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Introduction
Lung cancer is the leading cause of cancer-related 
deaths worldwide.1 According to the WHO classi-
fication of lung tumors, there are two distinctive 
histologic subtypes of lung cancer: non-small-cell 
lung cancer (NSCLC) which comprises 85% of 
cases and high-grade neuroendocrine carcinoma 
(HGNEC) which comprises 15% of cases.2 
NSCLC is further categorized into various sub-
types. Among these, adenocarcinoma and squa-
mous cell carcinoma (SqCC) are common, while 
sarcomatoid carcinoma is rare. HGNEC is also 
divided into two subtypes: small-cell lung cancer 
(SCLC) and large-cell neuroendocrine carcinoma. 
Throughout the course of treatment, some patients 
may experience histologic transformations (HTs), 
resulting in anticancer drug resistance. In particu-
lar, HTs to HGNEC in patients with an epidermal 
growth factor receptor (EGFR) mutation-positive 
NSCLC on EGFR-tyrosine kinase inhibitor (TKI) 
treatment are most frequent. However, a compre-
hensive review of HTs in patients with lung cancer 
has been limited. In this review, we describe the 
characteristics, prevalence, genetic background, 

and future perspectives of HTs in patients with 
lung cancer.

HTs in patients with EGFR mutation-positive 
NSCLC

Transformation as a resistance mechanism
Somatic mutations in the tyrosine kinase domain 
of the EGFR gene are present in 15–50% of 
European and Asian patients with advanced 
NSCLC. As a result, treatment with EGFR-TKIs 
has extended progression-free survival (PFS) rel-
ative to chemotherapy as a first-line therapy and 
has been established as standard care.3,4 Although 
these patients demonstrate a high objective 
response rate to EGFR-TKIs, most develop an 
acquired resistance after approximately 
12 months. The most common mechanism of the 
acquired resistance is the EGFR exon20 T790M 
mutation from the first or second generation (G) 
EGFR-TKIs.5 Currently, the third G EGFR-
TKI, osimertinib, which is a potent inhibitor of 
active EGFR and T790M mutations, has been 
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recognized as standard care for EGFR mutation-
positive lung cancer.6 The detection of T790M 
mutations is important in the treatment decision 
after the development of resistance to the first or 
second G EGFR-TKIs. Therefore, as a routine 
clinical practice, a re-biopsy is conducted.7 The 
use of a repeat biopsy after clinical resistance to 
TKI therapy has aided the understanding of the 
molecular mechanisms underlying the acquired 
resistance to EGFR-TKIs.

In 2006, the first case of HT in a patient with lung 
cancer was reported by Zakowski et al.8 A 45-year-
old woman with no history of smoking and EGFR 
del19-positive lung adenocarcinoma who had 
undergone erlotinib treatment for 18 months was 
found to have developed SCLC after a second 
tumor biopsy. The second biopsy of the SCLC 
sample retained its original EGFR mutation, which 
suggested that SCLC may arise from adenocarci-
noma cells. Since that report, HTs have been rec-
ognized as a mechanism of resistance to 
EGFR-TKIs in patients with EGFR mutation-pos-
itive NSCLC. As a result, a number of case reports, 
systematic reviews, retrospective cohort studies, 
and pathological analyses of HTs in patients with 
lung cancer have been reported.9–13 The represent-
ative hematoxylin–eosin staining of biopsy samples 
from patients with HT is shown in Figure 1.

Debate on HTs or de novo combined SCLC
SCLC can be categorized as pure or combined 
SCLC (c-SCLC). The latter features a mixed 

tumor histology of SCLC and NSCLC. In a previ-
ous study, c-SCLC was observed in 10% of 176 
autopsied patients diagnosed with SCLC, which 
suggested that a small biopsy is not adequate for an 
accurate diagnosis.14 In practice, the presence of a 
c-SCLC can hinder the identification of the char-
acteristics of HTs. The clonal selection hypothesis 
states that HTs may occur if the SCLC compo-
nent becomes dominant when the adenocarci-
noma component is killed by the EGFR inhibitors 
in patients with c-SCLC at the time of the initial 
diagnosis.15 Although this hypothesis has existed 
for more than a decade, strong evidence has been 
lacking. Generally, patients with HTs respond well 
to EGFR-TKIs for several months and experience 
greater tumor growth at the time of acquired resist-
ance due to HT to SCLC. If the clonal selection 
hypothesis is true for the development of SCLC, a 
less dramatic response to EGFR inhibitors and 
earlier acquired resistance would be expected. 
Therefore, HTs in patients with lung cancer may 
be the reason for the detection of SCLC upon re-
biopsy, at the time of the acquired resistance.

