
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2980  | https://doi.org/10.1038/s41598-022-06624-7

www.nature.com/scientificreports

Phylogenetic diversity 
and spatiotemporal dynamics 
of bacterial and microeukaryotic 
plankton communities 
in Gwangyang Bay of the Korean 
Peninsula
Dukki Han1*, Hanseob Shin2, Ji‑Hoon Lee3, Chang‑Keun Kang2, Dong‑Gyun Kim4 & 
Hor‑Gil Hur2

Nutrient dynamics function globally, flowing from rivers to the ocean (estuarine–coastal zone), and 
are vulnerable to climate change. Microbial habitats can be affected by marine nutrient dynamics 
and may provide a clue to predict microbial responses to environmental heterogeneity in estuarine–
coastal zones. We surveyed surface seawater in Gwangyang Bay, a semi-enclosed estuary in Korea, 
from 2016 to 2018 using a metabarcoding approach with prokaryotic 16S and eukaryotic 18S rRNA 
genes. Bacterial and microeukaryotic communities in these waters showed distinct local communities 
in response to environmental heterogeneity and community transition at spatiotemporal scales in the 
estuarine–coastal zone. The relative abundance of prokaryotic and eukaryotic operational taxonomic 
units suggested a microbial trophic interaction in the Gwangyang Bay waters. We found that the 
community assembly process in prokaryotic communities was primarily influenced by biological 
interaction (immigration–emigration), whereas that in eukaryotic communities was more affected by 
environmental stress (habitat specificity) rather than by biotic factors. Our findings in the Gwangyang 
Bay waters may provide information on underlying (biotic or abiotic) factors of the assembly process 
in microbial communities in the estuarine–coastal zone.

The estuarine–coastal transitional zone has a strong gradient of the salinity and organic matters from rivers 
to the ocean, and the organic-rich river waters contribute to nutrient cycling in the marine environment1. The 
marine nutrient cycle in the coastal zone is generally linked to river discharge and the subsequent mixing with 
coastal waters. The river discharge regulates freshwater input and organic matter contents, and such regulating 
factors vary seasonally in temperate estuaries2–4. The recent observation argued that the estuaries under the 
climate change may be more concerned than the early prediction5. Various information on the response of the 
estuarine–coastal zone to the climate change is required for more accurate prediction. Useful predictive models 
in the coastal system need to consider the effect of biological contribution as well as the physical and biogeo-
chemical factors6. For example, climate-related changes in the marine environment and their possible impacts 
on biodiversity in vulnerable ecosystem deserve more consideration. In particular, the microbial contribution 
to marine nutrient dynamics is an important issue7,8, and numerous oceanic surveys have been performed to 
increase the understanding of microbial habitats in marine environments9–18.

Gwangyang Bay (GB), a semi-enclosed estuary, forms the estuarine–coastal zone at the southern tip of the 
Korean Peninsula and is a suitable area to monitor the spatiotemporal variability of environmental heterogeneity 
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in the estuarine–coastal zone19–21. Furthermore, a recent metabarcoding survey of GB revealed that water mass 
mixing shapes bacterial communities in the estuarine–coastal zone and provided valuable insights into bacte-
rial contributions to phytoplankton-derived organic matter under seasonal variation and phylogenetic bacterial 
diversity at euphotic depths16. Although the previous GB survey by Han et al.16 improved our understanding 
of the phylogenetic structuring (phylogenetic over-dispersion or clustering) of bacterial communities in the 
estuarine–coastal zone, the ecological significance of eukaryotic communities and its comparison with that of 
prokaryotic communities remains unknown. However, considering the preliminary findings of Han et al.16, 
GB may provide fundamental information regarding the phylogenetic responses of microbial (prokaryotic and 
eukaryotic) communities to the seasonal climate change in the estuarine–coastal zone.

The phylogenetic turnover of local communities is estimated using the net relatedness index (NRI), nearest 
taxon index (NTI), and β-nearest taxon index (βNTI)22,23. Briefly, NRI and NTI can determine the influence of 
biotic and abiotic factors on community assembly with two phylogenetic structuring patterns: (1) phylogenetic 
over-dispersion (biotic interaction with immigration–emigration) and (2) phylogenetic clustering (abiotic inter-
action with habitat specificity). In addition, βNTI can be used to predict the relative influence of deterministic 
(environmental selection) and stochastic (ecological drift or dispersal ability) processes in microbial assemblages 
in various environments23–29.

