inoculated seeds increased by 
12.00% and 22.34% under 0.40% and 0.80% NaCl condi-
tion, respectively.

Compared with the non-drought condition, the 
PEG-induced drought decreased the GRs of both non-
inoculated and X. badius-inoculated seeds, and the non-
inoculated seeds showed larger decrease in GR than the 
X. badius-inoculated ones (Table 5). Compared with the 
non-drought condition, 10.00% PEG-induced drought 
stress led to 24.31% and 9.23% decrease in the GRs of the 
non-inoculated and X. badius-inoculated seeds, respec-
tively. Meanwhile, 20.00% PEG-induced drought stress 
led to 49.32% and 37.20% decrease in the GRs of the 
non-inoculated and X. badius-inoculated seeds, respec-
tively. Under non-drought condition, X. badius had no 
significant influence on the GR of L. multiflorum Lam., 

but X. badius enhanced GR of L. multiflorum Lam. 
under 10.00% and 20.00% PEG-induced drought condi-
tions. Compared with the non-inoculated seeds, the GRs 
of the X. badius-inoculated seeds increased by 19.51% 
and 23.48% under 10.00% and 20.00% PEG condition, 
respectively.

Effect of X. badius inoculation on seedling growth of L. 
multiflorum Lam. under salt and drought conditions
X. badius inoculation, salinity, and their interaction had 
significant effects on the SH and FW (Table  4). Com-
pared with those under the non-saline condition, salt 
stress inhibited the growth and biomass accumulation of 
non-inoculated and X. badius-inoculated L. multiflorum 
Lam. seedlings, and the non-inoculated seedlings showed 
a larger decrease than the X. badius-inoculated ones 
(Fig. 1). Compared with those under the non-saline con-
dition, under 0.40% NaCl condition, the SHs of the non-
inoculated and X. badius-inoculated seedlings decreased 

Table 5  Effect of X. badius inoculation on seed germination and seedling growth of L. multiflorum Lam. under different 
PEG-6000-induced drought conditions

Data are presented as mean of six replicates ± standard deviation. Small letters in the same column show statistically significant differences among different drought 
stress treatments for the same parameter at P ≤ 0.05 based on Tukey’s HSD post hoc test. *, ** and ***Significant at P ≤ 0.05, 0.01, and 0.001, respectively

PEG-6000 concentration 
(%)

Germination rate (%) Shoot height (cm) Seedling 
fresh weight 
(g)

Non-inoculated 0.00 92.18 ± 1.88a 23.22 ± 1.72b 5.58 ± 0.38b

10.00 69.77 ± 1.89bc 16.45 ± 1.36cd 3.92 ± 0.39c

20.00 46.72 ± 3.18d 13.86 ± 1.29d 2.74 ± 0.51d

X. badius-inoculated 0.00 91.86 ± 3.21a 27.76 ± 2.01a 7.19 ± 0.25a

10.00 83.38 ± 2.77ab 21.39 ± 1.17b 5.36 ± 0.44b

20.00 57.69 ± 3.26c 17.90 ± 1.43c 3.88 ± 0.71c

Two-way ANOVA

 Drought 41.099*** 53.134*** 121.025***

 X. badius 12.247*** 76.028*** 115.298***

 Drought × X. badius 7.418** 13.532*** 4.952*

Fig. 1  Typical phenotype of L. multiflorum Lam. seedlings 2 weeks after inoculation or non-inoculation with X. badius under different NaCl-induced 
salt conditions
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by 18.93% and 15.60%, respectively, while the FWs 
decreased by 10.90% and 15.97%, respectively. Under 
0.80% NaCl condition, the SHs of the non-inoculated and 
X. badius-inoculated seedlings decreased by 35.12% and 
42.91% respectively, while the FWs decreased by 27.96% 
and 40.69%, respectively. X. badius inoculation improved 
the SH and FW of L. multiflorum Lam. seedlings under 
non-saline and saline conditions. Under non-saline con-
dition, X. badius increased the SH and FW by 15.61% 
and 27.66%, respectively. Under 0.40% and 0.80% NaCl 
condition, X. badius increased SH by 27.06% and 28.36%, 
respectively, while the FWs of the X. badius-inoculated 
seedlings increased by 27.10% and 32.61%, respectively.

