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This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging
(fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets:
how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal
segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence
relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based
methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to
infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three
popular Bayesianmodels, that is, BayesianMagnitude Change PointModel (BMCPM), Bayesian Connectivity Change PointModel
(BCCPM), and Dynamic Bayesian Variable PartitionModel (DBVPM), and give a summary of their applications. We envision that
more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the
years to come.

1. Introduction

An intriguing quest regarding the brain science is the
following: what are the origin and the principles behind
the functional architectures, which define who we are and
what we are in a great extent? Compared to other meth-
ods, functional Magnetic Resonance Imaging (fMRI) has
been well recognized as the most popular method that is
able to explore the functional activities of the whole brain
when participants are in resting states (have a rest) or
performing a carefully designed task, due to its in vivo and
noninvasive nature. After decades of active research, there
have been numerous evidences [1–5] that the brain function
is realized and emerges from the interaction of multiple
concurrent neural processes or brain networks, each of which
is spatially distributed across different neuroanatomical areas
and exhibits statistically interdependent activity patterns.
Recently, researches on brain functional connectivity or

interactions based on fMRI BOLD (fMRI blood-oxygen-
level dependent) signals have received substantial interests.
In previous studies, the functional connectivity was assumed
to be temporal stationery [6–9]. However, the emerging
evidence from neuroscience research indicates that different
cortical regions are acting as adaptive processors, which
involve moment-by-moment functional switching. Many
studies implied that the function of different cortical regions
is subject to top-down influences of brain cognitive process
[10]. Task-based studies have also revealed that cognitive
processes, like attention and learning, might significantly
change in functional connectivity when performing tasks
across the duration of a scan [11–13]. In addition, recent works
suggest that fine-grained brain subnetworks, operating as
communication hubs in graph theoretical terms, are equally
involved in task performance [14, 15]. Besides functional
connectivity, functional network connectivity (FNC), which
studies the interactions in network level, requires estimating
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the clusters of brain regions having similar functions and
has been applied to many diseases to examine brain network
differences between healthy and diseased brains [16–18]. For
instance, by using a maximal lagged correlation approach,
changes in FNCwere found in schizophrenia, a brain disorder
that is known as disrupted cognitive functions [19, 20].

In current stage, it is still challenging to infer the temporal
dynamics of functional connectivity, which can be sum-
marized as two points: identification of change points and
estimation of dynamic interaction patterns. There are accu-
mulating studies analyzing the brain functional dynamics,
connectivity dynamics, and the state changes. Lindquist et al.
proposed a statistical method, named as Hierarchical Expo-
nentially Weighted Moving Average (HEWMA), on fMRI
data to detect the state change of BOLD signals in response
to stimulus [21]. Independent component analysis (ICA)
method, including dynamic spatial ICA, was developed by
Sakoğlu et al. to investigate the connectivity dynamics [20].
Also, sliding-time-window-based approaches were designed
to capture the dynamics of brain functional interactions
across different time windows [22–27]. For example, Allen
and colleagues described an approach to assess whole-brain
FC dynamics based on spatial ICA, sliding-time-window
correlation analysis, and 𝑘-means clustering of windowed
correlation matrices [27], and it revealed unanticipated FC
states which were strongly different from stationary con-
nectivity patterns. Li and his colleagues derived functional
connectomes (FCs) to characterize brain conditions from
resting-state fMRI data and then FCs were divided into
quasi-stable segments temporally via a sliding-time-window
approach [22]. In [23], a novel framework was designed
by the combination of sliding-window approach and mul-
tiview spectral clustering to extract temporally dynamic
functional connectome patterns for resting-state networks,
and the four detected clusters are believed to play critical
roles in functional brain dynamics during resting states.
In [24], a novel algorithmic framework based on hidden
Markov models was presented to cluster and label the brain’s
functional states, represented by a large-scale functional
connectivity matrix and derived via an overlapping sliding-
time-window approach. The framework achieved decent
classification performance on the data including 25 ADHD
(attention-deficit/hyperactivity disorder) patients and 49
normal controls. Lv and his colleagues [25] also adopted
the sliding-window-based method and employed a dynamic
programming strategy to infer functional information tran-
sition routines on structural networks and identified the hub
routers that participate in these routines most frequently.

Inspired by the multivariate graphical models based on
Bayesian networks, which has been shown to be robust
and reliable in estimating functional interactions and less
sensitive to noise in the fMRI signals [28–30], recently, several
Bayesian-inference-based methods were proposed to infer
global functional interactions within brain networks and
their temporal transition boundaries [31–36]. By evaluating
and estimating both simulated and real data, Bayesian-
inference-based methods are proved to be more powerful
approaches for analysis fMRI data comparing to the methods
mentioned above.