The present study primarily aimed to estimate the phylogenetic diversity of prokaryotic and eukaryotic 
communities and their ecological significance at the spatiotemporal scale in the estuarine–coastal zone. The 
microbial diversity and community composition in surface seawater (< 0.3 m depth) in GB were surveyed using 
a metabarcoding approach with prokaryotic 16S and eukaryotic 18S rRNA genes. Furthermore, the phylogenetic 
diversity was estimated using ecological statistics with metabarcoding sequences.

Results
Environmental heterogeneity in the estuarine–coastal zone.  Nine sampling stations in GB (sta-
tions 1–9) were selected. The endpoint of water mass mixing between stations 3 and 4 was determined on the 
basis of their geographic locations (Fig. 1a), and the temperature-salinity gradient (Fig. 1b) driven by the mix-
ing of water masses was analyzed as previously reported16. GB metadata were assigned to two water types such 

Figure 1.   Environmental heterogeneity in GB waters. (a) Sampling stations were drawn by Google Map using 
the ggmap package58 in R. (b) Spatiotemporal variation of GB waters in T-S diagram and (c) its statistical 
separation with environmental factors supported by principal component analysis. Values of environmental 
parameters in this study were listed in Supplementary Informationn 1 (excel file).
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as estuarine (stations 1–3) and coastal (stations 4–9) according to the previous separation of GB waters16, and 
their spatiotemporal distribution was explained using principal component analysis (PCA) with water mass 
properties (temperature, salinity, PO4, NH4, NO2, NO3, SiO2, and ChlA). In the present study, environmental 
heterogeneity under the extended temporal scale against the previous study16 revealed the similar PCA pattern 
(Fig. 1c) to the previous pattern16, indicating the consistence of seasonal water mass mixing in GW. Permuta-
tional multivariate analysis of variance (PERMANOVA) supported the spatiotemporal separations of PCA with 
a significance level of R2 = 0.46 and P < 0.01 between estuarine and coastal types and of R2 = 0.28 and P < 0.01 
among sampling times (Table S1). The post-hoc PERMANOVA showed that most of the pairwise comparisons 
of sampling times within the coastal type were significantly different (P < 0.01), whereas the comparisons of 
sampling times within the estuarine type were not significant (P > 0.01) (Table S1).

Microbial diversity and community composition at the spatiotemporal scale.  A total of 
1,808,000 sequences (1,027,000 sequences of prokaryotic 16S rRNA gene from 79 samples and 781,000 sequences 
of eukaryotic 18S rRNA gene from 71 samples) were obtained from GB waters. These sequences were indepen-
dently clustered into 6092 prokaryotic and 2693 eukaryotic operational taxonomic units (OTUs) to analyze 
microbial diversity (alpha and beta) and community composition. The indices of alpha diversity (species rich-
ness) in both prokaryotes and eukaryotes showed relatively similar distributions in estuarine and coastal types 
and moved up and down the temporal scale periodically (Fig. S1). This alpha diversity distribution revealed a 
significant negative correlation with temperature change in the GB (P < 0.05). In particular, the prokaryotic indi-
ces of Chao and Ace were more strongly correlated (Chao: − 0.56 and Ace: − 0.57) than the eukaryotic indices 
(Chao: − 0.30 and Ace: − 0.22) (Fig. 2). Non-metric multidimensional scaling (NMDS) used to view microbial 
beta diversity (Fig. S2) revealed the community transitions of prokaryotes and eukaryotes in GB waters at the 
spatiotemporal scale. The beta diversity patterns in prokaryotes and eukaryotes were statistically supported by 
analysis of molecular variance (AMOVA) (Table S2). The spatial separation between estuarine and coastal types 
was significant in both prokaryotic (P < 0.01) and eukaryotic (P < 0.01) communities, and in the temporal sepa-
ration, the two communities showed a significant difference among the sampled months (P < 0.01). Particularly, 
in prokaryotic communities, there were significant differences in all pairwise comparisons, except in the pair of 
March and November 2018 (P > 0.01). Similarly, eukaryotic communities revealed significant differences in most 
pairs of temporal comparisons, except in three pairs (P > 0.01; June 2017 and May 2018, March and May 2018, 
and May and November 2018). Overall, the beta diversity patterns indicated the existence of local prokaryotic 
and eukaryotic communities in response to the spatiotemporal separation in GB waters.

