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Abstract: Results of expression studies can be useful to clarify the genotype-phenotype relationship.
However, according to data from recent literature, there is a large group of genes that are revealed as
differentially expressed (DE) in many studies, regardless of the biological context. Additional analyses
could shed more light on the relationships between genes, their differential expression, and diseases.
We generated a set of 9972 disease genes from five gene-phenotype databases (OMIM, ORPHANET,
DDG2P, DisGeNet and MalaCards) and a report of the International Union of Immunological Societies.
To study transcriptomics of disease and non-disease genes in healthy tissues, we obtained data from
the Human Protein Atlas (HPA) website. We analyzed the dependency between expression in healthy
tissues and gene occurrence in Gene Expression Omnibus series using tools within the Enrichr
libraries. The results of expression studies were annotated with Gene Ontology (GO) and Human
Phenotype Ontology (HPO) terms. Using transcriptomics analysis of healthy tissues, we validated
the previous findings of higher expression levels of disease genes in pathologically linked tissues
compared to other tissues. Preferentially DE genes were generally highly expressed in one or multiple
tissues and were enriched for disease genes. According to the results of GO enrichment analyses,
both down- and up-regulated DE genes most often took part in immune response, translation and
tissue-specific processes. A connection between DE-related pathology and the diversity of HPO terms
was found. Investigating a link between expression and phenotype contributes to understanding the
mode of development and progression of human diseases.

Keywords: differential expression (DE); disease genes; gene expression omnibus (GEO); gene ontology
(GO); transcriptomics analysis of healthy tissues; human phenotype ontology (HPO)

1. Introduction

Large-scale studies of gene expression are widely used to explore molecular mech-
anisms of human diseases. Most of these studies aim to identify genes with differential
expression (DE) between diseased and healthy groups. It is generally accepted that an
integrated analysis of DE genes can provide valuable information to identify disease mark-
ers and describe a targeted disease landscape in general [1–3]. However, recent studies
demonstrated predictability of DE for a large group of genes, independent of the biological
conditions in which they were investigated [4,5]. An analysis of overlapping genes within
a framework of more than 600 expression studies showed that preferentially variable genes
can be attributed to several sets of DE genes implicated in a common biological function,
which were called DE modules. These modules included genes relating to sex, extracellular
matrix, immune system and inflammation, cell cycle, and response to stress [4]. Since
this finding is of a general nature, a number of questions arise. Could it be that main DE
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modules do not differ for different tissues and directions of effect (down- or up-regulation)?
Is there a link between gene expression in normal tissues and DE in pathology affected
tissues? Are there differences in DE predictability between genes associated with a dis-
ease and other genes? Does the number of DE findings of a gene in transcriptome-wide
studies correlate with the number of phenotypic terms for a gene within and between
phenotypic categories?

Some of these issues have been partially addressed in the literature. Disease-associated
genes tend to be expressed at higher levels in those healthy tissues where alterations of these
genes cause pathology [6]. Gene expression profiles across healthy organs correlated with
organ-specific cancer incidence, in particular, a positive correlation with cancer incidence
was demonstrated for highly expressed genes involved in transcription, translation, and
protein synthesis [7]. Both down and up-regulated DE genes may be enriched in the
same biological processes [8,9], possibly due to compensatory mechanisms [10,11]. In
multifactorial disorders and drug-induced perturbations, characteristics of DE profiles
correlated with the broadness of phenotypic manifestations [12].

Due to swift development of molecular genetic technologies and rapid accumulation
of gene expression data in public repositories, progressive refinement of expression studies
becomes possible. In this work, we sought to use modern resources to address relation-
ships between gene expression in healthy tissues and DE in pathology studies. With this
objective, we generated a large set of disease genes from five gene-phenotype databases
(OMIM, ORPHANET, DDG2P, DisGeNet and MalaCards) and the International Union of
Immunological Societies (IUIS) report [13]. Due to the role of the immune system in the
maintenance of tissue homeostasis and organism integrity [14], special attention was paid
to the genes associated with immune diseases. In subsequent analyses, immune disease
genes were compared with genes associated with respiratory and nervous system diseases.
We analyzed transcriptomic profiles of disease and non-disease genes in healthy tissues
and blood cells and assessed their expression levels and tissue specificity. We investigated
the dependency between expression in healthy tissues and gene occurrence as DE in the
Gene Expression Omnibus (GEO) series within the Enrichr libraries Disease Perturbations
from GEO down studies and Disease Perturbations from GEO up studies. Structured
Gene Ontology (GO) and Human Phenotype Ontology (HPO) vocabularies were used to
incorporate the data of expression studies in the context with translational impact.