In this paper, we are aiming to pinpoint the function
dynamic problems, including detecting magnitude change
points, functional connectivity change points, and func-
tional interaction patters, which have been addressed using
Bayesian inference. The organization of this paper is as
follows. In Section 2, we introduce some necessary basic
concepts of Bayesian inference, explaining the fMRI datawith
necessary preprocessing before applying Bayesian methods.
Section 3 describes and compares three Bayesian models for
exploring dynamic functions and their case studies. Section 4
rounds the paper off with a discussion.

2. Bayesian Inference

2.1. Concept of Bayesian Inference. Bayesian inference is a
method of statistical inference in which Bayes’ Rule is applied
to update the probability estimate for a hypothesis as evidence
is acquired, and it is the formal method for combining prior
beliefs with observed (quantitative) information to answer
the questions that researchers are usually interested in like
“what is the probability of getting lung cancer for certain
patients who smoke one pack per day?” [37]. It is a natural
way to combinemultiple experiments’ information and it can
fit realistic but complicated models.

On the other hand, Bayesian inference often costs more
computationally and requires at least one of elicitation of real
subjective probability distributions of prior beliefs. The good
thing is that sensitivity analysis to show that the choice of
prior does not strongly affect inference.

2.1.1. Bayes’ Rule [38]. Consider

𝑝 (𝜃 | 𝑦) =
𝑝 (𝑦 | 𝜃) 𝑝 (𝜃)

∑
𝑖
𝑝 (𝑦 | 𝜃

𝑖
) 𝑝 (𝜃
𝑖
)

(1)

if 𝜃 is a discrete random variable with a pmf.
When 𝜃 is continuous, Bayes’ Rule becomes

𝑝 (𝜃 | 𝑦) =
𝑝 (𝜃, 𝑦)

𝑝 (𝑦)
=

𝑝 (𝑦 | 𝜃) 𝑝 (𝜃)

𝑝 (𝑦)

=
𝑝 (𝑦 | 𝜃) 𝑝 (𝜃)

∫
𝜃

𝑝 (𝑦 | 𝜃) 𝑝 (𝜃) 𝑑𝜃
.

(2)

Bayes’ Rule is often written as 𝑝(𝜃 | 𝑦) ∝ 𝑝(𝜃)𝑝(𝑦 | 𝜃), when
treated as a function of 𝜃 for a fixed 𝑦, and 𝑝(𝑦 | 𝜃) is the
likelihood 𝐿(𝑦 | 𝜃). So Bayes’ Rule can be thought of as

Posterior ∝ Prior × Likelihood

𝑝 (𝜃 | 𝑦) ∝ 𝑝 (𝜃) 𝑝 (𝑦 | 𝜃) .

(3)

Note that this is expressed in words like “the posterior is pro-
portional to the product of prior and likelihood.”

2.1.2. Basics of the Bayesian Inference [38]. Consider the fol-
lowing:

(1) Setting up a probability model.
(2) Using the probability theory and the Bayes Rule.
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We take binomial model as an example. If the sample size is 𝑛

and the probability of success is 𝜋, we have 𝑦 | 𝜋 ∼ Bin(𝑛, 𝜋).
The likelihood is

𝑝 (𝑦 | 𝜋) = (
𝑛

𝑦
) 𝜋
𝑦

(1 − 𝜋)
𝑛−𝑦

; 𝜋 ∈ [0, 1] . (4)

If we want to make inference on 𝜋, given 𝑦 and 𝑛, we need
a prior distribution 𝑝(𝜋) for 𝜋. We can choose a uniform
distribution:

𝜋 ∼ 𝑈 (0, 1)

𝑝 (𝜋) =
{

{

{

1 0 ≤ 𝜋 ≤ 1

0 Otherwise.

(5)

Then apply Bayes’ Rule, and we get

𝑝 (𝑦, 𝜋) = (
𝑛

𝑦
) 𝜋
𝑦

(1 − 𝜋)
𝑛−𝑦

,

𝑝 (𝑦) = ∫

1

0

(
𝑛

𝑦
) 𝜋
𝑦

(1 − 𝜋)
𝑛−𝑦

𝑑𝜋 =
1

𝑛 + 1
,

𝑝 (𝜋 | 𝑦) =
𝑝 (𝑦, 𝜋)

𝑝 (𝑦)
= (𝑛 + 1) (

𝑛

𝑦
) 𝜋
𝑦

(1 − 𝜋)
𝑛−𝑦

.

(6)

2.1.3. Conjugate Prior [38]. A prior probability distribution is
said to be conjugate to the sampling density if the resulting
posterior distribution is a member of the same parametric
family as the prior. For example, binomial likelihood × beta
prior = beta posterior.