Prevalence of HTs in patients with EGFR 
mutation-positive NSCLC
The first comprehensive study using a genetic 
assessment was conducted by Sequist et  al. in 
2011, who reported a prevalence of HTs of 14% 
in patients with lung cancer.11 The results of large 
cohort studies on HTs in patients with lung can-
cer are summarized in Table 1. Most of the cur-
rent publications have focused on HTs to 

Figure 1. Representative images of HT to SCLC from lung adenocarcinoma with an EGFR mutation. (a) 
hematoxylin–eosin staining of adenocarcinoma samples obtained via transbronchial lung biopsy before 
administering EGFR-TKI. (b) Hematoxylin–eosin staining of surgical biopsy samples of SCLC in lymph node 
obtained from patients exhibiting resistance to EGFR-TKI.
EGFR, epidermal growth factor receptor; HT, histologic transformation; SCLC, small-cell lung cancer; TKI, tyrosine kinase 
inhibitor.
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HGNEC. These studies have reported that 2–15% 
of patients with lung cancer experience HTs to 
HGNEC upon the acquisition of resistance. Our 
largest cohort study reported among 2624 re-
biopsy cases that the prevalence of HTs to 
HGNEC was 2.2% while that to other types of 
NSCLC was 0.6%.10 Overall, the time from initial 
diagnosis of HT to HGNEC ranged from 13 to 
22 months. Four cohort studies reported that most 
cases included the first or second G EGFR-TKIs, 
and HT after the third G TKI therapy. The results 
indicated collectively, that a HT in patients with 
lung cancer is recognized as a mechanism of resist-
ance, irrespective of the TKI generation.

HTs to another subtype of NSCLC in patients 
with EGFR mutation-positive NSCLC
Although uncommon, HTs from one subtype of 
NSCLC to another have been reported in 0.6% 
of in patients with lung cancer.10 Most of the 
reports were case reports or small case series. In 
our previous cohort study, most TKIs that were 
used during HTs were first or second generation. 
In some reports that analyzed pre- and post-HT 
samples of patients treated with osimertinib, the 

prevalence of SqCC transformations was 2–10%; 
thus, larger studies on third G TKIs are 
needed.18,19,21 Moreover, in a systematic review of 
17 patients with HTs to SqCC, most of the 
patients were female (82%), 41% were former 
smokers, and the median time to SqCC onset was 
11.5 months.22

HTs to subtypes other than HGNEC or SqCC are 
extremely rare. For example, there have been sev-
eral reports on transformations to sarcomatoid car-
cinoma.23,24 Specifically, six sarcomatoid HTs [five 
cases with EGFR mutations and one with c-ros 
oncogene 1 (ROS1) mutations] were reported, and 
the interval from initial diagnosis to HT was 9–88 
(median: 31.5) months.25 Giant cells were the most 
common form of sarcomatoid transformations, and 
overall survival (OS) after HTs in patients with 
lung cancer was reported to be 2.5 months, which 
was shorter than for HTs to HGNEC.

Current problems of HTs in patients with EGFR 
mutation-positive NSCLC
After the FLAURA study, the mainstay first-line 
EGFR-TKI changed to osimertinib.26 No 

Table 1. Summary of HTs in patients with EGFR mutation-positive NSCLC.

Author Journal Year N The number and 
prevalence (N, %) of HTs

HT 
histology

TKI (G) 3rd G TKI 
(N)

Time to 
HT (Mo)

Fujimoto 
et al.10

Eur J Cancer 2022 2624 59 (2.2)
15 (0.6)

HGNEC
another 
NSCLC

1st–3rd 14 21.6

Sequist 
et al.11

Sci Transl Med 2011 37 5 (14) SCLC 1st 0 14.1

Yu et al.16 Clin Cancer Res 2013 155 4 (2.6) SCLC 1st 0 13

Nosaki et al.7 Lung Cancer 2016 314 12 (3.8) SCLC 1st–2nd 0 N.R.

Zeng et al.17 Lung Cancer 2020 103 3 (2.9) SCLC 1st 0 N.R.

Piotrowska 
et al.18

Cancer Discov 2018 32 2 (6.3)
1 (3.1)

SCLC
SqCC

3rd 32 N.R.

Lin et al.19 Lancet Res Med 2018 53 2 (3.8)
1 (1.9)

SCLC
SqCC

3rd 53 N.R.

Oxnard 
et al.20

JAMA Oncol 2019 41 6 (15) SCLC 3rd 41 N.R.

Schoenfeld 
et al.21

Clin Cancer Res 2020 62 3 (4.8)
6 (9.7)

SCLC
SqCC

3rd 62 13.6

G, generation; HGNEC, high-grade neuroendocrine carcinoma; HT, histologic transformation; N.R., not reported; NSCLC, non-small-cell lung 
cancer; SCLC, small-cell lung cancer; TKI, tyrosine kinase inhibitor.
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standard treatment has yet been developed for 
those with osimertinib-resistant NSCLC, and a re-
biopsy after osimertinib resistance is not conducted 
as routine clinical practice. Therefore, no large 
cohort studies have been conducted and the pre-
cise incidence of EGFR mutation-positive NSCLC 
with HTs after osimertinib has not been deter-
mined. Currently, the major focus is on overcom-
ing osimertinib resistance by combining new 
drugs, such as a mesenchymal epithelial transition 
(MET) inhibitor (selumetinib), a vascular endothe-
lial growth factor receptor (VEGFR)-2 blocker 
(ramucirumab), and a bispecific antibody that 
blocks EGFR and MET receptors simultaneously 
(amivantamab).27–29 HTs in patients with lung 
cancer that occur after treatment with these agents 
should also be investigated in future studies.