2. Materials and Methods
2.1. Creating a Series of Disease Genes

OMIM, ORPHANET, DDG2P, DisGeNet, and MalaCards were used to generate a
list of disease genes. OMIM phenotypes related to a particular gene were obtained
from the Gene Map retrieval set https://www.omim.org/search/advanced/geneMap
(accessed on 1 August 2021). and annotated with Clinical Synopsis data (https://www.
omim.org/search/advanced/clinicalSynopsis) with the MIMmatch service (accessed on
20 August 2021). ORPHANET gene-disease pairs were downloaded from http://www.
orphadata.org/cgi-bin/index.php (accessed on 1 August 2021). Rare disease classifica-
tions were available from http://www.orphadata.org/cgi-bin/rare_free.html (accessed
on 8 August 2021). DDG2P gene diseases and attributes were retrieved from https:
//www.ebi.ac.uk/gene2phenotype/downloads (accessed on 8 June 2021). DisGeNet
curated gene-disease associations (GDA) with GDA scores ≥ 0.3 were obtained from
https://www.disgenet.org/downloads. The list of GDAs was further restricted to the evi-
dence index (EI) ≥ 0.9 MalaCards https://www.malacards.org/ (accessed on 15 June 2021).
elite genes with their corresponding diseases were kindly provided by MalaCards team
(the MalaCards dump for GeneCards Suite Version v5.2). Elite genes are defined by gene-
disease scores ≥ 25, computed as a weighted sum of individual scores derived from eight
sources of information: OMIM, ClinVar, Orphanet, SwissProt-Humsavar, GeneTests, DIS-
EASES, Novoseek, and GeneCards. The list of primary immunodeficiency (PID) genes
was taken from the IUIS report [13]. A gene was considered to be related to a specific
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system disease (immune, respiratory or nervous) according to the classification in any of
the resources used.

2.2. Transcriptomic Data in Healthy Tissuesand Tissue- and Blood Cell-Specific Gene
Enrichment Analysis

We used data for tissue expression from the site ‘Downloadable data’ from Human
Protein Atlas (HPA) homepage (https://www.proteinatlas.org/about/download (accessed
on 20 August 2021)). The following data sets were downloaded and analyzed: HPA
(43 tissues, n = 43) and GTEx (n = 34) sets for tissue gene data, and HPA (n = 19) and
Monaco (n = 30) sets for blood cell gene data. All data are based on The Human Protein
Atlas version 21.0 and Ensembl version 103.38. HPA sets included data on 19,670 genes,
while GTEx and Monaco [15] sets included data on 18,816 genes. All GTEx and Monaco
genes were also present in the HPA series. The TissueEnrich R package [16] was used
to carry out tissue- and blood cell-specific gene enrichment analysis. Tissue enriched,
group enriched, and tissue enhanced genes identified with TissueEnrich were grouped
together under the name ‘tissue-specific genes’. The teEnrichment function (with default
parameters) was applied to calculate the enrichment of tissue-specific genes in the groups
of immune, respiratory, and nervous system disease genes [16].

2.3. Gene Occurrence in Pathology Transcriptomics from ENRICHR Libraries for GEO Studies

In this section, we determined how often each gene was detected as DE in studies
samples for a specific tissue. Enrichr libraries Disease Perturbations from GEO down
studies and Disease Perturbations from GEO up studies were downloaded from https:
//maayanlab.cloud/Enrichr/#libraries (accessed on 25 August 2021). After exclusion of
non-human samples, there were 568 samples collected by crowding [17] from 339 studies.
Gene names were checked with HGNC Multi-symbol Checker (http://www.genenames.
org/cgi-bin/symbol_checker (accessed on 26 August 2021)) and revised so that one HGNC
term combined all synonyms and corresponded to one stable ENSG ID (Ensembl Gene
Identifier) (Ensembl version 106). Since stable ENSG ID are kept the same throughout
Ensembl releases, ENSG IDs were further used to match genes from HPA and GEO studies.
Tissues on which the studies were conducted were checked manually using the original
descriptions of the studies on the GEO website. Furthermore, tissues were grouped by
types to access the number of tissue-specific DE findings.

2.4. GO Enrichment Analysis

Gene Ontology enrichment analysis was used to functionally characterize DE genes.
Enriched biological processes were considered in the sets of DE genes in blood/bone
marrow, lung, cerebral cortex, skeletal muscle, and skin. Each sample was analyzed
separately with two tools, Enrichr: GO Biological Process 2021 (https://maayanlab.cloud/
Enrichr/ (accessed on 25 August 2021)) and STRING: GO Biological Process (https://string-
db.org/ (accessed on 18 September 2021)). For gene set enrichment analyses, the false
discovery rate (FDR) threshold was set at 0.05. We collected data on all enriched GO terms
in all samples within tissue type and calculated the frequency of the occurrence of each
GO term for the tissue. The REVIGO tool was used for data visualization and reducing
redundancy of GO terms [18].