2.2. Bayesian Analysis Applied to fMRI Data. An fMRI data
series consists of values recorded at a specific voxel of the
image at some time point 𝑡. These series are collected into
a 𝑇-dimensional vector �⃗� = (𝑦

1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑇
). If the data

we collect has 𝑚 regions of interest or 𝑚 neurons based on
different experiments, generally our dataset is 𝑚 × 𝑇 matrix
𝑌. A simple matrix example is shown in Figure 1.

One of our purposes is to find the dynamic functional
connectivity or interaction, in which we need to establish the
change point from fMRI data first. In order to apply Bayesian
analysis to fMRI data and make inference to the parameters
that we are interested in, like finding the change points in the
dataset, we need to set up a probabilitymodel for the data and
find a prior to apply Bayes’ Rule.

For example, we want to find the change points in fMRI
data and define a block indicator �⃗� = (𝐼

1
, 𝐼
2
, 𝐼
3
, . . . , 𝐼

𝑇
) to

indicate the possible locations of change points in the 𝑚 × 𝑇

matrix. Now that the change point indicator is the parameter
of interest and we want to make inference to it. We can
assume the prior of �⃗� is Bernoulli (0.5) so that we have 𝑝(�⃗�) =

∏
𝑇

𝑡=1
𝑝(𝐼
𝑡
).

If �⃗� is given, we can calculate the likelihood of the fMRI
datamatrix as𝑝(𝑌 | �⃗�). Sometimes, we need to integrate some
nuisance parameter to get this probability.

Time

y1 y2 · · · yT

I1 I2 · · · IT

ROIs

1

2

3

m

...

Figure 1: Illustration of data matrix of 𝑌, 𝑚 ROIs, and a block
indicator vector �⃗�, where 𝑦

𝑖
is the values of all 𝑚 ROIs at the time

point 𝑖.

Thus, the posterior distribution of 𝑝(�⃗� | 𝑌) can be ob-
tained by

𝑝 (�⃗� | 𝑌) ∝ 𝑝 (�⃗�) 𝑝 (𝑌 | �⃗�) . (7)

After the application of Bayesian analysis theoretically, we
design a Markov Chain Monte Carlo (MCMC) scheme to
sample the posterior with a random initial block indicator
because that is the information we do not know ahead andwe
want to make inference. So the BayesianMCMC is applied to
the fMRI data. (The MCMC scheme is introduced in details
in Section 3.)

Following these procedures, there are several models
established and used. In our review, three Bayesian models
are elaborated: Bayesian magnitude change point model,
Bayesian connectivity change point model, and Bayesian
variable partition model for detecting functional interaction
and transition patterns, which contains Dynamic Bayesian
variable partition model with a two-level MCMC scheme.

In real experiments, before applying the Bayesian meth-
ods reviewed here, 358 DICCCOL (Dense Individualized and
Common Connectivity-based Cortical Landmarks) [39, 40]
ROIs (Regions of Interest) of each subject’s brain were first
obtained via the publicly available open-source tools in [40]
and extracted the fMRI signals.The preprocessing steps of the
DTI/R-fMRI (diffusion tensor imaging/resting-state fMRI)
images were similar to those used in previous publications
[39–43].

3. Bayesian-Inference-Based
Functional Dynamic Methods

In this section, we first describe two change point detecting
models with their one-level MCMC scheme. Next, we intro-
duce another powerful Bayesian model, which is able to infer
functional interaction and transition patterns with temporal
boundaries identified simultaneously using two-levelMCMC
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scheme. At the end, we summarize these three models and
their applications of fMRI data analyses.

3.1. Bayesian Magnitude Change Point Model. Lian et al. pro-
posed a BayesianMagnitude Change Point Model (BMCPM)
to detect group-wise consistent magnitude change points on
which further pattern recognition of temporal and spatial
activations was applied based [35]. A key feature of BMCPM
is the capability to consider the group-wise fMRI signals
of corresponding cortical landmarks across a population of
subjects and optimally determines the change boundaries.
In this section, we will elaborate this model in the Bayesian
context.

Given a vector �⃗� = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑡
) i.i.d. (independent

and identically distributed) from a normal distribution, 𝑎 ∼

𝑁(𝜇, 𝜎
2
), where 𝑡 denotes the dimension of vector �⃗�, 𝜇

denotes the mean, and 𝜎
2 denotes the variance.The common

way to obtain the posterior distribution of a one-dimensional
normal model with unknownmean and variance is to use the
conjugate priorNormal-Inverse-Chi-square (𝑁-Inv-𝜒2) [44].
In the Bayesian theory, we know that posterior probability
∝ likelihood × prior probability. Since the conjugate prior
is used for (𝜇, 𝜎

2
), the posterior distributions are then in the

same family as the prior probability distribution. Therefore,
assuming a conjugate prior 𝑁-Inv-𝜒2(𝜇

0
, 𝜎
2

0
/𝜅
0
, 𝜐
0
, 𝜎
2

0
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2
), then the posterior distribution of (𝜇, 𝜎

2
) is the

𝑁-Inv-𝜒2(𝜇
𝑡
, 𝜎
2

𝑡
/𝜅
𝑡
, 𝜐
𝑡
, 𝜎
2

𝑡
). So the probability of 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑡

can be calculated as follows:

𝑝 (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑡
)

= (
1

2𝜋
)

𝑡/2

√
𝜅
0

𝜅
𝑡

Γ (𝜐
𝑡
/2)

Γ (𝜐
0
/2)

(𝜐
0
𝜎
2

0
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𝜐0/2

(𝜐
𝑡
𝜎2
𝑡
/2)
𝜐𝑡/2

.