X. badius inoculation, drought, and their interac-
tion had significant effects on the SH and FW (Table 5). 
Compared with those under the non-drought condition, 
drought stress inhibited the growth and biomass accu-
mulation of non-inoculated and X. badius-inoculated 
L. multiflorum Lam. seedlings, and the non-inoculated 
seedlings showed a larger decrease than the X. badius-
inoculated ones (Fig. 2). Compared with those under the 
non-drought condition, the SHs of the non-inoculated 
and X. badius-inoculated seedlings decreased by 29.16% 
and 22.95%, respectively, under 10.00% PEG condition 
and by 40.31% and 37.36%, respectively, under 20.00% 
PEG condition. The FWs of the non-inoculated and X. 
badius-inoculated seedlings decreased by 29.75% and 
25.45%, respectively, under10.00% PEG condition and by 
50.90% and 46.04%, respectively, under 20.00% PEG con-
dition. X. badius inoculation improved the SHs and FWs 
of the L. multiflorum Lam. seedlings under non-drought 
and drought stress conditions. Compared with those of 
the non-inoculated seedlings, the SHs of the X. badius-
inoculated seedlings increased by 19.55%, 30.03%, and 
29.15% under 0.00%, 10.0%, and 20.00% PEG-induced 
drought condition, respectively, and the FWs increased 
by 28.86%, 36.73%, and 41.61% under 0.00%, 10.00%, and 
20.00% PEG-induced drought condition, respectively.

Discussion
Effect of pH on mycelial growth
The pH level is one of the crucial factors affecting the 
mycorrhizal fungus growth and development mainly 
by influencing the nutrient availability of the culture 
medium (Daza et al. 2006; Lazarević et al. 2016; Xu et al. 
2008). ECM fungi can grow under conditions from acidic 
to slight alkaline (Zhu et al. 2008; Siri-in et al. 2014), but 
each fungal species has its optimum pH level for mycelial 
growth (Lazarević et  al. 2016). For example, the myce-
lium of Scleroderma sinnamariense can grow at a pH 
range of 2.00 ~ 9.00, with the optimal pH of 5.00 (Siri-in 
et al. 2014). Boletus edulis and Hebeloma sp. showed the 
largest CD at pH 5.00, and Laccaria bicolor and Lacca-
ria deliciosus grew best at pH 6.00 (Xu et al. 2008). The 
optimum pH levels of the aforementioned fungi were 
lower than 6.00, suggesting a good adaption to acid 
conditions. However, fungal species, such as Amanita 
caesarea (Daza et  al. 2006), Laccaria insulsus (Xu et  al. 
2008), and some pleosporalean fungi from saline areas 
(Qin et al. 2017), grow best at neutral or slightly alkaline 
conditions. X. badius was isolated from soils with a pH 
range of 6.50 ~ 7.50. The colony may grow well in a cul-
ture medium with a pH level similar to its natural soil 
environments. Therefore, the pH conditions of the soil 
from which the fungi are isolated should be considered to 
optimize the culture and propagation of the fungi in the 
laboratory and to improve the production of mycorrhizal 
plants in the nursery. The results indicated that the myce-
lium of X. badius could grow well at the wide pH range of 
5.00 ~ 9.00 (Table 1). After 7 days of incubation, X. badius 
grown at pH 8.00 showed the largest CD and the high-
est CGR, and the smallest CD and the lowest CGR were 
observed at pH 5.00. However, no significant difference 
(P > 0.05) were found in the CDs and CGRs among the 
media with different pH values (Table 1). X. badius might 
present high resistance under alkaline conditions, and 

Fig. 2  Typical phenotype of L. multiflorum Lam. seedlings 2 weeks after inoculation or non-inoculation with X. badius under different 
PEG-6000-induced drought conditions
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this characteristic is typical of alkalophilic fungal species 
(Kulkarni et al. 2019).