2.5. Mapping HPO Annotations to Genes

To link the results of transcriptomics studies with the variability of phenotypic abnor-
malities encountered in human genetic diseases, we used standardized terms for pheno-
typic abnormalities in hereditary diseases, which were obtained from Human Phenotype
Ontology (HPO) [19]. The list of HPO gene-phenotype associations in all HPO diseases
was downloaded from (https://ci.monarchinitiative.org/view/hpo/job/hpo.annotations/
lastSuccessfulBuild/artifact/rare-diseases/util/annotation/genes_to_phenotype.txt (ac-
cessed on 19 July 2021)). Each HPO phenotype was mapped to a HPO category available
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through search and downloads of phenotypic terms relating to individual diseases. Catego-
rization of the term did not depend on a specific disease. From the total of 27 categories in
HPO, the categories “Inheritance” and “Clinical modifier” were excluded.

2.6. Identification of Haploinsufficient Genes

Among genes associated with genetic diseases, there are a relatively large fraction
of haploinsufficient genes, which encode proteins required in large or highly titrated
amounts. Haploinsufficiency can be defined as prediction of sensitivity to decreased
gene dosage. The comparative analysis of haploinsufficient and haplosufficient genes
could further clarify the connection between gene expression and variability of pheno-
typic manifestations of a disease. Haploinsufficiency was analyzed with DECIPHER,
which provides haploinsufficiency scores calculated based on predicted haploinsufficiency
probabilities (https://www.deciphergenomics.org/about/downloads/data (accessed on
18 October 2021)). Scores in the range 0–10% correspond to the highest probability of a
gene to be haploinsufficient.

2.7. Statistical Analysis

To analyze differences between continuous variables in compared data sets, we used
the non-parametric Mann–Whitney U test. It is used to test the null hypothesis that
two compared samples were pooled from the same sample. FDR-corrected p values < 0.05
were considered significant.

3. Results
3.1. Disease Genes

From a total of 9972 genes with reliable proof of being associated with a disease, 9963 genes
were extracted from OMIM, ORPHANET, DDG2P, DisGeNet and/or MalaCards (Figure 1A),
and nine more genes were found in the IUIS report (Supplementary Tables S1 and S2). Classifi-
cations which allowed the identification of genes associated with rare and/or non-rare diseases
were available in ORPHANET, DisGeNet, and/or MalaCards. The largest number of genes asso-
ciated with non-rare diseases was presented in DisGeNet (Figure 1B, Supplementary Table S1).

3.2. Transcriptomic Profile of Disease- and Non-Disease Genes across Healthy Human Tissues and
Blood Cells

We examined the transcriptomic profile in healthy tissues with the use of two tissue
(HPA and GTEx) and two blood cell (HPA and Monaco) data sets. Correlation analysis
revealed high Spearman correlation coefficients for all gene expression levels in the same
tissues (n = 25, rho 0.89–0.95) and in the same blood cells (n = 14, rho 0.84–0.92). Identical
tissues and blood cells are listed in Figure 2A. Expression profiles in TPM (Transcripts
Per Million) were analyzed in specific system disease genes, other disease genes and non-
disease genes (Supplementary Figures S1–S3, Supplementary Table S3). A comparison
of expression levels of genes involved in the development of immune system diseases
and genes associated with non-immune diseases showed that the former had higher
levels of RNA expression in all immune related tissues and some other tissues (38/77 in
two tissue sets) (Supplementary Table S3). Similar results were found in blood cells (43/49
in two blood cell sets). Lower expression levels were detected in four tissues (nervous and
muscle tissues) whereas no differences were registered in 40 tissues, mainly urogenital,
endocrine, and nervous (Supplementary Figure S1). Respiratory disease genes compared
to non-respiratory disease genes had higher expression levels in eight tissues (8/77) with
maximal differences detected in lung tissue (Supplementary Figure S2). Nervous system
disease genes were expressed at higher levels than non-nervous system disease genes
in 15 tissues (15/77) including nervous tissues (Supplementary Figure S3). In blood
cell series, respiratory, and nervous system disease genes mainly did not differ by the
level of expression from other disease genes. In all four tissue/blood cell sets, higher
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expression levels were typically observed for disease genes compared to non-disease genes
(Supplementary Figures S1–S3).
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Since gene-phenotype databases differ by sources for data collection and disease
classifications, the consistency of transcriptomics results was assessed with a sensitivity
analysis for two tissue (HPA and GTEx) data sets. The sequential exclusion of each of the
five gene-phenotype databases did not have an essential impact on the results. Compared
to other disease genes and non-disease genes, immune disease genes had higher expression
levels in immune tissues, respiratory disease genes were expressed at higher levels in lungs,
and nervous system disease genes were expressed at higher levels in nervous tissues. Some
exceptions were mainly found for certain nervous system related tissues from the GTEx
data set (Supplementary Table S4).