Microbial communities in GB waters are characterized by a few major prokaryotic and eukaryotic taxa (with 
a frequency of more than 1% in the sum of sequences) at the phylum level. Further, 99.96% of the prokaryotic 
sequences were bacterial sequences; however, there were only 0.04% archaeal sequences. Among the major 
prokaryotic taxa, Proteobacteria (48.71%) were predominant, followed by Bacteroidetes (19.65%), Actinobac-
teria (11.78%), Verrucomicrobiota (8.24%), Cyanobacteria (5.35%), Planctomycetota (2.22%), and Firmicutes 

Figure 2.   Correlation between indices of microbial alpha diversity and environmental parameters. Correlation 
coefficients are colored according to the value scale. Positive correlations are displayed in a blue scale while 
negative correlations are displayed in a red scale. The insignificant coefficients are marked according to the P 
value (P < 0.05).
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(1.94%). Although the relative abundances of these prokaryotic taxa showed a variable distribution in GB waters, 
this variation indicated distinctive local communities, as shown by the beta diversity data (Fig. S3). Particularly, 
the distribution of heterotrophic Proteobacteria, Bacteroidetes, and Actinobacteria showed remarkable changes 
in response to the spatiotemporal separation. In contrast, eukaryotic sequences originated from phytoplankton 
(74.96%), zooplankton (18.66%), fungi (5.47%), fish (0.14%), and unknown eukaryotic sequences (5.47%). The 
eukaryotic communities comprised the following major eukaryotic taxa: Diatomea (35.69%, phytoplankton), 
Dinoflagellata (30.54%, phytoplankton or zooplankton), Ciliophora (16.01%, zooplankton), Ascomycota (3.63%, 
fungi), Cryptophyceae (3.55%, phytoplankton), Chlorophyta (2.70%, phytoplankton), Ochrophyta (2.26%, phy-
toplankton), and Cnidaria (1.42%, zooplankton). Similar to the relative abundance of prokaryotic taxa, that of 
these major eukaryotic taxa represented the distinctive local communities in GB waters, and the predominant 
phytoplankton populations (Diatomea and Dinoflagellata) revealed spatiotemporal variations (Fig. S3). Among 
these major prokaryotic and eukaryotic taxa, the relative abundance of Proteobacteria, Bacteroidetes, Actino-
bacteria, Firmicutes, Dinoflagellata, Chlorophyta, and Cnidaria was significantly correlated with the gradient 
of temperature or salinity (Table S3), and Actinobacteria showed a strong correlation with the salinity change 
(cor: − 0.63).

Phylogenetic diversity patterns.  From the prokaryotic (n = 6092) and eukaryotic (n = 2693) OTUs, the 
500 most abundant OTUs (accounting for 96.19% of total prokaryotic sequences and 97.29% of eukaryotic 
sequences) were selected for further calculation of NRI, NTI, and βNTI because of limited computing resources. 
Phylogenetic structuring patterns were determined using NRI and NTI values16,30–32: phylogenetic over-disper-
sion (NRI and NTI < 0), which implies the assembly of microbial communities under biological interactions, or 
phylogenetic clustering (NRI and NTI > 0) for the assembly process associated with abiotic factors. GB waters 
showed a distinguishable balance of phylogenetic structuring between prokaryotic and eukaryotic communi-
ties. For example, most prokaryotic communities from 79  GB waters (53 coastal and 26 estuarine samples) 
were classified as over-dispersed type (n = 63), followed by clustered (n = 13) and ambiguous type (n = 3; NRI < 0 
and NTI > 0, NRI < 0 and NTI > 0) (Fig. 3a). Of prokaryotic communities, coastal waters (n = 53) were primar-