HT induced by agents other than EGFR-TKIs

Programmed cell death 1/programmed cell 
death ligand 1 inhibitors
HTs have been reported mainly in patients with 
EGFR mutation-positive lung cancer. However, 
they have also been reported in patients with 
NSCLC undergoing treatment without EGFR-
TKIs and in those with other cancers.30–33 For 
example, HTs to SCLC after programmed cell 
death 1 (PD-1) inhibitor treatment has also been 
reported. In addition, HTs of adenocarcinoma to 
SqCC and vice versa have been reported after treat-
ment with PD-1 inhibitors such as nivolumab, 
pembrolizumab, and sintilimab.34–38 In contrast, 
HTs after programmed cell death ligand 1 (PD-
L1) inhibitor administration has been reported 
rarely, likely due to differences in the timing of its 
introduction into clinical practice and its infrequent 
use as a single agent for advanced NSCLC.39 HTs 
to SCLC were detected in only one case after treat-
ment with nivolumab followed by atezolizumab.

Among the studies on HTs in patients with lung 
cancer, after treatment with PD-1 inhibitors, few 
have examined the causes of HTs. However, sev-
eral studies have reported that tumor suppressor 
p53 (TP53) mutations were found prior to PD-1 
inhibitor administration in cases of HTs to 
SCLC.40,41 These findings were similar to those 
described below for HTs to SCLC after the use of 
molecular targeted agents, and no report has yet 
suggested a PD-1 inhibitor-specific mechanism of 
HT. Therefore, HTs in patients with lung cancer 
caused by PD-1 inhibitors may also be typical 
mechanisms of resistance to therapy for NSCLC. 

However, the rate of HTs among those patients 
treated with PD-1 inhibitors is unknown. It has 
been suggested that the frequency of HTs in 
patients with lung cancer may be underreported 
because re-biopsy after administration of immune 
checkpoint inhibitors (ICIs) is not common.41 
Therefore, future large-scale validation is 
warranted.

Anaplastic lymphoma kinase-TKIs
HTs in patients with lung cancer have been 
reported with the use of most of the marketed 
anaplastic lymphoma kinase (ALK)-TKIs, such 
as crizotinib, alectinib, ceritinib, and lorlatinib, 
while no report has yet linked ALK-TKIs specifi-
cally to HTs.42–45 Moreover, in most cases, the 
ALK-rearrangement was retained even after the 
HT.42–49 As most studies have focused on the 
mechanisms of resistance to ALK-TKIs, such as 
secondary mutations, ALK-amplification, and 
bypass signaling pathways, the frequency of HTs 
as a resistance mechanism to ALK-TKIs has not 
yet been reported.50–52

Several studies have reported the cases of HTs to 
SCLC in ALK-rearranged NSCLC.42,47,48,53 
Similar to HTs to SCLC caused by other drugs, 
HTs caused by ALK-TKIs have been implicated 
in the alterations in genes such as TP53 and ret-
inoblastoma 1 gene (Rb1).45,49 Recently, the first 
case of a transformed SCLC from ALK-
rearranged NSCLC using an analysis of the 
genomic and transcriptomic landscape of paired 
pre- and post-HT tissues was reported.54 The 
findings indicated that no alterations or loss of 
functions were detected in TP53 or Rb1, suggest-
ing that the mechanism of HT to SCLC in ALK-
rearranged NSCLC may differ from that in 
EGFR-mutated NSCLC. However, the number 
of paired-sample analyses was small, requiring 
further studies to examine the mechanistic differ-
ences of HTs between ALK-rearrangements and 
EGFR mutations. HTs to SqCC have also been 
reported after the use of ALK-TKIs in several 
cases.55–60 Two reports have demonstrated the 
paired pre- and post-treatment genomic land-
scape of the transformed ALK-rearranged SqCC; 
however, much remains unknown about HTs in 
SqCC.57,58

Other molecular targeted agents for NSCLC
HTs in patients with lung cancer are also caused 
by molecular targeted agents other than 
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EGFR- and ALK-TKIs. For example, several 
reports have shown HTs after treatment with 
ROS1-TKIs or Kirsten rat sarcoma viral onco-
gene homolog (KRAS) G12C-inhibitors.61–63

In the case of ROS1 rearrangement-positive 
NSCLC, the whole exome analysis of biopsy and 
autopsy-derived specimens before and after crizo-
tinib administration have provided detailed con-
firmation that the SCLC transformation occurred 
as a mechanism of resistance.61 This case showed 
a loss of function of TP53 and Rb1, which was 
similar to typical HT cases.

In terms of KRAS, mouse models and cell lines of 
KRAS G12D have been used frequently to study 
the mechanisms of oncogenesis of lung adenocar-
cinoma. In addition, studies using a KRAS G12D 
mutation-positive cell line and a mouse model 
have indicated that the deletion of liver kinase B1 
(LKB1) may be closely related to HTs to 
SqCC.64,65 However, no molecular targeting 
agents specific for KRAS G12D are currently in 
clinical application, and the relationship between 
KRAS G12D and HT to SqCC has not yet been 
demonstrated in clinical practice. With respect to 
KRAS G12C, for which there are molecular tar-
geted drugs are in clinical use, HTs to SqCC have 
been reported. In a study of KRAS G12C-positive 
NSCLC, the authors reported a resistance mech-
anism in 11 cases in which disease control was 
achieved for more than 12 weeks after adagrasib 
treatment.63 Of those 11 patients, some amplifi-
cations, oncogenic fusions, and loss of function 
mutations were identified. Among them, two 
patients exhibited HTs, both to SqCC. In one of 
the two cases, a circulating tumor DNA analysis 
of plasma samples was also performed, and no 
genomic resistance mechanism other than HTs to 
SqCC was identified (although there is no evi-
dence that serine/threonine kinase 11 
(STK11)/LKB1 was studied).

