
INTRODUCTION

Pharmacogenomics focuses on how individual genetic 
variations influence drug responses, and is helping to develop 
safer and more effective treatments for patients (Relling and 
Evans, 2015). Many pharmacogenomic studies have con-
cerned single nucleotide polymorphisms (SNPs) that affect 
drug responses, and several SNPs have been reported (Geor-
gitsi et al., 2011). However, the diversity of drug responses is 
not explained by genetic mutation alone. As well as the ge-
netic polymorphisms, drug response may be different due to 
factors that regulate gene expression.

MicroRNAs (miRNAs) are small, ~21 nucleotide single-
strand noncoding RNAs that can regulate gene expression 
by binding to partially complementary sites in 3′ untranslated 
regions (3′ UTRs) of messenger RNAs (mRNAs). This miR-
NA-mRNA interaction governs a variety of mechanisms that 
control gene expression, including mRNA degradation and 
translational repression (Wienholds et al., 2005; Pasquinelli, 

2012). The mRNAs affected by the miRNAs consequently in-
fluence susceptibility to cancer, as well as amentia, autoim-
mune diseases, and diabetes (Sayed and Abdellatif, 2011). 
Therefore, miRNAs are becoming recognized as important 
mediators that affect drug responses, without affecting the ge-
nomic sequence. An increasing number of studies on pharma-
coepigenetics and pharamcoepigenomics support a role for 
miRNA in regulating expression of genes encoding proteins 
involved in drug absorption, distribution, metabolism, and ex-
cretion (ADME) (Shomron, 2010; Rukov and Shomron, 2011), 
as well as pharmacodynamics (Yu et al., 2016). One miRNA 
can regulate various ADME genes via direct and/or indirect 
targeting, or one ADME gene may be modulated by multiple 
miRNAs (Yu and Pan, 2012). However, our current under-
standing of miRNA action was mainly obtained from in vitro 
cell culture systems and ex vivo systems (Rukov and Shom-
ron, 2011). Moreover, prediction and identification of miRNAs 
target genes is a time-consuming, labor-intensive, and error-
prone process (Huang et al., 2016).
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This epigenetic regulation of miRNAs in drug transporters 
or enzymes has a greater impact on drug responses. The 
influence of the epigenetic changes in cancer diseases can 
be expected to be even greater. Thus, we hypothesized that 
the drug response may be affected by expression changes 
of pharmacogenes in patients with cancer, in special, in or-
gans involved in drug metabolism. The Cancer Genome Atlas 
(TCGA) Research Network has profiled and analyzed large 
numbers of human tumors to discover molecular aberrations 
at the DNA, RNA, and protein level, and also examined epi-
genetic changes, including those related to miRNA (Weinstein 
et al., 2013). Because the TCGA also contains a significant 
collection of normal tissue samples, it would be an appropri-
ate resource for pharmacogenomic miRNA studies. Tumor-
induced miRNA changes are also important in drug responses 
and toxicity, especially responses to chemotherapy (Zheng et 
al., 2017). 

Therefore, the aim of this study was to explore miRNA ex-
pression difference in normal tissues derived from patients 
with five different cancer types and identify significant miRNAs 
regulating pharmacogene expression, using an integrated 
analysis of miRNA and mRNA. In addition, we purposed to 
assess miRNA expression difference, in special, in tumor tis-
sues compared with normal tissue of cancer patient samples.

MATERIALS AND METHODS

miRNA data collection using TCGA datasets
The miRNA data of normal and tumor tissues was down-

loaded from the TCGA Research Network portal (cancerge-
nome.nih.gov) which dataset was available as of May 2016. 
All data for cholangiocarcinoma (CHOL), colon adenocarci-
noma (COAD), kidney renal clear cell (KIRC), and lung squa-
mous cell carcinoma (LUSC) samples were collected in the 
United States, whereas liver hepatocellular carcinoma (LIHC) 
samples originated from patients in the United States, France, 
Japan, and China, considering various ethnic backgrounds. 
The miRNA sequencing (miRNAseq) data was gathered using 
an Illumina® HiSeq 2000 platform at the Michael Smith Ge-
nome Sciences Centre (GSC) of the BC Cancer Agency (Van-
couver, BC, Canada). From the Illumina® HiSeq RNASeqV2 
level 3 dataset, the “normalized_count” (quantile normalized 
relative standard error of the mean) value of each miRNA was 
collected. The miRNAseq data was integrated in to a matrix 
with log2 transformed for the downstream analysis.