Figure 3.   Phylogenetic turnover of microbial communities estimated using the Net Relatedness Index and 
Nearest Taxon Index. (a) Prokaryotic community and (b) eukaryotic community.
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ily classified as over-dispersed type (n = 50), whereas estuarine waters (n = 26) were in over-dispersed (n = 13) 
or clustered type (n = 10). In contrast, the eukaryotic patterns of phylogenetic structuring in 71 GB waters (47 
coastal and 24 estuarine samples) comprised mostly of clustered type (n = 37), and the remaining waters were 
of the over-dispersed type (n = 15) or ambiguous type (n = 19) (Fig. 3b). Of eukaryotic communities, most of 
coastal waters (n = 47) were classified as clustered type (n = 34), whereas estuarine waters (n = 24) were similarly 
in over-dispersed (n = 11) and ambiguous type (n = 10). Interestingly, the predominant patterns of both prokary-
otic (over-dispersed type) and eukaryotic (clustered type) communities occurred primarily in the GB coastal 
waters. βNTI values were calculated to determine the relative influence of deterministic (|βNTI|> 2) and stochas-
tic (|βNTI|< 2) processes on community assembly23,27 in GB waters. The assembly of prokaryotic communities 
was primarily dominated by the stochastic process (Fig. 4a), whereas more than half of the coastal waters (53%) 
in eukaryotic communities were influenced by the deterministic process (Fig. 4b).

Spatiotemporal distribution and microbial association network of prokaryotic and eukaryotic 
OTUs.  The 10 most abundant prokaryotic and eukaryotic OTUs were selected from the total microbial OTUs, 
and their distribution was visualized using a heatmap with indicator species analysis. The taxonomy of prokary-
otic and eukaryotic OTUs was identified against the NCBI database (https://​www.​ncbi.​nlm.​nih.​gov/). Overall, 
the heatmap visualization of the 10 most abundant prokaryotic OTUs partially represented the spatiotempo-
ral variation of GB waters (Fig.  5a). Particularly, prokaryotic OTU1, OTU6, OTU7, and OTU9 significantly 
occurred in coastal waters (indicator value > 0.6, P < 0.01); however, their distribution showed less or non-signif-
icant temporal (month) specificity (indicator value < 0.6, P > 0.01) (Table S4). The other prokaryotic OTUs had 
non-significant spatial (type) specificity (indicator value < 0.6, P > 0.01), whereas OTU2 and OTU5 significantly 
occurred in February 2017 and November 2016 (indicator value > 0.6, P < 0.01), respectively (Table  S4). The 
10 most abundant prokaryotic OTUs were taxonomically identified as Proteobacteria (OTU1, OTU3, OTU4, 
OTU5, and OTU9), Actinobacteria (OTU6 and OTU10), Verrucomicrobiota (OTU2), Cyanobacteria (OTU7), 
and Bacteroidetes (OTU8), and these taxonomies are all common bacteria in GB waters16.

Similar to the prokaryotic OTUs, the 10 most abundant eukaryotic OTUs showed the spatiotemporal varia-
tion in GB waters (Fig. 5b). For example, eukaryotic OTU1, OTU2, and OTU5 significantly occurred in coastal 
waters (indicator value > 0.6, P < 0.01) but was not specific for the temporal separation (indicator value < 0.6 
or P > 0.01) (Table S4). In contrast, eukaryotic OTU8 was significantly distributed in estuarine waters (indica-
tor value > 0.6, P < 0.01) but was less specific for the temporal separation (indicator value < 0.6) (Table S4). Of 
the other eukaryotic OTUs, the distributions of OTU3, OTU6, and OTU7 were specifically observed during 
summer (June and August) in 2016 (indicator value > 0.6, P < 0.01), and OTU10 was specifically distributed in 
February 2017 (indicator value > 0.6, P < 0.01) (Table S4). These eukaryotic OTUs were taxonomically assigned to 

Figure 4.   The relative influence of deterministic and stochastic processes in microbial communities using 
β-Nearest Taxon Index (βNTI). (a) Prokaryotic community and (b) eukaryotic community. βNTI values 
determine the relative influence of deterministic (|βNTI|> 2) and stochastic (|βNTI|< 2) processes on 
community assembly.

https://www.ncbi.nlm.nih.gov/
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Figure 5.   Heat-map visualization for distribution of microbial operational taxonomic units (OTUs). (a) 
Prokaryotic OTUs and (b) eukaryotic OTUs. Numbers in red line box indicate the GB stations.
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Dinoflagellata (genera Karenia [OTU1] and Noctiluca [OTU2]), Diatomea (genera Chaetoceros [OTU3, OTU5, 
and OTU7], Thalassiosira [OTU4], and Cyclotella [OTU6]), and Ciliophora (genera Didinium [OTU8] and Pseu-
dotontonia [OTU10]). Interactions among these prokaryotic and eukaryotic OTUs with environmental factors 
were evaluated using the spearman correlation, and their co-occurrence patterns were visualized in the network 
association (Fig. 6). The network co-occurrence analysis revealed that most of prokaryotic OTUs except for two 
network nodes (OTU3 and OTU5) were widely connected with other OTUs. In the network association, the 
isolated nodes with no edge indicate none of interaction at significant level (correlation coefficient < 0.5, P > 0.05).