Some reports have stated that HTs in patients 
with lung cancer did not occur in cases where 
molecular targeted drugs were administered to 
patients with NSCLC with rare driver gene 
abnormalities, such as rearrangements during 
transfection (RET) and in the v-raf murine sar-
coma viral oncogene homolog B1 (BRAF) 
V600E.66,67 However, the sample sizes of those 
studies were limited. Thus, the possibility of HTs 
in rare driver gene alterations in patients with 
lung cancer cannot be ruled out, until the resist-
ance mechanism is studied on a large scale.

Mechanism of HTs and lineage plasticity  
in lung cancer

Histologic origin of lung cancer
The respiratory epithelium from the trachea to 
the alveoli is composed of basal, club/Clara, neu-
roendocrine, ciliated, goblet, and alveolar type I 
and type II cells (Figure 2). The development of 
lung cancer has been studied using genetically 
engineered mouse models.68 Such studies have 
postulated that type II alveolar cells are the origin 
of lung adenocarcinoma,69–72 while it has been 
suggested recently that club cells may be respon-
sible for this cancer subtype.73,74 Moreover, the 
origin of lung SqCC has been postulated to be 
basal cells based on the expression of p63, a 
marker of bronchial basal cells, and this theory is 
still supported as one of the origins of the dis-
ease.75–77 However, carcinogenesis of SqCC from 
type II alveolar cells and club cells has also been 
widely reported in recent years.78,79 Furthermore, 
because of its neuroendocrine neoplastic nature, 
SCLC was considered to be derived from neu-
roendocrine cells in the lung.80–82 Even in recent 
years, the development of SCLC from neuroen-
docrine cells is still considered one of the most 
promising origins.83,84 However, SCLC can arise 
from basal, club, and type II alveolar cells.80,85 
Thus, although generally, the cell of origin of lung 
cancer development was presumed by histologi-
cal type, each lung cancer subtype has no single 
histological origin.86

Furthermore, recent years have brought attention 
to the fact that the histology of lung cancer is not 
constant, but plastic. Cancer cell plasticity is 
defined as the ability of a cell to modify its iden-
tity substantially and to take on a new phenotype 
that resembles a distinct developmental lineage 
more closely.87 It is considered that some cancer 
cells possess plasticity and that further specific 
changes may cause dynamic changes, such as 
HTs. Herein, we review the mechanisms of HTs 
in patients with lung cancer, focusing on HTs to 
SCLC, which has been relatively well studied.

Genetic characteristics of SCLC
Inactivation of the Rb1 gene was first discovered 
as a characteristic genetic abnormality in retino-
blastoma.88,89 Subsequently, an association with 
neuroendocrine tumors was suggested and it was 
reported to be more common in SCLC than 
NSCLC.90,91 However, in a mouse model, the 
inactivation of Rb1 alone did not cause 

https://journals.sagepub.com/home/tam


TherapeuTic advances in 
Medical Oncology Volume 14

6 journals.sagepub.com/home/tam

neuroendocrine tumors in the lungs.92,93 In 2003, 
it was shown that loss of both TP53 and Rb1 in a 
wide range of lung epithelial cells in a mouse 
model could transform them into SCLC.94 In 
2011, the inactivation of TP53 and Rb1, particu-
larly in neuroendocrine cells and type II alveolar 
cells, was reported to induce small cell transfor-
mation.80 The following year, the results of a 
large-scale whole-genome, transcriptome, exome, 
and copy number analysis of SCLC were 
reported.95,96 As a result, mutations in TP53 and 
Rb1 were identified as highly frequent abnormali-
ties in SCLC. These findings suggest that loss of 
function due to mutations in both TP53 and Rb1 
plays a major role in the development of SCLC.

Mechanism of HT from NSCLC to SCLC
The acquired loss of function of Rb1, which 
occurs after the initiation of treatment for EGFR- 
and TP53-mutated NSCLC, was first hypothe-
sized as the cause of SCLC transformation.15 
Since the loss of TP53 and Rb1 is vital to the car-
cinogenesis of de novo SCLC, the Rb1 deletion 
was found in all 11 cases of the transformed 
SCLC and only in those with HTs to SCLC after 
resistance to EGFR-TKIs, but not in those whose 
cancer remained NSCLC with resistance to 

EGFR-TKIs.97 Therefore, it was hypothesized 
that the additional alterations in Rb1 during 
EGFR-TKI treatment would result in transfor-
mation and resistance against EGFR-TKIs. 
However, when the paired pre- and post-treat-
ment tumor samples were analyzed, the altera-
tions of Rb1 and TP53 were found to have existed 
before anticancer treatment.98 Furthermore, the 
alterations of Rb1 and TP53 were reported to be 
present in patients who did not develop HTs to 
SCLC. In other cohort studies, although EGFR/
Rb1/TP53-mutant lung cancers were present in 
5% of EGFR-mutant lung cancers, only approxi-
mately 20% of these cases showed HTs to SCLC 
after EGFR-TKI treatment.99 Moreover, EGFR-
mutant lung cancers without baseline TP53 and 
Rb1 alterations were rarely transformed to SCLC. 
Taken together, the loss of TP53 and Rb1 might 
be a necessary, but not sufficient condition for 
HTs to SCLC.