(8)

Based on (8), given a data matrix 𝐴 = (�⃗�
1
, �⃗�
2
, . . . , �⃗�

𝑚
),

where each �⃗�
𝑖
is a vector with the data i.i.d. from the normal

distribution as described above and �⃗�
𝑖
is a vector independent

from �⃗�
𝑗

(𝑖 ̸= 𝑗), the probability of 𝐴 is calculated as

𝑝 (𝐴) =

𝑚

∏

𝑖=1

𝑝 (�⃗�
𝑖
) , (9)

where 𝑝(�⃗�
𝑖
) is computed according to (8).

Magnitude change points are defined as the temporal
points dividing ROI data matrix into blocks which exhibit
substantial differences in brain states from each other.
Figure 2 demonstrates the basic idea in BMCPM.One tempo-
ral change point located at time point 𝑇

100
partitions the ROI

data matrix into two time blocks with different distributions.
To infer the magnitude temporal change points, we can

define a block indicator vector �⃗� = (𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑇
), where

𝐼
𝑖

= 1 if 𝑖th observation is the beginning of a block, and
otherwise 𝐼

𝑖
= 0. Therefore, 𝑇 temporal observations were

segmented into total ∑
𝑇

𝑖=1
𝐼
𝑖
blocks, because 𝐼

1
= 1 is always

considered as a change point.𝑌
𝑖
is denoted as the observation

data of 𝑚 ROIs inside the 𝑖th. For the fMRI data 𝑌 defined in

Signal

Change point

T1 T100 T200

Figure 2: One ROI signal with one magnitude change point at time
point 𝑇

100
.

Section 2.2, the likelihood of a block indicator vector can be
written as follows:

𝑝 (𝑌 | �⃗�) =

∑𝐼𝑗

∏

𝑖=1

𝑝 (𝑌
𝑖
) , (10)

where 𝑝(𝑌
𝑖
) can be calculated according to (9).Therefore, the

posterior distribution of �⃗� can be obtained as

𝑝 (�⃗� | 𝑌) ∝ 𝑝 (�⃗�) 𝑝 (𝑌 | �⃗�) . (11)

We let 𝑝(�⃗�) ∝ 𝜃
∑𝐼𝑗(1 − 𝜃)

(𝑇−∑ 𝐼𝑗) (Bernoulli distribution with
parameter 𝜃) which may also be modified to reflect our prior
knowledge of the estimated number of temporal blocks.

The BMCPM has been successfully applied to the oper-
ational span (OSPAN) data, a working memory task-based
fMRI dataset with 10 participants, which were acquired on
a 3T GE Signa scanner. Totally 81 ROIs were shown with
posterior probability larger than 0. Clustering analysis on
these 81 ROIs found that some clusters are highly related to
specific brain functions. For example, one of the clusters only
locates at areas of V1, V2, andmotor cortexwithwell response
to low level task-design, while another cluster locates on
the frontal or parietal lobes with respect to information
processing and responses. More results can be found in [35].

3.2. Bayesian Functional Connectivity Change PointModel. In
order to analyze the joint probabilities among the nodes of
brain networks between different time periods, a Bayesian
Connectivity Change Point Model (BCCPM) [34] was pro-
posed to determine the temporal boundary where there is
an abrupt change of multivariate functional interactions in
the brain networks. Different fromBMCPM,which considers
ROIs independent of each other, BCCPM infers the bound-
aries of temporal blocks via a unified Bayesian framework
by analyzing the dynamics of multivariate functional inter-
actions.