Discussion
In GB waters, diversity and community composition of prokaryotes and microeukaryotes was surveyed at the 
spatiotemporal scale using the 16S and 18S rRNA gene metabarcoding approach. The biogeographic patterns 
of microbial communities represent the environmental heterogeneity at the spatiotemporal scale in the estua-
rine–coastal zone. The indices of alpha diversity revealed that the estuarine and coastal water types have similar 
levels of species richness in both prokaryotic and eukaryotic communities and that the microbial species rich-
ness is in response to temperature change, indicating the seasonality differences. Moreover, the patterns of beta 
diversity observed from NMDS and AMOVA supported that the prokaryotic and eukaryotic communities in 
GB waters are distinguishable at the spatiotemporal scale. In particular, the local community compositions in 
response to the spatiotemporal separations were represented by the population dynamics of major prokaryotic 
and eukaryotic taxa.

The taxonomic assignments of eukaryotic OTU1 (Karenia) and OTU2 (Noctiluca) are known to be harmful 
blooming players in Dinoflagellata33,34. Noctiluca, a bioluminescent organism (sea sparkle), is a large (0.2–2 mm) 
non-photosynthetic dinoflagellate that feeds on bacteria and small size dinoflagellates, diatoms, and zooplankton 
eggs35, whereas Karenia (eukaryotic OTU1) is a small (20–90 μm) dinoflagellate. The occurrence of OTUs related 
to Karenia (May and June) and Noctiluca (November) in GB waters followed their general blooming trend in 
oceans. In eukaryotic OTUs related to Diatomea (2–200-μm size of blooming organisms), Chaetoceros (OTU3, 
OTU5, and OTU7) is known to be a common phytoplankton during summer in Korean coastal water36, as shown 
in this study, and the occurrence of other Diatomea populations such as Thalassiosira (OTU4), Rhizosolenia 
(OTU10), and Cyclotella (OTU6) was previously documented in Korea37–39. In addition, Didinium (OTU8) 
showed fresh or brackish water-specific distribution, and Pseudotontonia (OTU9) was ubiquitous in GB waters.

The network co-occurrence analysis for prokaryotic and eukaryotic OTUs implies their biological interactions 
including predation, cross-feeding, mutualism, and competition. For example, the strong positive interaction 
between heterotrophic bacterium (prokaryotic OTU1) and protist (eukaryotic OTU8) suggests a trophic role 
of protozoans, responsible for energy transfer from primary producers (bacteria and phytoplankton) to fish in 

Figure 6.   A microbial association network with environmental factors. In the network, each node represents 
the prokaryotic and eukaryotic OTUs in figure (blue circles: prokaryotic OTUs; green circles: Diatomea OTUs; 
yellow circles: Dinoflagellata OTUs; red circles: Ciliophora OTUs) or environmental factors in Fig. 1c (grey 
diamonds). The size of OTU nodes represents its sum of relative abundance, and the edges connecting the nodes 
(OTUs and environmental factors) represent their correlations. Of the edges, edge (line) thickness indicates 
the correlation coefficient (the thicker the line, the stronger correlation), and the solid lines and dotted lines 
represent positive and negative correlations, respectively. The isolated nodes with no edge indicate none of 
interaction at significant level (correlation coefficient < 0.5, P > 0.05).
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the marine food web system. Similarly, a photosynthetic dinoflagellate (eukaryotic OTU1) showed interactions 
with heterotrophic Roseobacter clade (OTU4) and SAR86 clade (OTU9) bacteria, which possess metabolic 
pathways for degrading phytoplankton-derived organic matter40,41. Furthermore, the strong negative relation 
between heterotrophic bacterium (prokaryotic OTU2) and cyanobacterium (prokaryotic OTU7) implies bacte-
rial degradation of cyanobacterial necromass42. In contrast to prokaryotic nodes, eukaryotic OTUs were more 
widely connected with environmental factors rather than OTU nodes. Only two eukaryotic OTUs (OTU1 and 
OTU8) were strongly linked to other OTUs, and most of eukaryotic OTUs were weakly connected or isolated 
in the network. In addition, we also found the interactions between ChlA and phytoplanktons (Cyanobacteria, 
Diatom, Dinoflagellata) (Table S5), but they were removed from the network association due to their weak cor-
relation coefficient (< 0.5).