Thus, a second hypothesis of the mechanisms of 
HTs in patients with lung cancer is that gene 
alterations occur before or after anticancer drug 
therapy in cancer cells with a baseline loss of 
function of TP53 and Rb1. Both of the cohort 
studies of the paired pre- and post-treatment 
tumor sample analysis reported that 

Figure 2. Respiratory epithelium and the origin of lung cancers. The airway epithelium is composed of basal, 
club/Clara, neuroendocrine, ciliated, goblet, and alveolar type I and type II cells. The main histologic origin of 
each lung cancer subtype is indicated by the bold lines; however, each histological subtype has various origins.
AT1, alveolar type I cell; AT2, alveolar type II cell.
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activation-induced cytidine deaminase (AID)/
apolipoprotein B mRNA-editing enzyme 
(APOBEC) mutation signature was more 
enriched in EGFR/Rb1/TP53-mutant lung can-
cers which transformed to SCLC than in EGFR/
Rb1/TP53-mutant lung cancers which did not 
transform to SCLC, suggesting that gene altera-
tions other than TP53 and Rb1 mutations are 
required for HTs to SCLC.98,99 The APOBEC 
family is a group of DNA/RNA editing enzymes 
that convert cytidine (C) to uridine (U) through 
deamination reactions.100 APOBEC3-specific 
genome mutation (APOBEC3 signature) has 
been suggested to play an important role in the 
induction of genomic variations in many can-
cers.101–103 Furthermore, the presence of specific 
genomic mutations, such as the APOBEC signa-
ture, in EGFR/Rb1/TP53-mutant lung cancers 
prior to HTs suggests that genomic alterations 
other than TP53 and Rb1 may be involved in HTs 
to SCLC.98,99 Other genes have also been impli-
cated as possible contributors. For example, in a 
mouse model of transformed human basal cells of 
benign prostate tissue, the addition of cellular 
myelocytomatosis oncogene (c-MYC) and B-cell 
lymphoma 2 (Bcl2) alterations to TP53, AKT, 
and Rb1 alterations induced SCLC. However, 
TP53, AKT, and Rb1 alterations without c-MYC 
and Bcl2 alterations induced adenocarcinoma. 
Furthermore, in a mouse model of transformed 
normal human bronchial epithelial cells, all five 
genes (TP53, AKT, Rb1, c-MYC, and Bcl2) had 
to be altered for carcinogenesis to SCLC to 
occur.104 Thus, not only TP53 and Rb1 loss, but 
also other genetic factors may be needed for HTs 
to SCLC. However, while involvement of AKT 
and c-MYC has been detected in some clinical 
specimens of EGFR-mutated NSCLC with HTs 
to SCLC, it was not as prevalent as TP53 and Rb1 
alterations.98,99 Therefore, the specific set of 
genetic abnormalities required for SCLC trans-
formations has not yet been identified.

Recently, a third hypothesis of HTs in patients 
with lung cancer proposed that acquired tran-
scriptional regulation occurs in cancer cells with 
loss of function of Rb1 and TP53. Detailed 
genomic, epigenomic, transcriptomic, and prot-
eomic characterization of combined lung adeno-
carcinoma/SCLC, pre-transformation lung 
adenocarcinoma, post-transformation SCLC, 
never-transformed lung adenocarcinoma, and de 
novo SCLC have been reported.105 This study 
suggested that HTs in patients with lung cancer 
may be caused by transcriptional reprogramming 

rather than by acquired gene alterations. The 
authors identified an increased expression of 
genes involved in the polycomb repressive com-
plex 2 (PRC2), phosphoinositide 3-kinases 
(PI3K)/AKT, and neurogenic locus notch 
homolog protein (NOTCH) pathways. It was 
also found that pre-transformed lung adenocarci-
noma had an intermediate pattern between never-
transformed lung adenocarcinoma and 
post-transformed SCLC in the methylation pro-
filing. These findings suggested that HTs from 
NSCLC to SCLC may be caused by methylation-
induced changes in the transcriptional regulation 
with a prior loss of the TP53 or Rb1 function. The 
current hypothesis is summarized in Figure 3.

Nevertheless, these hypotheses are problematic 
because these studies did not target only trans-
formed SCLC and they included only a small 
number of patients. In addition, whether there 
are genetic differences between de novo SCLC 
and transformed SCLC remains unknown 
because the genomic analysis of transformed 
SCLC has only been performed in a small num-
ber of cases. In the few cases where the genomic 
analysis has been performed, no specific genetic 
abnormalities distinguishing the de novo SCLC 
from the transformed SCLC have been identi-
fied, aside from retained driver gene alterations. 
Therefore, in the future, more pre- and post-
transformation clinical specimens of lung adeno-
carcinomas in which HTs to SCLC have occurred 
need to be collected and analyzed in detail.