3.3. Tissue- and Blood Cell-Specific Gene Enrichment

TissueEnrich was used for tissue- and blood cell-specific gene enrichment analysis.
First, we assessed the numbers of tissue-enriched genes and tissue similarity measured
by the Jaccard index. The numbers of genes enriched in the same tissues (HPA and GTEx)
or blood cells (HPA and Monaco) and Jaccard indices strongly differed (Figure 2A). The
Jaccard index varied in the range of 0.15–0.63 for tissues and 0.11–0.50 for blood cells,
which showed the diversity of transcriptomics sets. Next, we focused on tissue- and
blood cell-specific gene enrichment analysis of immune, respiratory, and nervous system
disease genes. Despite a rather strong overlap between these genes (Figure 2B), the gene
set enrichment analysis showed characteristic enrichment of immune, respiratory, and
nervous system disease genes in corresponding tissues from HPA and GTEx (Figure 2C).
Immune disease genes were mainly enriched in immune related tissues (grouped together
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from tonsil to NK cells [20]), liver and lung; respiratory disease genes were primarily
enriched in lung and also in several immune and muscle tissues; and nervous system
disease genes were enriched in brain and muscle tissues. Immune disease genes were
overrepresented in almost all blood cells in HPA and Monaco sets with the most significant
results obtained for PBMCs. Compared to immune disease genes, respiratory and nervous
system disease genes were poorly enriched in blood cells (Figure 2C). Thus, despite the
diversity of transcriptomics sets, the results of the gene set enrichment analysis were
concordant within both tissue- and blood cell transcriptomes. These results, in particular,
supported the literature data on higher expression levels of disease genes in pathologically
linked tissues compared to other tissues.
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Figure 2. Tissue- and blood cell-specific gene enrichment analysis. (A) Heatmap with the number of
genes (colored in red) enriched in the same tissues (HPA and GTEx) or blood cells (HPA and Monaco).
Enriched genes include genes relating to all categories of enrichment in a corresponding tissue (tissue
enriched, group enriched, and tissue enhanced). Jaccard index (JI) (colored in green) shows tissue or
blood cell similarity determined by gene enrichment analysis with TissueEnrich. (B) Venn diagram
showing an overlap among immune, respiratory, and nervous system disease genes. (C) TissueEnrich
results for immune, respiratory, and nervous system disease genes. Abbreviations: Cl., Classical
(monocyte); CM, Central memory (CD8 T-cell); EM, Effector memory (CD8 T-cell); Int., Intermediate
(monocyte); M, Memory (MB-cell, MCD4 T-cell, MCD8 T-cell); Non-cl., Non-classical (monocyte);
NSWM, Non-switched memory (B-cell); SWM, Switched memory (B-cell); TEM, Terminal effector
memory (CD4, CD8 cells); * −log10 adjusted p value = 43.22.
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3.4. Gene Occurrence in DE Studies and Their Expression Profiles in Normal Tissues

GEO disease perturbations samples from the Enrichr libraries included data on 18,920
and 18,457 down- and up-regulated genes, respectively. Taking into account strong
gene expression correlation among closely related tissues [21], we grouped all tissues,
on which GEO studies were conducted by tissue types (Supplementary Table S5). Af-
ter that, we selected the disease genes (Supplementary Table S1) in all GEO samples
(9021/9972, 90.5% and approximately half of all genes included in the Enrichr libraries)
(Supplementary Table S6) and demonstrated that they had a much larger total number
of GEO associations and gene-unique tissue associations compared to non-disease genes
(p value < 1 × 10−300) (Supplementary Figure S4). Then, we calculated the number of
disease genes associated with phenotypes presented in GEO studies (n = 4848) and
the number of gene–phenotype associations supported by expression changes (n = 955)
(Supplementary Table S7). Out of 955 genes, 100 genes were both down and up-regulated.
The percentage of samples with the associations (from the total number of samples per
phenotype taking into account the analyzed tissue) was 24.4% and 22.4% for down- and
up-regulated genes, respectively. Thus, the disease genes were actively involved in a variety
of pathological processes, often unrelated to the diseases, to which they predispose.