Interest of ecological processes influencing microbial community assembly has increased in various 
environments16,23–29,32. The previous GB survey16 provides an understanding of the phylogenetic structuring of 
bacterial communities in the estuarine–coastal zone. Although the previous study revealed that the assembly 
process of bacterial communities, which exclude archaeal populations from prokaryotic communities, is more 
influenced by phylogenetic clustering within euphotic layers (< 13 m depth), the comparison of prokaryotic 
communities (including both bacterial and archaeal populations) with the assembly of eukaryotic communi-
ties may need to be considered within the surface (or atmospheric) mixed layer (< 0.3 m depth) having nearly 
constant environmental conditions. Thus, we newly analyzed the assembly process of prokaryotic and eukaryotic 
communities. The predominant patterns of phylogenetic structuring in prokaryotic (over-dispersed type: biotic 
interaction) and eukaryotic (clustered type: abiotic interaction) communities were remarkably observed in coastal 
waters, suggesting that prokaryotes and eukaryotes follow different strategies in community assembly at least 
in coastal waters. For example, strong biological interactions were expected to be the main driving force in the 
prokaryotic community assembly, whereas eukaryotes were more affected by abiotic factors in coastal waters. 
On the other hand, there was no primary signal from NTR–NTI patterns for both prokaryotic and eukaryotic 
communities in estuarine waters. Similarly, the balance between deterministic and stochastic processes revealed 
that prokaryotes and eukaryotes have different community assembly processes in coastal waters although they 
are primarily influenced by the stochastic process in estuarine waters. Our results suggest that the assembly 
process of prokaryotic communities was primarily affected by the stochastic process (facilitation and competi-
tion among their populations), but the community assembly process for eukaryotic populations was relatively 
more affected by environmental stress than by the deterministic process (biological interaction) in coastal waters. 
Indeed, these phylogenetic diversity patterns were supported by distinguishable interactions within prokary-
otic or eukaryotic OTUs in the microbial association network. Based on our findings, it can be concluded that 
prokaryotic and eukaryotic communities in GB waters possess a distinguishable mechanism in their community 
assembly, although they simultaneously represent the spatiotemporal separation in the estuarine–coastal zone.

Transition of microbial communities in the estuarine–coastal zone may provide information of key micro-
bial groups indicating the mixing from the estuarine to coastal waters. The previous GB survey by Han et al.16 
found dominant bacterial groups showing the gradual distribution from the estuarine to coastal waters with 
seasonality. Of their spatiotemporal distribution, the SAR11 clade (Candidatus Pelagibacter ubique), a ubiquitous 
heterotrophic bacterium in oceans43, revealed the gradually increasing variation toward coastal waters, repre-
senting the water mass mixing in the estuarine–coastal zone. The SAR11 clade could tolerate a wide range of 
environmental variability including salinity during the water mass mixing due to its oligotrophic lifestyle and the 
ecological interface with phytoplankton44. In the present study, we found that the most predominant prokaryotic 
OTU (OTU1) in coastal waters was taxonomically identified as a member of the SAR11 clade. The prevalence 
of prokaryotic OTU1 associated with SAR11 in this study implies the bacterial degradation of phytoplankton-
derived organic matter in GB waters as previously reported16. Indeed, the most dominant eukaryotic OTUs were 
found to be affiliated with phytoplankton (Diatomea or Dinoflagellata). It was known that phytoplankton-derived 
organic matter can attract heterotrophic bacteria45, and specifically associated bacteria are beneficial for the 
survival of phytoplankton hosts46. Taken together with the specificity of phytoplankton-bacteria interactions, 
the co-occurrence of heterotrophic bacterial and phytoplankton OTUs in the microbial association network may 
support trophic interactions in microbial communities in GB waters.