Small-cell transformation of prostate cancer
Next, we discuss the small cell transformations of 
prostate cancer, which is helpful in considering 
SCLC transformations from NSCLC. HTs to 
small-cell carcinoma of the prostate have been 
known to occur after the administration of andro-
gen receptor (AR) signaling inhibitors, such as 
abiraterone and enzalutamide for the treatment 
of metastatic castration-resistant prostate can-
cer.106,107 Transformations of prostate cancer 
into small-cell carcinoma by AR inhibition have 
been reported and analyzed before that of EGFR 
mutation-positive NSCLC to SCLC. Thus, 
small-cell transformations of prostate cancer 
have been examined in more detail than that of 
lung cancer in some areas. In a recent large pro-
spective study, this condition was named treat-
ment-emergent small-cell neuroendocrine 
prostate cancer (t-SCNC), and its frequency was 
examined. The results showed that t-SCNC as a 
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resistance mechanism occurred in 17% of 
patients after the initiation of AR-targeted ther-
apy.31 Alterations of TP53 and Rb1 were detected 
in several cases. In a mouse model, defects of 
TP53 and Rb1 depressed epigenetic initiators, 
such as enhancers of the zeste homolog 2 (Ezh2) 
and sex-determining region Y-box 2 (Sox2), were 
identified, which were shown to be involved in 
resistance to antiandrogen therapy and lineage 
plasticity.108 De-repression of the placental gene, 
paternally expressed gene 10 (PEG10) and 
involvement of transmembrane serine protease 2 
(TMPRSS2)/endocrine/reproductive/gastrointes-
tinal (ERG) fusion or transcription factors, such 
as the forkhead box protein A1 (FOXA1) and 
POU domain class 3 transcription factor 2 
(POU3F2) have been reported to play roles in the 
small-cell transformation mechanisms of pros-
tate cancer.109–112 However, although the loss of 
function of TP53 and Rb1 is common between 
NSCLC and prostate cancer in the mechanism 
of HTs to SCLC, some of the above-mentioned 
genes, especially the transcription factors, have 
not been identified in HTs to SCLC from 
NSCLC. Further studies are needed to deter-
mine whether NSCLC and prostate cancer share 
common or distinct mechanisms of transforma-
tion to small-cell carcinoma.

Mechanism of squamous cell transformation
Knowledge on transformations to SqCC is lim-
ited. Notably, for the de novo SqCC, there have 
been no reported genetic abnormalities, such as 
TP53 or Rb1 in SCLC, which are present in many 
cases and can be key to investigating the mecha-
nisms of transformation, which may hinder the 
establishment of models for HTs to SqCC. 
However, a few studies using KRAS G12D-
positive adenocarcinoma mouse models, and 
paired tissues before and after treatment, have 
suggested that the loss of the LKB1 function may 
play an important role in HTs to SqCC. The pos-
sibility that the loss of LKB1 function contributes 
to the development of de novo SqCC has been 
noted in several reports.113,114 In the KRAS 
G12D-positive adenocarcinoma mouse models, 
the deletion of LKB1 may have resulted in trans-
formations to SqCC.65,115 Moreover, the admin-
istration of Adenovirus-Cre via an intranasal 
addition to LKB1fl/fl and phosphatase and tensin 
homolog (PTEN)fl/fl mice resulted in carcinogen-
esis of SqCC and the expression of the squamous 
markers keratin 5 (KRT5), p63, and Sox2, which 
transcriptionally resembled the human lung 
SqCC.116 In addition, the loss of function of 
LKB1 and PTEN activated AKT and the mecha-
nistic target of rapamycin (mTOR) pathways, 

Figure 3. Current hypothesis of HTs to small-cell lung cancer from NSCLC. TP53, Rb1, and driver gene 
alterations are commonly observed before HTs, and some regulation change of translational factor or acquired 
gene alterations might be required for HTs.
ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; HT, histologic transformation; Rb1, 
retinoblastoma 1 gene; NSCLC, non-small-cell lung cancer; TP53, tumor suppressor protein p53.
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contributing to cell proliferation and tumorigen-
esis. The possibility that the loss of LKB1 or 
PTEN may have activated the mTOR pathway, 
leading to HTs to SqCC, has been suggested in 
reports of pre- and post-treatment clinical sam-
ples of transformed SqCC, and is a promising 
hypothesis.117 However, HTs to SCLC without 
any obvious acquired alterations of the mTOR 
pathway has also been reported;21 thus, the loss of 
LKB1 and PTEN is not considered to be the sole 
mechanism of SqCC transformations. 
Importantly, loss of LKB1 is detected in up to 2% 
of cases of de novo SqCC, which may make it dif-
ficult to establish a single model for HTs to 
SqCC.118 Further analysis of paired pre- and 
post-transformation tumors may reveal multiple 
transformation mechanisms.

Therapeutic strategies after HTs

Survival after HTs in patients with EGFR 
mutation-positive NSCLC
Treatment strategies after HTs in patients with 
lung cancer are a major problem for both patients 
and clinicians. Existing data from a cohort study 
are limited to patients with EGFR mutation-posi-
tive NSCLC. The prognosis of HTs in patients 
with lung cancer, obtained from cohort studies is 
summarized in Table 2. An OS of 9–15 months 
from the time of HT diagnosis has been reported 

in previous literature.10,119–121 Moreover, the OS 
and PFS of HTs to SCLC were comparable with 
those of de novo SCLC.122,123 From the perspec-
tive of disease behavior, one previous report sug-
gested that HT to SCLC in patients with EGFR 
mutation-positive NSCLC might be more aggres-
sive than in patients without EGFR-mutation 
because the median time to HT for patients with 
EGFR-mutation was significantly shorter than 
that for patients without EGFR-mutation.124 
However, this might be biased by the recommen-
dation of repeat biopsy in EGFR-mutant patients 
after a line of targeted therapy, whereas a repeat 
biopsy is not recommended in patients without 
EGFR mutation.125 For patients with HTs to 
another subtype of NSCLC, the OS was reported 
to be 12.1 months.10 However, the data of sur-
vival outcomes of patients with HTs to SqCC 
were limited compared with that of patients with 
HTs to SCLC. Moreover, no study has yet com-
pared OS from the time of diagnosis between HT 
and non-HT cases; therefore, the clinical impact 
of HTs should be investigated in future studies.