Next, we analyzed the pools of DE genes by assessing the expression of each gene in
normal tissues and the number of gene records in the libraries of GEO studies. Figure 3A
shows the distribution of genes by their presence/absence among DE genes in GEO samples
on the relevant tissues (blood/bone marrow, lung, brain) as a function of their expression
level in normal tissues (total PBMC from HPA and Monaco blood cells, lung, and cerebral
cortex from HPA and GTEx tissues). The higher the gene expression was in a tissue (in
normal state), the higher the probability was that it registered as changing expression
between cases and controls. A similar phenomenon was recorded for tissue-specific genes
(Figure 3B). Summarized TPMs for each gene across all tissues in HPA and GTEx were
correlated with the number of gene-unique tissue associations in GEO samples (Figure 3C,
Supplementary Table S6). Although tissue sets differed greatly, there was a moderate
correlation (rho 0.39–0.44) between the sum of TPMs and the number of tissues, in which
the expression of the gene changed.

3.5. GO Enrichment Analysis

To uncover biological processes (BP) which are characteristic for DE genes in GEO
studies performed on the selected tissues, we considered each sample separately with the
use of GO tools. Some BP were typical for many samples in the same or even different
tissues. Top 20 frequent terms in Enrichr GO Biological Process 2021 are presented in
Figure 4A (blood/bone marrow, lung, and brain) and Supplementary Figure S5A (skeletal
muscle and skin). The most frequent term for the genes down-regulated in blood/bone mar-
row, lung, and brain, namely ‘neutrophil-mediated immunity’, was represented in 68.2%,
68.4% and 42.31% of samples, respectively; for up-regulated genes, this term occurred in
70.9%, 36.1% and 64.0% of samples. Noteworthy, down- and up-regulated genes were
frequently enriched in the same BP (Figure 4B, Supplementary Figure S5B). The results from
STRING GO enrichment supported these observations (Supplementary Tables S8 and S9).
The concordant results from the two GO enrichment tools showed that immune response,
translation, and tissue-specific processes were most often disturbed in all considered tissues.
The Enrichr results for the subsets of neoplastic diseases (Supplementary Table S5) fit these
conclusions (Supplementary Table S10).
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Figure 3. Comparison of gene expression profiles in norm and pathology. (A) Distribution of genes
by their presence/absence in GEO studies’ libraries in dependence on their expression level in
corresponding normal tissues. For all pairs of compared sets, the differences in expression levels
between genes present or absent in GEO libraries were highly significant (p value < 1 × 10−300).
(B) Expression levels (left panel) and the number (right panel) of tissue-specific genes present/absent
among DE genes in GEO libraries. (C) Box plots reflecting correlations between the sum of TPMs
across all tissues in HPA or GTEx data sets and the number of GEO tissues in which the expression of
the gene changed. The upper heatmap band on each panel reflects the number of genes at each point;
* 26–28; ** 26–30.
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Figure 4. Top biological processes dysregulated in the pools of tissue samples. (A) Cluster repre-
sentatives for the most frequent BP dysregulated in blood/bone marrow, lung, and brain. Cluster
representatives for GO terms (terms remaining after reducing redundancy) were obtained using
the REVIGO tool. The number of samples for each tissue is indicated in brackets. (B) REVIGO
scatterplots for the same BP down-and up-regulated in the same samples. GO terms are plotted
according to log size on the x-axis and frequency of occurrence (yellow is larger, red is smaller) in
the samples on the y-axis. The size of the circles is proportional to the underlying frequency of the
GO term in a reference database—the EBI GOA database. Functionally similar GO terms are located
close to each other.

3.6. Gene-Based Analysis of Associated HPO Terms and Expression in Norm and Pathology

From a total of 4531 HPO genes, 4526 (99.9%) were present in our list of disease genes.
The set of phenotypic terms included 8347 unique items, which were assigned to 25 categories
corresponding to various body systems or types of manifestation (Supplementary Table S11).
For our set of 4526 genes, we compared tissue-specific and non-specific genes (total PBMC,
lung, and cerebral cortex) by the number of terms relating to phenotypic categories “Blood
and blood-forming tissues”, “Respiratory”, and “Nervous system”, and the number of GEO
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samples, in which expression changes in the relevant tissues were registered (Figure 5A). A
similar analysis was performed for gene sets having associations within phenotypic categories
“Musculature” and “Integument” (Supplementary Figure S6). In each series of comparisons,
we found highly significant differences. At the same time, when considering the pools of
HPO terms/categories and genes enriched/enhanced in any tissue, it turned out that tissue-
specific genes had fewer associations compared to tissue non-specific genes (Figure 5B). We next
analyzed a subset of haploinsufficient genes (n = 841) defined as having haploinsufficiency (HIS)
scores ≤ 10% (Supplementary Table S11). HIS genes compared to other disease genes from HPO
had (i) higher TPM sums across all tissues in HPA and GTEx, (ii) higher number of associations
with HPO terms and categories, and (iii) higher number of GEO samples and tissues, in which
expression changes were recorded (Figure 5C). Thus, the level of gene expression in healthy
tissues correlated with the number of associations found in DE studies, as well as with the
number of phenotypic terms and categories.
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Figure 5. Box-plots depicting differences in the number of phenotypic associations and associations
gene expression—disease in GEO for tissue specific and haploinsufficient genes. (A) Tissue-specific
and non-specific genes with the number of terms within relevant phenotypic categories and the
number of GEO samples, in which expression changes in relevant tissues were registered. (B) Tissue-
specific and non-specific genes (in any tissue) with the number of terms and categories from the
entire pool of HPO terms/categories. (C) Haploinsufficient and haplosufficient genes and their TPM
sums across all tissues in HPA and GTEx, number of associations with HPO terms and categories
and number of GEO samples and tissues, in which expression changes were recorded.
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4. Discussion