Pharamcogenes selection and mRNA data collection
Important pharmacogenomic-related genes were searched 

on the Pharmacogenomics Knowledge Base (Klein et al., 
2001). Additional pharmacogenetic genes, derived from the 
U.S. Food and Drug Administration (FDA) Table of Pharma-
cogenomic Biomarkers in Drug Labels (http://www.fda.gov/

Table 1. List of 95 pharmacogenes in this study

Classification Gene

Metabolizing  
enzymes

ADH1A, ADH1B, ADH1C, ALDH1A1, COMT, CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2C8, CYP2C9, 
CYP2D6, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, GSTP1, GSTT1, NAT1, NAT2, 
POR, SULT1A1, TPMT, UGT1A1

Transporters ABCB1, SLC19A1, SLC22A1, SLCO1B1 
Targets/Pathway ABL1, ABL2, ACE, ADRB1, ADRB2, ALK, ALOX5, ASL, ASS1, BCR, BRAF, BRCA1, CFTR, CPS1, CYB5R1, 

CYB5R2, CYB5R3, CYB5R4, DRD2, EGFR, ERBB2, F2, F5, FIP1L1, HMGCR, HPRT1, IL28B, IL2RA, 
KCNH2, KCNJ11, KIT, KRAS, LDLR, MS4A1, MTHFR, NAGS, NQO1, NRAS, OTC, P2RY12, P2RY1, 
PDGFRA, PDGFRB, PGR, PROC, PROS1, PTGIS, PTGS2, SCN5A, SERPINC1, TYMS, VKORC1

gDNA repair POLG
Transcription factor AHR, ESR1, NR1I2, PML, RARA, RYR1, VDR
Miscellaneous HLA-A, HLA-B, HLA-DQA1, HLA-DRB1

Fig. 1. Heat map representing miRNA levels of normal tissues derived from colon, kidney, liver, and lung cancer patients. The 55 miRNAs 
have standard deviations >0.1 across all samples. Each row and column represents a marker and sample, respectively. The clustering den-
drogram was drawn using the Ward linkage method.
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drugs/scienceresearch/researchareas/pharmacogenetics/
ucm083378.html/), were included. The final phamacogenes 
for analysis were selected by eliminating duplicates.

The public sequencing data of mRNA, associated with se-
lected pharmacogenes, was also collected from the TCGA Re-
search Network portal. RNA sequencing (RNASeq) data were 
produced by the University of North Carolina (Chapel Hill, NC, 
USA) using an Illumina® HiSeq 2000 platform. An mRNAseq 
matrix with log-2 transformation was made for downstream 
analysis.

Comparison of miRNA expression in normal and tumor 
tissues

All normal and tumor tissues samples were clustered using 
a hierarchical method. The clustering dendrogram was drawn 
using the Ward linkage method. To plot miRNA expression 
data in a heat map, we selected miRNAs that had >0.1 devia-
tions in expression levels across samples. In addition, a dis-
tance matrix for miRNA expression variables in normal tissue 
samples was constructed using the Euclidean distance and 
was visualized by multidimensional scaling (MDS). This step 
was implemented using cmdscale in the R statistics software 
package. 

Correlation analysis of miRNAs and gene expression
We selected only paired data in sold primary tumors and 

normal tissues to compare the difference in expression of 

miRNA. We analyzed the correlation between the expression 
levels of miRNA and mRNA in normal tissues of cancer sam-
ples and found a significant negative correlation. In addition, 
the Pearson’s correlation analysis was performed to identify 
in tumor specific downregulated miRNA by analyzing the sig-
nificant association between miRNA and mRNA expression, 
and correlation coefficients were calculated with adjustment 
for cancer types.

miRNA target prediction
We next matched the significant correlations with target in-

formation using TargetScan (Agarwal et al., 2015), miRANDA 
(Betel et al., 2008), miRDB (Wong and Wang, 2015), Diana 
Tools (Paraskevopoulou et al., 2013), miRMap (Vejnar and 
Zdobnov, 2012), and miRNAMap (Hsu et al., 2008) as appro-
priate. Given that no program was consistently superior to the 
others, and that we aimed to minimize the probability of intro-
ducing false positives and/or negatives, we selected genes 
that were identified by at least three databases as potential 
targets (Dai and Zhou, 2010). Data extraction and analyses 
were performed using Python version 3.4 (http://www.python.
org/).

Evaluation using GEO dataset
For evaluate with our founding, we collected expression da-

tasets of miRNA and mRNA for tumor and non-tumor tissues 
derived from colonic adenocarcinoma (GSE29623) (Chen et 
al., 2012) and intrahepatic cholangiocarcinoma and hepa-
tocellular carcinoma patients (GSE57555) (Murakami et al., 
2015).