Efficacy of chemotherapy after HTs
The indicators of treatment efficacies such as 
PFS, OS, and OS after the lung cancer diagnosis 
are summarized in Table 2. Therapeutic strate-
gies should be adjusted for SCLC after HTs to 
SCLC, since SCLC is highly malignant and 

Table 2. Summary of the prognosis of patients with HGNEC or another subtype of NSCLC.

Histology Author Journal Year N Treatment after 
HT diagnosis

PFS after HT 
diagnosis 
(Mo)

OS after HT 
diagnosis 
(Mo)

OS after 
lung cancer 
diagnosis (Mo)

HGNEC Fujimoto 
et al.10

Eur J 
Cancer

2022 59 Chemo 51/ICI 12/
TKI 21

4.1 12.6 N.R.

 Marcoux 
et al.119

J Clin Oncol 2018 65 Chemo 63/ICI 17/
TKI 34

3.4 10.9 31.5

 W. Wang 
et al.120

Lung Cancer 2021 32 Chemo 30/ICI 3/
TKI 7

3.5 9.7 34.5

 S. Wang 
et al.121

Thorac 
Cancer

2021 29 Chemo 27/TKI 18 4.7 14.8 N.R.

 Ferrer et al.124 J Thorac 
Oncol

2018 48 Chemo 41/ICI 1/
TKI 2

N.R. 9 28

Another 
NSCLC

Fujimoto 
et al.10

Eur J 
Cancer

2022 15 Chemo 9/ICI 9/
TKI 5

6.4 12.1 N.R.

HGNEC: high-grade neuroendocrine carcinoma; HT: histologic transformation; ICI: immune checkpoint inhibitor; NSCLC: non-small-cell lung 
cancer; N.R.: not reported; PFS: progression-free survival; OS: overall survival; TKI: tyrosine kinase inhibitor.
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develops rapidly.15 In previous studies, most 
patients received cytotoxic chemotherapy. Among 
them, SCLC-based chemotherapy (etoposide 
plus platinum or irinotecan plus platinum) was 
used most frequently.10,119 In a previous study, 
the PFS of etoposide plus platinum was 
3.4 months. Considering that the PFS of etopo-
side plus platinum in de novo extensive-disease 
SCLC was 4–6 months, the treatment efficacy 
may be limited.122,123 In this clinical setting, a 
repeat biopsy is highly recommended to rule out 
SCLC transformation because platinum-etopo-
side chemotherapy yields responses in patients 
with transformed SCLC, similar to de novo 
SCLC.125

Efficacy of ICIs after HTs
Previous studies have shown the limited efficacy 
of ICIs for patients who developed HT, although 
recent research has suggested that HTs are asso-
ciated with the increased ability to induce an 
immune response.105 Specifically, in our study, 
the total objective response rate and disease con-
trol rate of ICI therapy (PD-1/PD-L1 inhibitor 
monotherapy or platinum-pemetrexed combined 
with PD-1/PD-L1 inhibitors) were 0% and 17%, 
respectively, and the median PFS was 
2.0 months.10 Another large-scale report showed 
that no responses were observed after HTs in 17 
patients who received ICIs, either as a single-
agent PD-1 or PD-L1 inhibitor (n = 9) or as part 
of a combination ipilimumab–nivolumab regimen 
(n = 8).119 None of the 17 patients derived clinical 
benefits from these therapies, as the longest time 
to progression was only 9 weeks.

Treatment efficacy of TKIs
Data are limited on the efficacy of TKIs after 
HTs in patients with lung cancer, although con-
tinuing TKI therapy after the development of 
HT has been used in some cases. In a retrospec-
tive study, the PFS after HTs of patients receiv-
ing chemotherapy with EGFR-TKIs was 
significantly longer than that of patients receiving 
chemotherapy without EGFR-TKIs (5.2 versus 
3.0 months, p = 0.0014).121 However, the OS 
benefit has not been demonstrated; thus, the effi-
cacy of continuing TKI therapy has not reached 
consensus. Another study has implied the benefi-
cial efficacy of multi-kinase inhibitor therapy 
after HTs in patients with lung cancer.120 
Anlotinib is an orally administered multi-kinase 
inhibitor that targets VEGFR, fibroblast growth 

factor receptor, platelet-derived growth factor 
receptors, and c-kit. Owing to its antiangiogenic 
effect, this agent is considered to be a potential 
new treatment option for SCLC.126 In a multi-
center, retrospective study conducted in China, 
anlotinib showed good efficacy in patients with 
HTs to SCLC (median PFS was 4.3 months in 
the anlotinib group versus 0.7 months in the pla-
cebo group, HR = 0.19, p < 0.0001). From these 
studies, the use of TKIs after HTs in patients 
with lung cancer may be considered as a treat-
ment option.