In this study, we considered gene expression profiles in healthy tissues and the fre-
quency of gene occurrence as DE in pathology studies and compared these data with a
diversity of phenotypic manifestations within a corresponding organ system. We created a
set of disease genes using six manually curated gene-phenotype databases. To our knowl-
edge, this is the largest dataset of this kind. With this dataset, we (i) validated the previous
findings [6] of higher expression levels of disease genes in pathologically linked tissues
than in other tissues, and (ii) demonstrated that disease genes also had higher expression
levels than non-disease genes in almost all tissues and blood cells. At the whole genome
level, we also showed that (iii) genes with high expression levels in the tissue (in norm)
were more likely to be registered in GEO pathology studies in the relevant tissue. Based
on the results of GO enrichment analyses for the sets of DE genes in GEO studies, we
concluded that (iv) immune response, translation, and tissue-specific processes were the
processes most often disturbed in considered tissues and (v) moreover, these down- and
up-regulated blocks of genes were frequently found in the same samples, which suggests
their compensatory involvement in the same biological processes. Using the subset of
disease genes presented in the HPO database, we also established that (vi) the level of
gene expression in one/several (for tissue-specific genes) or many (for haploinsufficient
genes) healthy tissues correlated with the number of phenotypic terms, i. e. the variety
of phenotypic manifestations, within the relevant top-level categories corresponding to
organ systems.

Disease genes are often overexpressed in normal tissues where gene defects lead to the
development of pathology [6,22]. In confirmation of this phenomenon, we demonstrated
higher expression levels for the immune, respiratory, and nervous system disease genes in
the corresponding tissues. We also observed that disease genes from our set had higher
expression levels than non-disease genes in almost all tissues and blood cells. The disease
gene set included highly expressed genes specific for different tissues. Averaging of
expression levels in the groups of disease and non-disease genes could partially explain
this finding. Beyond that, independently of tissue specificity, genes with relatively high
expression levels contribute to the maintenance of tissue regulatory framework and high
expression levels may be essential for the functional activity of the tissue [6,23].

In case-control studies comparing transcript levels between healthy and sick indi-
viduals, gene expression changes are likely to be a consequence of a disease, rather than
its cause or a simple correlation [24]. This hypothesis is consistent with the results of
our study, which demonstrated that the disease genes changed their expression not only
and not so much in diseases to which they predispose, but also in other pathologies. A
relatively small number of gene-phenotype associations supported by expression changes,
may be additionally explained by the multifactorial and polygenic nature of the majority
of GEO diseases. The disease genes, as well as highly expressed genes in general, were
registered as DE genes more often and in more tissues than other genes. Given these
results, we supposed that pathology hits highly expressed genes as the main determinants
of normal tissue structure and function. Highly expressed genes evolve slowly engaging in
multiple interactions in gene-gene networks [25–27]. Moreover, highly expressed genes
are enriched for biologically important and/or haploinsufficient genes exhibiting higher
levels of connectivity compared to other genes [25,28]. High network connectivity was also
shown for disease genes [29]. Hence, within tissue interactomes, highly expressed/disease
genes might crucially influence dynamic gene expression through their interplay with other
genes. The observation of a large number of disease-affected tissues for highly expressed
genes is in accordance with the fact that gene expression level correlates with the expression
breadth (number of tissues, in which the gene is expressed) [30]. Taken together, these
data contribute to understanding of how and why highly expressed/disease genes are
frequently dysregulated in pathology studies.

Both down- and up-regulated genes were broadly overrepresented in biological pro-
cesses relating to immune response, translational control and ribosome biogenesis and
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tissue-specific perturbations. Our modules did not completely coincide with those identi-
fied in the study of Crow et al. [4]. The above-mentioned study was designed to generate
a general view from the expression studies, thus all conditions, of which only 25% were
determined as diseases, were analyzed together. We did not find overrepresentation of sex
and extracellular matrix related genes among preferably DE genes, however, our tissue-
based approach allowed us to identify a module that was unique for each tissue. The
translational module from our study might be considered interconnected with the modules
associated with cell cycle and response to stimulus from the study of Crow et al. [4]. The
only consistent result for both studies was the block of DE immune genes.