Effect of salt stress on mycelial growth
Salt stress is one of the most important limiting factors 
in agriculture worldwide. The practical use of benefi-
cial mycorrhizal fungi with high salt tolerance has been 
proved to be one of the most effective strategies to allevi-
ate the adverse effects on crops in saline areas (Guerrero-
Galán et al. 2019; Kumar and Verma 2018). Salt-tolerance 
evaluation of mycorrhizal fungi in the laboratory could 
provide a useful theoretical reference for the selection of 
the proper fungal strain. In this study, X. badius was very 
sensitive to salt stress, although the mycelium also grew 
very well, that is consistent with observations on other 
fungi (Qin et al. 2017; Tang et al. 2009). Mycelial growth, 
as reflected by CD and CGR, was significantly inhibited 
with increasing NaCl concentration (P < 0.001, Table  2). 
X. badius in the non-saline medium grew best as man-
ifested by the highest value in CD and CGR. X. badius 
in 0.80% NaCl medium showed the lowest value in CD 
and CGR, suggesting the worst growth performance 
(Table 2). Probably, X. badius had poor ability to absorb 
Na+ and Cl−, and the accumulation of these redundant 
ions in the medium resulted in low water potential and 
then reduced the availability of nutrient and water for the 
fungi (Kumar and Verma 2018), thereby leading to the 
restriction of mycelial growth. Despite its salt sensitiv-
ity, X. badius could still grow and survive in 0.80% NaCl 
medium, suggesting that this species is more likely halo-
tolerant but not halophilic.

However, in nature, soil salinity is caused not only by 
NaCl but also by magnesium, calcium, potassium, etc. 
(Chen et al. 2019). More future researches focused on the 
effect of natural soil salinity on the growth of mycelia and 
the host plant should be carried out, that have more real-
istic significance in the utilization of salinity soil.

Effect of drought stress on mycelial growth
Researches on the effect of PEG-induced drought stress 
on mycelial growth have been carried out with many 
ECM fungal strains (Navarro-Ródenas et al. 2011; Zhang 
et  al. 2011; Zhu et  al. 2008). In this study, the growth 
response of X. badius to drought stress induced by 
PEG-6000 was assessed. The results showed that 5.00% 
PEG-induced drought stress had no significant nega-
tive influence on the CD and CGR of X. badius (P > 0.05, 
Table 3). However, the mycelial growth of X. badius was 
significantly inhibited under 10.00% ~ 20.00% PEG-
induced drought conditions as manifested by the sig-
nificant decrease in CD and CGR (P ≤ 0.05, Table  3). 
Mycelial growth under water-controlled conditions 
could reflect the adaptability of fungus to dry soil and the 

ability of the fungus to enhance the drought resistance of 
its host plants (Duñabeitia et al. 2004). Also, host plants 
may influence the morphology and physiology of the fun-
gus after mycorrhization (Zhang et  al. 2011). Therefore, 
it is necessary to establish fungus-mycorrhiza-host plant 
symbiont and study the associating drought resistance 
prior to practical application.