Future strategies for patients who  
experience HTs
Currently, there are no published prospective tri-
als for patients with HTs. After the accumulation 
of data from the IMpower 133 and the CAPSIAN 
study, the platinum + etoposide + anti-PD-L1 
inhibitor regimen has been recognized as stand-
ard care for patients with extensive-disease 
SCLC.127,128 In addition, experimental module 7 
of the Orchard clinical trial (NCT03944772) is 
investigating etoposide + durvalumab + carbopl-
atin or cisplatin for patients who develop HTs.129 
Another promising strategy is the use of olaparib, 
a poly-ADP ribose polymerase (PARP) inhibitor. 
One approach to enhance the clinical activity of 
ICIs is to modulate the DNA damage response.130 
PARP1 is highly expressed in SCLC, and PARP 
inhibitors have shown antitumor activity in pre-
clinical models and in patients with SCLC. A 
recent study using a multiomics approach identi-
fied a greater activation of immune-related path-
ways in the transformed SCLC compared with 
the de novo SCLC.105 Therefore, olaparib is 
expected to be a useful treatment option for 
patients with EGFR-positive NSCLC that have 
undergone HTs to SCLC. Currently, a phase II 
trial of durvalumab and olaparib for patients with 
EGFR-mutated transformed SCLC is ongoing 
(NCT04538378). Furthermore, in a recent 
study, de novo SCLC cases were categorized into 
four subtypes (SCLC-A, N, P, and Y), based on 
the most predominant expression of the four tran-
scription factors that are characteristic of SCLC. 
Achaete-scute homolog 1 (ASCL1) is predomi-
nant in SCLC-A, neurogenic differentiation 1 
(NEUROD1) in SCLC-N, POU domain class 2 
transcription factor 3 (POU2F3) in SCLC-P, and 
yes-associated protein 1 (YAP1) in SCLC-Y.131 
Treatment strategies for each molecular subtype, 
such as Bcl2 inhibitors for SCLC-A and the 
Aurora inhibitors for SCLC-N are warranted.97,132 
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No comprehensive data have yet been compiled 
regarding the four subtypes of SCLC after HT. 
Specific treatment strategies for patients with 
HTs to SCLC are also warranted.

Future strategies for patients who are  
at high risk of HTs
Treatment strategies for patients at high risk of 
HTs have also been investigated. As noted previ-
ously, the loss of the TP53 and Rb1 function is not 
a sufficient condition for HTs to SCLC; however, 
it is present in most cases of HTs to SCLC. 
Moreover, in previous research, patients with tri-
ple-mutant (EGFR/RB1/TP53) lung cancer had a 
shorter time to initial EGFR-TKI discontinua-
tion than EGFR/TP53- and EGFR-only mutant 
cancers.133 In patients with EGFR/RB1/TP53-
mutant lung cancer, the persistent cell population 
after EGFR-TKI treatment may include a sub-
clone that is at high risk of HTs to SCLC, and 
may benefit from the combination of EGFR-
TKIs and a neuroendocrine-based chemotherapy 
regimen.99 Thus, the continuing use of osimerti-
nib followed by a platinum + etoposide insertion 
for patients at high risk of HTs to SCLC is cur-
rently being investigated in an ongoing phase I 
clinical trial (NCT03567642).

In considering the treatment strategy for patients 
with HTs to SCLC, early detection is critical. 
Although a tissue biopsy is crucial for the diagno-
sis of HTs in patients with lung cancer, it can be 
difficult and invasive.134 In a previous report, ele-
vated tumor markers, such as neuron-specific 
enolase and pro-gastrin-releasing peptide were 
reported at the time of HTs to SCLC; however, 
tumor markers are not precise indicators of 
HTs.135,136 Liquid biopsy is a recently developed, 
non-invasive technique used in cancer treatment. 
It has demonstrated an ability to detect, charac-
terize, and monitor cancers using a serum sample. 
In a previous study, a tissue and plasma analysis 
of EGFR, TP53, and RB1 contributed to the early 
detection of HTs to SCLC.99,134,137 Moreover, 
liquid biopsy techniques have been used in the 
previously mentioned clinical trial (NCT0 
3567642). Furthermore, the use of a serum digi-
tal droplet PCR (ddPCR) might be helpful in 
identifying high-risk patients. In a previous study, 
a ddPCR was conducted before osimertinib 
administration for previously treated NSCLC 
with HTs to SCLC and showed a low ratio of 
T790M/activating mutation.138 This study sug-
gested that a tissue biopsy should be considered 

to exclude the occurrence of HTs to SCLC in 
cases of a low ratio of T790M/activating mutation 
in the blood sample. However, the number of 
patients included in this analysis was small; there-
fore, the significance of T790M mutations in 
HTs in patients with lung cancer should be stud-
ied in a large cohort.

Conclusions
HT is a major resistance mechanism in patients 
with lung cancer, not only for EGFR-TKI but 
also for other molecular targeted agents and ICI 
therapy. The most prevalent histology after HT is 
SCLC; however, some patients may experience 
HTs to another NSCLC. Recently, some reports 
analyzed paired pre- and post-treatment trans-
formed-tumor samples, and several hypotheses 
were developed regarding the mechanism of HTs 
in patients with lung cancer. However, the num-
ber of cases in which such analyses have been per-
formed remains small and the mechanisms remain 
unclear. Moreover, other data such as patient 
characteristics and treatment efficacy are scarce. 
Although the current standard treatment for 
transformed lung cancer is cytotoxic chemother-
apy, the treatment efficacy has been reported to 
be limited. Further research is warranted for this 
group of patients.
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