Given a vector {𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑡
} i.i.d. from 𝑚-dimensional

multivariate normal distribution 𝑏
𝑖

∼ 𝑁(�⃗�, Σ) 𝑖 = 1, 2, . . . , 𝑡,
where 𝑡 denotes the number of vectors,𝑚 denotes the dimen-
sion of vector 𝑏

𝑖
, �⃗� denotes the 𝑚-dimensional mean vector,

and Σ denotes 𝑚 × 𝑚 the covariance matrix. The common
way to obtain the posterior distribution of a multidimen-
sional normal model with unknown mean and covariance
matrix is to use the conjugate prior Normal-Inverse-Wishart
(𝑁-Inv-Wishart) [44]. Therefore, assuming a conjugate prior
𝑁-Inv-Wishart(𝜇

0
, Λ
0
/𝜅
0
, 𝜐
0
, Λ
0
) for (�⃗�, Σ), the posterior

distribution of (�⃗�, Σ) is 𝑁-Inv-Wishart(𝜇
𝑡
, Λ
𝑡
/𝜅
𝑡
, 𝜐
𝑡
, Λ
𝑡
).
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Since we are interested in the posterior distribution of
the configuration, the joint probability of 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑡
is

calculated as follows:
𝑝 (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑡
)

= (
1

2𝜋
)

𝑚𝑡/2

(
𝜅
0

𝜅
𝑇

)

𝑚/2
Γ
𝑚

(]
𝑡
/2)

Γ
𝑚

(]
0
/2)

(det (Λ
0
))

]0/2

(det (Λ
𝑡
))

]𝑡/2
2
𝑚𝑡/2

,

(12)

where Γ
𝑚
is the multivariate gamma function.

BCCPM are interested in the connectivity change points,
which define the temporal segments where there are underly-
ing differences in the joint probabilities (defining functional
interactions) among 𝑚 ROIs between different time-periods.
Figure 3 demonstrates the basic idea in BCCPM. Similar
to BMCPM, a block indicator vector is introduced as �⃗� =

(𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑇
). The marginal likelihood of the data matrix

𝑌 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑇
) can be computed as follows:

𝑝 (𝑌 | �⃗�) =

∑𝐼𝑗

∏

𝑖=1

𝑝 (𝑌
𝑖
) , (13)

where 𝑝(𝑌
𝑖
) is calculated according to (12). Please note that

one important assumption in the BCCPM is the statistical
independence among the temporal segments (blocks). Simi-
lar to BMCPM, the posterior distribution of the configuration
𝑝(�⃗� | 𝑌) can be obtained by (11). Note that blocks indicated
by �⃗� are mutually independent to each other across 𝑇.

BCCPMhas been applied to analyze the ADHDdata [31],
including 25 ADHD-c patients and 49 normal development
children as NCs, coming from the Imaging Center for Brain
Research, Beijing Normal University. All the ROI time series
are partitioned into three blocks with two change points
detected by BCCPM. Further analysis based on dictionary
learning algorithm identified two pairs of atomic functional
interaction patterns. The first pair shared 310 common
connections, while the second pair only shared 27 common
connections. The matrixes recovered from these two pairs
gave 100% discriminations between ADHD patients and NC
subjects. More results can be found in [31].

3.3. Bayesian Change Point Model Using One-Level MCMC
Scheme. Metropolis-Hastings (MH) scheme is widely used
for calculating the Bayesian inference. A one-level MH
(MCMC) scheme for calculating the posterior distribution
under BMCPM or BCCPM is provided as follows with
a randomly initialized block indicator vector �⃗�

0

and user
defined iteration number 𝑁:

(1) Generate a new block indicator vector �⃗�
∗

by randomly
switching the value of an element in �⃗�

𝑛−1

. And
calculate 𝑝(�⃗�

∗

| 𝑌) according to (11).
(2) Generate a randomnumber𝑢 fromuniform (0, 1) and

set

�⃗�
𝑛

=

{{{{

{{{{

{

�⃗�
∗

if 𝑢 ≤ min[

[

1,
𝑝 (�⃗�
∗

| 𝑌)

𝑝 (�⃗�
𝑛−1

| 𝑌)

]

]

�⃗�
𝑛−1

otherwise.

(14)

Signal i

Signal j

Signal k

Change point
T1 T100 T200

Figure 3: Three ROI signals with one connectivity change point at
time point 𝑇

100
where the multivariate normal distribution inside

the block 𝑇
1
–𝑇
100

of color blue is different from the distribution of
signal in the rest block of color orange.

(3) Iterate step (1) and step (2) until 𝑛 reaches the given
number 𝑁.

(4) Finally, the posterior probability for each time point
(1, 2, . . . , 𝑇) being a change point is calculated from
MCMC samples without burn-in samples.

By default, the control parameters, that is, 𝜇
0
, 𝜅
0
, 𝜐
0
, 𝜎
2

0
, Λ
0
,

are fixed as constants. To determine the number of iterations
to ensure Markov chains converged with contain configura-
tions, the trace plot of posterior probability and Gelman and
Rubin scale reduction factor [45] can be employed.