Effect of seed priming with X. badius suspensions on seed 
germination and seedling growth of L. multiflorum Lam. 
under salt and drought conditions
Drought and high salinity are the two most impor-
tant environmental factors that adversely affect the 
seed germination of crops and the survival, growth, 
and productivity of plants. In recent years, seed bio-
priming with PGPF spore suspensions has been exten-
sively proved to be beneficial for the seed germination 
and seedling growth of crops under non-stress and 
stress conditions (Bonfante and Genre 2010; de Zeli-
court et  al. 2013; Guerrero-Galán et  al. 2019; Hossain 
et al. 2017; Javeria et al. 2017; Kumar and Verma 2018; 
Tomer et  al. 2016; Vijayabharathi et  al. 2016; Vimal 
et al. 2017; Yan et al. 2019). Based on the findings from 
the tolerance test of X. badius and the verified mutu-
alistic symbiosis between L. multiflorum Lam. and 
X. badius driven by seed inoculation (Liu et  al. 2019), 
the effect of seed priming with spore suspensions of 
X. badius on seed germination and seedling growth of 
L. multiflorum Lam. were investigated under differ-
ent salt and drought conditions. The results indicated 
that seed priming with X. badius had no significant 
effect on the GR under non-stress condition (P > 0.05, 
Tables  4 and 5), that is consistent with our previous 
study (Liu et al. 2019) and studies on bromeliad (Leroy 
et al. 2019), barley and oat (Murphy et al. 2017) inocu-
lated by other PGPF species. However, GR was signifi-
cantly enhanced by seed priming with X. badius under 
drought and salt stress conditions. X. badius inocula-
tion greatly improved the SH and FW of L. multiflo-
rum Lam. seedlings under non-stress and drought/
salt stress conditions (Figs. 1 and 2). The improvement 
under stress conditions was markedly higher than that 
under non-stress conditions (P ≤ 0.05, Tables 4 and 5). 
Similar improvements in seed germination and seed-
ling growth induced by mycorrhizal fungi inoculation 
with seeds have also been reported on Dendrobium 
officinale (Tan et  al. 2014) and other epiphytic orchid 
species (Alghamdi 2019). The results also showed that 
X. badius inoculation led to earlier seed germination 
and greater survival of seedlings compared with the 
non-inoculated seeds under non-stress and stress con-
ditions. Thus, fungal inoculation with seeds was not 
very essential for seed germination under non-stress 
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and mild stress conditions but contributed highly to the 
survival and growth of the seedlings especially under 
severe stress conditions. The symbiotically associated 
fungi could promote the degradation of the cuticle 
cellulose of the seed resulting in the alleviated restric-
tion of seed coat and then earlier germination. In addi-
tion, it can also produce many plant growth-promoting 
compounds such as phytohormones (gibberellins and 
indole acetic acid) and secondary metabolites, and 
enhance water and nutrient availability, which are con-
ducive to seed germination and subsequent seedling 
growth (Behie and Bidochka 2014; Cairney 2012; Gar-
cia et  al. 2016; Hossain et  al. 2017; Javeria et  al. 2017; 
Owen et al. 2015; Shen et al. 2018).

In comparison with the non-stress condition, NaCl-
induced salt stress and PEG-induced drought stress 
decreased GR, SH, and FW of the non-inoculated and 
X. badius-inoculated seeds/seedlings, and the non-
inoculated seeds/seedlings showed larger decrease in 
these three parameters than the X. badius-inoculated 
ones (Figs. 1 and 2; Tables 4 and 5). The GRs, SHs, and 
FWs of both non-inoculated and X. badius-inoculated 
L. multiflorum Lam. seeds/seedlings decreased rapidly 
with the increase of NaCl and PEG concentrations, and 
PEG showed more negative effect than that of NaCl 
(Tables 4 and 5), which is in agreement with the results 
from previous studies (Murillo-Amador et  al. 2002; 
Petrović et al. 2016). The inhibition by salt and drought 
stress on seed germination was mainly due to the lim-
ited water uptake by the seed, which caused the sub-
sequent inhibition on the seedling growth. Probably, 
the accumulation of Na+ and Cl− in the substrate could 
also result in the toxic effect on seed germination and 
seedling growth by creating an external osmotic poten-
tial (Zhang et al. 2010). Compared with that under the 
PEG solution, the osmotic potential difference caused 
by the ion accumulation in the NaCl solution can also 
induce the rapid water uptake of seed and thereby 
enough water content for earlier seed germination.

In conclusion, the experimental evidence of the abil-
ity of X. badius to adapt to a series of environmental 
stresses, including pH, salt stress, and drought stress, 
is presented. The results indicated that X. badius had 
a wide pH tolerance, especially high alkali tolerance, 
and might has good adaptation to alkali environments. 
Furthermore, seed priming with spore suspensions of 
X. badius was not essential to the seed germination of 
L. multiflorum Lam. under non-stress and mild stress 
conditions, but induced a beneficial effect on the sub-
sequent seedling growth under severe salt and drought 
stress conditions. Hence, the successful establishment 
of X. badius on L. multiflorum Lam. seedlings under 
stressful conditions can be an effective approach to 

increase the plant tolerance to withstand environmen-
tal stresses.
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