In this study, we demonstrated the use of metabarcoding approach in surveying microbial biogeography 
associated with environmental heterogeneity in the estuarine–coastal zone. We surveyed prevalent prokaryotic 
and eukaryotic taxa in GB waters from 2016 to 2018. Here, phytoplankton sequences were found to be dominant 
in GB waters and their spatiotemporal distribution was observed. Considering the similar distribution between 
heterotrophic Proteobacteria and phytoplankton at the spatiotemporal scale in the present study, our findings 
at 2- to 4-month intervals from 2016 to 2018 may imply the ecological interaction in response to the environ-
mental heterogeneity mediated by seasonal climate change rather than annual change in the estuarine–coastal 
zone. Information on the microbial biogeography and its community assembly process can provide fundamen-
tal knowledge regarding the given ecological system. The fate of heterotrophic prokaryotes in coastal waters 
is generally associated with factors regulating nutrient flux, including phytoplankton-derived organic matter. 
Bacterial contribution to oceanic nutrient dynamics was previously studied in GB waters16. However, the eco-
logical significance of eukaryotic communities compared with that of prokaryotic communities in this region 
has never been reported. Here, we proposed ecological interactions microeukaryotes (phyto- and zooplankton) 
and heterotrophic bacteria such as SAR11 based on their network association. We believe that our study newly 
facilitates the assessment of ecological significance in microbial trophic interactions and of underlying biotic or 
abiotic factors for the assembly process of microbial communities in the estuarine–coastal zone.
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Methods
Description of study area in GB and datasets.  In the current climate condition, GB waters generally 
show seasonal separations with gradients of temperature and salinity due to the water mass mixing between 
estuarine and coastal waters. Long-Term Marine Ecological Research (LTMER) designed nine sampling sta-
tions with a spatially similar distance in GB (Fig. 1a) to monitor environmental heterogeneity in the estuarine-
coastal zone and spatiotemporal biogeography of microbial communities16. Experimental designs and sample 
collection to construct dataset for the GB monitoring were previously described16. Briefly, temperature, salinity, 
PO4, NH4, NO2, NO3, SiO2, and ChlA measured to estimate the environmental heterogeneity in GB. For the 
microbial biogeographic survey, one liter of seawater (< 0.3 m depth) was collected from each GB station at 2- 
to 4-month intervals from 2016 to 2018 and immediately filtered using 0.2 μm hydrophilic PVDF membranes 
(Merck, Darmstadt, Germany). The filtered membranes were kept at − 80 °C before extraction of environmental 
DNAs (eDNAs).

The present study complied nine datasets (metadata and sequence) of GB surface seawaters obtained at < 0.3 m 
depth in: (1) August, (2) June, and (3) November, 2016; (4) February and (5) June, 2017; (6) March, (7) May, (8) 
November, and (9) September, 2018 (Table 1). Most of datasets (metadata and their prokaryotic and eukaryotic 
sequences) constructed from this study. Five datasets from 2016 and 2017 were selectively consisted of metadata 
from the previous study16 and their prokaryotic 16S rRNA metabarcoding sequences from European Nucleotide 
Archive (https://​www.​ebi.​ac.​uk/​ena) under the accession number ERP110504.

Extraction of eDNA and sequence data processing.  eDNAs were extracted from the frozen mem-
branes using PowerWater DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA, USA) and further proceeded 
for metabarcoding-based sequencing with two-step PCRs (amplicon and index PCR) according to the previ-
ously described protocol16. First, eDNAs were PCR-amplified with primers specific to prokaryotic 16S47 and 
eukaryotic 18S10 rRNA genes (the amplicon PCR). The amplicon PCR was performed using the following pro-
gram: (1) 95 °C for 3 min, (2) 25 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, and (3) 72 °C for 5 min. 
The amplified rRNA gene fragments were used as template DNAs for the further index PCR. The index PCR was 
performed using the following program: (1) 95 °C for 3 min, (2) 8 cycles of 95 °C for 30 s, 55 °C for 30 s, and 
72 °C for 30 s, and (3) 72 °C for 5 min. Amplicons of the index PCRs were purified, and their concentrations were 
measured by Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). The purified PCR amplicons were mixed 
in equimolar amounts to construct a MiSeq library, and the final PCR mixture was subjected to the metabar-
coding sequencing using the Illumina MiSeq platform (Macrogen, Seoul, South Korea). Details of the two-step 
PCRs and the construction of the MiSeq library are described in the Illumina’s instruction manual48, and the 
used primer sequences are listed in the Supplementary Information 2 (see extra description). The obtained meta-
barcoding sequences were submitted to the National Center for Biotechnology Information (NCBI) Sequence 
Read Archive (https://​www.​ncbi.​nlm.​nih.​gov/​sra) under the accession number PRJNA669608 (prokaryotic 16S 
rRNA gene) and PRJNA669603 (eukaryotic 18S rRNA gene).