3.4. Dynamic Bayesian Variable Partition Model. Recently,
there are several studies which utilized the sliding time win-
dow based framework to model multivariate functional con-
nectivity interaction, as well as other works that used graph-
ical modeling methods to detect temporal brain dynamics
as mentioned in Section 1. However, it is much needed
for an integrated framework to infer the representative
signature patterns of the multivariate functional interactions
and to simultaneously characterize the temporal transitions
of these signature patterns. For this purpose, Zhang et al.
[36] proposed a Dynamic Bayesian Variable Partition Model
(DBVPM) to simultaneously infer global functional interac-
tions within brain networks and their temporal transition
boundaries. To capture all the conditional independence
global structure, two dependence structures, that is, chain-
and 𝑉-dependence structures, are designed, which will be
first elaborated in the following paragraphs. The DBVPM is
trying to simultaneously infer the temporal change points and
corresponding global structures inside these temporal blocks.

3.4.1. Chain-Dependence Model. A group of variables 𝐶
𝐺

follows a chain-dependence model if the index set 𝐺 can be
partitioned into three subsets 𝑈, 𝑉, and 𝑊 such that 𝐶

𝑈
and

𝐶
𝑊
are independent given 𝐶

𝑉
, such as 𝐶

𝑈
→ 𝐶
𝑉

→ 𝐶
𝑊
. The

joint distribution of a chain-dependence model is

𝑝 (𝐶
𝐺
) = 𝑝 (𝐶

𝑈
) 𝑝 (𝐶

𝑉
| 𝐶
𝑈

) 𝑝 (𝐶
𝑊

| 𝐶
𝑉

)

=
𝐹 (𝐶
𝑉

, 𝐶
𝑈

) 𝐹 (𝐶
𝑊

𝐶
𝑉

)

𝐹 (𝐶
𝑉

)
,

(15)

where 𝐹(𝐶
𝑉

, 𝐶
𝑈

, . . .) is the joint probability of (𝐶
𝑉

, 𝐶
𝑈

, . . .).
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3.4.2. 𝑉-Dependence Model. A group of variables 𝐶
𝐺
follows

𝑉-dependence model if the index set 𝐺 can be partitioned
into three subsets 𝑈, 𝑉, and 𝑊 such that 𝐶

𝑈
and 𝐶

𝑊
are

mutually independent, that is 𝐶
𝑈

→ 𝐶
𝑉

← 𝐶
𝑊
. The joint

distribution of a chain-dependence model is

𝑝 (𝐶
𝐺
) = 𝑝 (𝐶

𝑈
) 𝑝 (𝐶

𝑊
) 𝑝 (𝐶

𝑉
| 𝐶
𝑈

, 𝐶
𝑊

)

= 𝐹 (𝐶
𝑈

) 𝐹 (𝐶
𝑊

)
𝐹 (𝐶
𝑈

, 𝐶
𝑉

, 𝐶
𝑊

)

𝐹 (𝐶
𝑈

, 𝐶
𝑊

)
,

(16)

where 𝐹(𝐶
𝑉

, 𝐶
𝑈

, . . .) is the joint probability of (𝐶
𝑉

, 𝐶
𝑈

, . . .).
The calculation of this joint probability will be discussed in
next section.

3.4.3. Dynamic Bayesian Variable Partition Model. DBVPM
uses the similar Bayesian inference as in BCCPM except
that the numbers of dimension in the multivariate normal
distribution are not fixed across temporal order: specifically,
given 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑡
i.i.d. observations from the 𝑟-dimensional

multivariate normal distribution, 𝑐
𝑖

∼ 𝑁(�⃗�, Σ) 𝑖 = 1, 2, . . . , 𝑡.
To calculate the marginal distribution of the data 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑡
,

we only need to change the dimension from 𝑚 to 𝑟 in (12),
which is the same calculation for the joint probability in (15)
and (16), and 𝑟 is determined by the joint of variables. Figure 4
demonstrates the basic idea in DBVPM.

In DBVPM, to infer the dependence structure (chain or
𝑉 structure) among 𝑚 ROIs, another indicator vector Υ⃗ =

(Υ
1
, Υ
2
, . . . , Υ

𝑚
) is used to denote the grouping of the index

𝐺 of ROIs to subgroups 𝑈, 𝑉, and 𝑊, where Υ
𝑖

= 𝑗 means
𝑖th ROI is grouped in subgroup 𝑗 (𝑗 = 0 means 𝑈, 𝑗 = 1

means 𝑉, and 𝑗 = 2 means 𝑊), and a binary indicator 𝑆

is used to denote the dependence structures, that is, chain-
or 𝑉-dependence structure. The posterior distribution for
observations in 𝑖th temporal block can be calculated as