Due to the direct link between blood and immunity, blood was widely used to study
immune-mediated diseases, however, blood is also a useful resource to characterize an
individual’s current health status. Peripheral blood contains a wide variety of cells which
protect the body from exogenous and endogenous pathogens, thus responding to any
alteration of physiological condition of the body and producing messengers between the
immune system and other tissues [31]. Multiple diseases, aging, and obesity largely share
blood transcriptome profile associated with inflammation and immunity [32]. In our study,
immune response genes were also expressed differently in immune and non-immune dis-
eases in tissues other than blood. An expression profile of a damaged tissue reflects tissue
infiltration by immune cells implicated in disease development and resolving. Ribosome
biogenesis and protein translation was another important block of biological processes
often affected in different diseases. These processes are essential for cell growth, pro-
liferation, and response to stress; therefore, their dysregulation affects cellular function
thus contributing to cancer and diseases other than cancer [33,34]. As for tissue-specific
processes, disease-related expression changes in affected tissues are associated with sup-
pressing and subsequent restoration or compensation of tissue functions. On a more general
level, we can speculate that an opposite direction of biological processes may occur as a
consequence of the body’s efforts to maintain tissue homeostasis in response to the impact
of the stimulus [10,35].

A gene-based comparison of phenotypic diversity in hereditary diseases with the
number of expression associations in multifactorial diseases showed their correlation.
Phenotypic manifestations of rare diseases are directly related to the gene that is the root
cause of the disease, while DE in common diseases reflects the consequences of the disease
rather than its prerequisite. However, in any case these results indicate phenotypic impact
of the gene at the organ/tissue level. Tissue-specific genes showed organ and tissue-specific
effects, while highly and widely expressed haploinsufficient genes exhibited an extended
phenotypic impact. The diversity of phenotypic manifestations and DE reflects certain gene
properties and can be considered as an indicator of the biological significance of a gene [12].

Among the limitations of the study, it is necessary to note the list of disease genes,
which contains most well-characterized genes. Many of them are highly expressed and
have broad tissue specificity. GEO datasets may be biased towards better detection of
highly expressed genes, as a transcriptome analysis provides more reliable quantitative
measurements for highly expressed genes. These limitations reflect a problem which is
clearly visible when summarizing the results and is less noticeable in the framework of
individual studies aimed at defining DE genes and enriched GO biological processes. Our
analysis contributes to the field confirming the need for a nuanced interpretation of DE
findings in pathology studies. Our other limitations are related to different methods for
the sample and library preparations in GEO studies and the use of the restricted set of
GEO samples extracted via a crowdsourcing project. However, this approach also has
some strengths, which partially compensate for the shortcomings, since all GEO samples
were manually validated for quality [17]. Besides, splitting a series into samples increases
the diversity of prioritized genes beneficially influencing the search and interpretation of
commonalities and differences in gene–phenotype relationships [36].
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5. Conclusions