The sequencing data were analyzed using the Mothur software (v.1.40.5)49 based on the MiSeq SOP50. Briefly, 
quality filtering of sequences was performed with (1) correction of amplification and sequencing errors (remov-
ing chimeric sequences, (2) singleton removal, and (3) random subsampling of sequences. In particular to 
the random subsampling, the sequence count number for each individual sample was normalized with 13,000 
sequences of prokaryotic 16S rRNA gene and 11,000 sequences of eukaryotic 18S rRNA gene, respectively. These 

Table 1.   Description of datasets in this study.

Data description Number of samples Sampled date (month, year) Target gene Data source

Metabarcoding sequences using 
prokaryotic 16S rRNA gene

9 June, 2016 16S rRNA gene (V3–V4 region) Han et al.16

9 August, 2016 16S rRNA gene (V3–V4 region) Han et al.16

9 November, 2016 16S rRNA gene (V3–V4 region) Han et al.16

9 February, 2017 16S rRNA gene (V3–V4 region) Han et al.16

9 June, 2017 16S rRNA gene (V3–V4 region) Han et al.16

9 March, 2018 16S rRNA gene (V3–V4 region) This study

8 May, 2018 16S rRNA gene (V3–V4 region) This study

8 September, 2018 16S rRNA gene (V3–V4 region) This study

9 November, 2018 16S rRNA gene (V3–V4 region) This study

Metabarcoding sequences using 
eukaryotic 18S rRNA gene

9 June, 2016 18S rRNA gene (V8–V9 region) This study

9 August, 2016 18S rRNA gene (V8–V9 region) This study

9 November, 2016 18S rRNA gene (V8–V9 region) This study

9 February, 2017 18S rRNA gene (V8–V9 region) This study

9 June, 2017 18S rRNA gene (V8–V9 region) This study

9 March, 2018 18S rRNA gene (V8–V9 region) This study

9 May, 2018 18S rRNA gene (V8–V9 region) This study

8 November, 2018 18S rRNA gene (V8–V9 region) This study

https://www.ebi.ac.uk/ena
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filtered sequences were clustered into the OTUs at 97% similarity level to investigate microbial diversity (alpha 
and beta), community composition, and phylogenetic turnover.

OTU‑based analyses and statistics.  For microbial alpha diversity (species richness), abundance-
unweighted species richness indices (Chao1 and ACE) were calculated with OTUs using the ‘summary.single’ 
command, while beta diversity was determined by NMDS and AMOVA calculated using the ‘nmds’ and ’amova’ 
commands, respectively. In addition, microbial community composition was profiled using the ‘classify.otu’ 
command against the Silva.seed_v132 database in Mothur. Phylogenetic diversity was analyzed using Phylocom 
software51 based on the protocol described previously32. Briefly, phylogenetic structure of microbial communi-
ties was estimated with NRI and NTI, calculated using the ‘comstruct’ command, whereas βNTI was calculated 
using ‘comdistnt’ command to determine the influence of deterministic and stochastic processes.

We performed statistical analyses using R software (v.3.5.3) (https://​www.R-​proje​ct.​org). From the R stats 
package52, for example, PCA was carried out using the ‘prcomp’ function, and correlation analysis was applied 
with spearman method using the ‘cor’ function. From the vegan package53, PERMANOVA and NMDS were 
calculated by Bray–Curtis distance with the ‘adonis’ and ‘metaMDS’ functions, respectively. In addition to PER-
MANOVA, the pairwise multiple comparison (post-hoc) was performed with false discovery rate method in the 
‘pairwise.adonis’ function54. Indicator species analysis was carried out using the ‘indval’ function in the labdsv 
package55. Association of OTU variations at the spatiotemporal scale was estimated with a heatmap visualization 
using the ‘HeatmapAnnotation’ function in the ComplexHeatmap package56. Microbial network interactions with 
environmental factors were analyzed using the RCy3 package57 with Cytoscape software (v.3.8.2) (https://​cytos​
cape.​org). Briefly, the spearman correlation matrix was calculated with the relative abundance of prokaryotic and 
eukaryotic OTUs and measured values of environmental factors. Co-occurrence patterns were determined with 
significant coefficient values over 0.5 (P < 0.05) in the spearman correlation. The significant correlations between 
OTUs or between OTU and environmental factor were visualized in network interactions.
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