𝑝 (Υ⃗, 𝑆 | 𝑌
𝑖
) ∝ 𝑝 (𝑌

𝑖
| Υ⃗, 𝑆) 𝑝 (Υ⃗) 𝑝 (𝑆) , (17)

where𝑌
𝑖
is the same definition in previous sections and𝑝(𝑌

𝑖
|

Υ, 𝑆) is calculated as (15) when 𝑆 = 0 and (16) when 𝑆 = 1.
To incorporate the multivariate functional interactions

and temporal dynamics in DBVPM, the same block indicator
�⃗� = (𝐼

1
, 𝐼
2
, . . . , 𝐼

𝑇
) is used. Let �⃗� = (𝑆

1
, 𝑆
2
, . . . , 𝑆

∑𝐼𝑖
) be the

structure indictor vector, and let Υ⃗ = (Υ⃗
1
, Υ⃗
2
, . . . , Υ⃗

∑𝐼𝑖
),

where Υ⃗
𝑖
= (Υ
1
, Υ
2
, . . . , Υ

𝑚
) with Υ

𝑗
= 0, 1, 2, be the partition

indicator vector in the 𝑖th block. The posterior distribution
of the data matrix 𝑌 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑇
) can be represented as

follows:

𝑝 (�⃗�, Υ⃗, �⃗� | 𝑌) ∝ 𝑝 (𝑌 | �⃗�, Υ⃗, �⃗�) 𝑝 (�⃗�, Υ⃗, �⃗�) , (18)

where 𝑝(𝑌 | �⃗�,Υ⃗, �⃗�) = ∏ 𝑝(𝑌
𝑖

| Υ⃗
𝑖
, 𝑆
𝑖
) and 𝑝(�⃗�,Υ⃗, �⃗�) =

𝑝(�⃗�) ∏ 𝑝(Υ⃗
𝑖
, 𝑆
𝑖
| 𝐼
𝑖
). By default, the uniformprior can be used

for 𝑝(�⃗�) and 𝑝(Υ⃗
𝑖
, 𝑆
𝑖
| 𝐼
𝑖
).

DBVPM has been applied to analyze the posttraumatic
stress disorder (PTSD) data with 45 patients and 53 healthy
controls coming from the Second Xiangya Hospital and
the Central South of University on a 3T MRI (magnetic

Signal i

Signal j

Signal k

Change point
T1 T100 T200

Figure 4:Three ROI signals with one temporal change point at time
point𝑇

100
where a chain dependence structure is in the left block and

𝑉 dependence structure is in the right block.

resonance imaging) scanner. From the difference between
the manually labeled change points and the DBVPM-derived
time for 98 subjects, it showed that most change points
only have 3.5 time-point distance. Further analysis found
some substantial state distribution differences based on the
detected functional interactions between PTSD patients and
healthy controls, which may need additional structural or
neural basis investigation in the future. More results can be
found in [36].

3.5. DBVPM Using Two-Level MCMC Scheme. A two-level
MH (MCMC) scheme can be applied to sample from the pos-
terior distribution of the block boundaries and dependency
structures within each block: Given the block boundaries, the
lower level MCMC samples from the posterior distribution
of dependency structures within a block and the higher level
MCMC samples from the posterior distribution of block
boundaries. Specifically, the lower level MCMC involves
alternating between the chain and 𝑉 structures and changing
the group labels of each variable of ROI. The likelihood
can be calculated using (15), (16), and (18). The higher level
MCMC involves segmenting one block into two, merging
two neighboring blocks, and shifting a block boundary. In
each higher level step, every block runs through a lower level
MCMC. A dependency structure is sampled for each block
as the dependency structure for that block in the higher level
proposal. Then the log likelihood of the proposal can be
calculated by summing up the log likelihood of each block.
More details can be found in [36].

3.6. Bayesian Model Comparison. We conducted a system-
atical comparison of the above three Bayesian inference
models and summarized it in Table 1. The major differences
of these models come from their assumptions. In BMCPM,
no explicit connection is assumed between ROIs, so the one-
dimensional normal model is employed to capture this con-
dition. In BMCPM, all the ROIs are linked together to follow
a multi-dimensional normal distribution. In DBVPM, it tries
to capture more complex connections between ROIs, so the
chain- and 𝑉-dependence structures are used. As mentioned
in Section 1, Bayesian inference methods have been applied
to solve three issues in the analysis of fMRI data: detecting
magnitude change points; detecting functional connectiv-
ities change points; and identifying functional interaction
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Table 1: Summary of BMCPM, BCCPM, and DBVPM.