Our results support the conclusion on predictable DE for a specific fraction of genes [4].
These genes are generally highly expressed and are enriched for disease genes. The frequent
overlaps between down- and up-regulated BP found in our study are in line with the
statement about the predictability of DE of genes belonging to certain functional blocks.
These are primarily genes implicated in immune response, translation, and tissue-specific
processes. The expression level in healthy tissues correlates with both the number of
DE findings and diversity of phenotypic associations in pathology studies. Establishing
a link between expression and phenotype contributes to the deeper and more nuanced
understanding of the mode of development and progression of human diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071168/s1. Supplementary Figure S1: Expression profiles
of immune disease related genes, other disease genes and non-disease genes. Genes with TPM < 1
were excluded. FDR corrected p values are marked with asterisks: * p < 0.05, ** p < 0.005, *** p < 0.0005,
**** p < 0.00005. Summary statistics are given in Supplementary Table S3; Supplementary Figure S2:
Expression profiles of respiratory disease related genes, other disease genes and non-disease genes.
Genes with TPM < 1 were excluded. FDR corrected p values are marked with asterisks: * p < 0.05,
** p < 0.005, *** p < 0.0005, **** p < 0.00005. Summary statistics are given in Supplementary Table S3;
Supplementary Figure S3: Expression profiles of nervous system disease related genes, other disease
genes and non-disease genes. Genes with TPM < 1 were excluded. FDR corrected p values are
marked with asterisks: * p < 0.05, ** p < 0.005, *** p < 0.0005, **** p < 0.00005. Summary statistics
are given in Supplementary Table S3; Supplementary Figure S4: Box-plots depicting differences
in the number of associations in GEO samples for disease genes compared to non-disease genes;
Supplementary Figure S5: The results of GO enrichment analysis. (A) Cluster representatives for
the most frequent BP dysregulated in skeletal muscle and skin. Cluster representatives for GO
terms (terms remaining after reducing redundancy) were obtained using the REVIGO tool. The
number of samples for each tissue is indicated in brackets. (B) REVIGO scatterplots for the same
BP down-and up-regulated in the same samples. GO terms are plotted according to log size on the
x-axis and frequency of occurrence (yellow is larger, red is smaller) in the samples on the y-axis.
The size of the circles is proportional to the underlying frequency of the GO term in a reference
database—the EBI GOA database. Functionally similar GO terms are located close to each other;
Supplementary Figure S6: Box-plots depicting differences in the number of phenotypic associations
within categories Musculature and Integument and gene expression-disease associations in the
relevant tissues in GEO for tissue-specific and tissue non-specific genes; Supplementary Table S1:
The list of disease genes from OMIM, ORPHANET, DDG2P, IUIS, DisGeNet and MalaCards. The
total number of diseases per gene in each database is indicated. The numbers of immune, nervous,
and respiratory diseases are specified in accordance with the database classifications. Examples
of respiratory, nervous, and ‘other’ diseases include no more than three diseases per gene. An
example of a complete list of phenotypes for a given gene is shown for genes associated with immune
diseases in Supplementary Table S2. The same disease can belong to different classifications. Columns
“Rare-1, Non-rare-2” are present in ORPHANET, DisGeNet and MalaCards blocks. In ORPHANET
‘2’ indicates genes that are associated with only non-rare phenotypes in Europe; in DisGeNet ‘2’
indicates genes that are not associated with OMIM/ORPHANET phenotypes and are not related to
Congenital, Hereditary, and Neonatal Diseases and Abnormalities according MeSH classifications;
MalaCards ‘2’ indicates genes that are not associated with fetal, genetic or rare phenotypes according
to MalaCards global classifications; Supplementary Table S2: The list of immune disease genes
with the full list of specific phenotypes identified as related to the immune system in accordance
with database classifications; Supplementary Table S3: Summary statistics for a comparison of
expression levels of (i) genes involved in the development of immune, respiratory and nervous
system diseases, (ii) genes associated with non-immune, non-respiratory and non-nervous system
diseases and (iii) non-disease genes. Genes with TPM < 1 were excluded. The highlighted in bold data
show that genes involved in the development of immune system diseases had higher levels of RNA
expression in all immune related tissues and some other tissues (38/77 in two tissue sets) compared
to genes associated with non-immune diseases; Supplementary Table S4: Sensitivity analysis for a
comparison of expression levels of (i) genes involved in the development of immune, respiratory and
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nervous system diseases, (ii) genes associated with non-immune, non-respiratory and non-nervous
system diseases and (iii) non-disease genes. Genes with TPM < 1 were excluded. Data are shown
for immune, respiratory and nervous system related tissues The highlighted in bold data show
results for disease genes in pathologically linked tissues. Adjusted p values (P.adj) were calculated
taking into account all tissues (HPA, n = 43; GTEx, n = 34) and the number of samples compared.
Supplementary Table S5: The list of GEO samples and tissues considered in the study; Supplementary
Table S6: The list of differentially expressed (DE) genes in GEO samples with summary statistics
data. Enriched genes include genes relating to all categories of enrichment in a corresponding tissue
(tissue enriched, group enriched, tissue enhanced); Supplementary Table S7: The list of disease genes
linked to the diseases from GEO studies within the Enrichr libraries. The table includes data for
genes associated with the same diseases in the gene-phenotype databases considered in the paper
and in GEO studies; Supplementary Table S8: The results of GO enrichment analysis with STRING.
Dysregulated biological processes were analyzed separately for each sample. The differences in the
number of samples between down- and up-regulated genes are due to non-significant enrichment
results for some samples; Supplementary Table S9: The results of GO enrichment analysis via STRING
processed with REVIGO: cluster representatives for the same BP down-and up-regulated in the
same samples; Supplementary Table S10: The results of GO enrichment analysis with Enrichr for the
subsets of neoplastic diseases. Disease classification is given in Supplementary Table S5. Dysregulated
biological processes were analyzed separately for each sample; Supplementary Table S11: The list of
4526 HPO genes considered in the study. The table includes data on the number of gene—unique
phenotypic term associations within 25 categories, haploinsufficiency scores, data on the results from
the TissueEnrich analysis and the number of gene expression-disease associations in the Enrichr
libraries for GEO disease studies.
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