BMCPM BCCPM DBVPM
MCMC scheme One-level One-level Two-level
Ability to infer magnitude change points Yes Yes Yes
Ability to infer functional connectivity change points No Yes Yes
Ability to infer functional interaction patterns No No Yes
Running time

50 ROIs, 200 time points 2 seconds 49 seconds 948 minutes
300 ROIs, 200 time points 11 seconds 41 minutes NA
1000 ROIs, 200 time points 36 seconds 483 minutes NA

patterns. Since DBVPM uses the chain- and 𝑉-dependence
structures to capture global functional interactions, it owns
the power to identify not only all possible change points but
also functional interaction patterns, comparing to BMCPM
and BCCPM. However, an explicit drawback of DBVPM
is the convergence speed that it takes a tremendous time
(several weeks on an average power server) to converge when
dealing with more than 50 ROIs. This is the reason that
selected ROIs from certain brain networks were used in the
experiments of real data. We did a simulation test to measure
the convergence speed and robust of these three methods.
We generated three datasets with 200 time points fixed and
the number of ROIs set to 50, 300, and 1000, respectively.
The data are generated from the normal distributions, and
one change point is embedded at time point 101. Each dataset
has five replicas. The iterations are set to 2000 for one-
level MCMC and 2000 for both levels for two-level MCMC
as suggested by the original studies. We used the machine
with the Linux OS, Intel Xeon E5-2620, and 64GB memory.
The average running times (wall clock time) are shown at
the end of Table 1. Note that NA means that the method
did not finish the processing in three days. Three indicator
vectors were used in DBVPM that cause one-level MCMC
scheme not suitable for DBVPM. Although BMCPM is only
capable of finding magnitude change points, its execution
is very fast. Typically, for 358 ROIs, it only needs no more
than 2000 iterations and a couple of hours to converge, so
it is efficient for handling large fMRI time series data. For
BCCPM of multivariate normal distribution assumption, it
is good at inference of the boundaries of temporal blocks
based on dynamics of multivariate functional interactions.
It also converges fast when analyzing data with 358 ROIs.
Therefore, if there are some better approaches, like dictionary
learning, to further infer functional interactions between
ROIs, BCCPM should be the best choice as the first step to
establish temporal change points for functional interactions
and dynamics.

4. Summary and Discussion

In this review paper, we presented and summarized three
important applications of the Bayesian inference paradigm
to fMRI data. By assuming that normal distribution for each
ROI inside temporal block and ROIs are independent of each
other, the BMCPM calculates the posterior probability of the

temporal block indicator vectors using the conjugate prior of
𝑁-Inv-𝜒2. The essential feature of BMCPM is the capability
of considering the group-wise ROIs in the fMRI signals
across a population of subjects and optimally determining
the change boundaries. BMCPM converges very fast, and
it is able to analyze more than 1000 ROIs, but it only
detects magnitude change points. Different from BMCPM
considering ROIs independent of each other, the BCCPM
assumes that all𝑚ROIs are an integrated variable that follows
an𝑚-dimensionalmultivariate normal distribution, and thus
it can detect function connectivity change points. BCCPM,
like BMCPM, only needs one-levelMCMC scheme to sample
the posterior distribution and converges relatively fast when
there are no more than 1000 ROIs. To derive the repre-
sentative signature patterns of the multivariate functional
interactions within temporal blocks, DBVPM was proposed
to incorporate two structures, chain- and 𝑉-dependence
structures. Comparing to BMCPM and BCCPM, DBVPM is
able to identify the functional interaction patterns in addition
to the boundaries of temporal blocks. The cost of DBVPM is
that it spends unacceptable time to analyze fMRI data with
more than 50 ROIs. The performance of all three Bayesian
models were illustrated on three datasets, including task-
based OSPAN dataset, attention-deficit/hyperactivity disor-
der dataset, and posttraumatic stress disorder dataset, which
confirmed the superiority of Bayesian inference methods for
functional dynamic analysis on fMRI data.

There are still some challenging issues for using Bayesian
inference to analyze functional dynamics of fMRI data. For
example, from the evaluation of BCCPM on simulation for
local dynamics, it showed that BCCPM is not sensitive in
detecting small local changes of structure. Also, although
global structure inside the temporal blocks can be inferred
from DBVPM, the detailed interaction patterns and network
structure between ROIs are unknown. Functional connec-
tivity network is also one of the critical applications by
evaluating regional interactions using fMRI. One of the
possible extensions of BCCPM and DBVPM is to infer
the detailed functional connectivity network by estimating
the covariance matrix Σ, which could be a valuable future
direction for the Bayesian models. As we know, most of
the task-based fMRI experiments fall into two categories:
(1) block design and (2) event-related design. Currently,
the most Bayesian methods are specified and verified for
tackling problems based on the data from block design
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experiments. Comparing to block design, MR (magnetic
resonance) signal of efMRI (event-related fMRI) is smaller,
and statistical power is relatively lower due to the complexity
and the lower SNR (Signal-to-Noise Ratio). The Bayesian
model could be a possible tool to analyze event-related design
data as well because no explicit assumption is made about
what caused the difference in brain connectivity amongROIs.
The difference can be originated from either tasks or events.
In the future, systematical analyses on simulated and real
data are needed to verify the effectiveness and accuracy of
Bayesian models for event-based fMRI data, which is an
open question and one of the future extensions for Bayesian-
inference-based approach.
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