Statistical analysis
Differences between the number of miRNAs and mRNA ex-

pression in each cancer patient were analyzed by Student’s 
t-test. Pairwise comparisons of miRNA expression levels in 
normal tissues were analyzed with a paired t-test. Regression 
analysis tested whether changes in miRNA expression cor-
related with mRNA expression after adjusted by tissue types. 
All statistical tests were performed in R Statistics version 3.3.2 
(http://www.r-project.org/). Statistical significance was defined 
as a p-value of less than 0.05. Multiple testing correction was 
performed by controlling the false discovery rate (Benjamini 
and Hochberg, 1995) at α=0.05.

Biomol  Ther 25(5), 482-489 (2017) 

Table 2. Comparisons of miRNA and mRNA expression levels between tumors and normal solid tissues derived from cancer patients*

Cancer
Number of 

patients

Number of miRNAs Number of mRNAs

Increased 
in tumors

Decreased
in tumors

Increased 
in tumors

Decreased 
in tumors

Cholangiocarcinoma 9 120 82 21 48
Colon adenocarinoma 8 255 120 8 26
Kidney renal clear cell 67 182 270 36 45
Liver hepatocellular carcinoma 48 212 168 19 53
Lung squamous cell carcinoma† 43† 157 441 26 42

*Significantly differently expressed miRNAs or mRNAs between tumor tissues and normal solid tissues were determined by paired t-test, 
respectively (p<0.05). †The 36 samples had mRNA expression data.

Fig. 2. Multidimensional scaling analysis plot of normal tissues 
based on miRNA distance.
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RESULTS

Pharmacogenes selection 
Through searching database, 63 genes were selected 

and 31 genes were added from FDA table. After adding cy-
tochrome P450 oxidoreductase (POR), a total of 95 genes, 
including 30 drug-metabolizing enzymes and 12 transporter 
genes, are listed in Table 1.

Comparison of miRNA expression in normal and tumor 
tissues

A total of 1,448 samples were downloaded from the TCGA 
portal (36 CHOL, 458 COAD, 244 KIRC, 373 LIHC, and 337 
LUSC samples). After excluding unpaired data, 1,870 miR-
NAs remained in 9 CHOL, 8 COAD, 67 KIRC, 48 LIHC, and 
43 LUSC primary tumor and paired normal tissue samples. 
Through Ward linkage analysis, the samples were clustered 
into one of four major groups that each represented a human 
tissue (Fig. 1). The number of mRNAs expressed at lower 
levels in primary solid tumors was higher than that seen for 
normal solid tissues (Table 2). Meanwhile, for KIRC and LUSC 
the number of miRNAs expressed at higher levels in primary 
solid tumors was lower than that seen for normal solid tissues. 
The number of miRNAs having lower expression levels in pri-
mary tumor tissues was lower than that for normal tissues in 
patients with CHOL, COAD, and LIHC.

Based on assessment of miRNA relationships among the 
95 pharmacogenes in different tissues, the overall pattern of 
the MDS plot separated the colon, kidney, liver, and lung into 
four discrete identities, while bile duct tissues were included 
with the liver (Fig. 2). A pairwise comparison of miRNA profiles 
between tissues showed that the profile for normal kidney tis-
sues was closer to that seen for normal colon and lung tis-
sues (Fig. 3). miRNA expression profiles for bile duct tissues 
were most similar to those for the liver, which differed most 
significantly from those seen for the kidney. Of the 1,870 miR-
NAs analyzed, miR-122 exhibited the greatest differences in 
comparisons between KIRC-LIHC, COAD-LIHC, LIHC-LUSC, 
CHOL-KIRC, CHOL-LUSC, and CHOL-COAD (p=2.08×10-111, 
p=6.98×10-79, p=1.03×10-62, p=3.52×10-44, p=3.17×10-43, and 
p=2.04×10-15, respectively). Similarly, miR-450b, miR-375, 
miR-590, and miR-26b levels significantly differed among 

COAD-KIRC (p=1.79×10-60), KIRC-LUSC (p=9.88×10-55), 
COAD-LUSC (p=1.03×10-32), and CHOL-LIHC (p=2.14×10-11) 
comparisons.

Correlation of miRNA and mRNA expression in normal 
and tumor tissues 

The correlation analysis results showed that 23 miR-
NAs showed a negative correlation between miRNA and 
mRNA expression for 14 pharmacogenes (Table 3, Fig. 4), 
resulting in 33 combinations of miRNAs and mRNAs. Hsa-
miR-429 decreased 3 mRNA expression levels, including 
ADH1B (p=2.48×10-24), AHR (p=1.63×10-2), and ALDH1A1 
(p=1.44×10-3). Meanwhile, hsa-miR-181d decreased the ex
pression levels of AHR (p=2.88×10-3), BCR (p=6.25×10-3), and 
CYB5R4 (p=6.30×10-3), whereas hsa-miR-152 decreased the 
expression levels of ABL2 (p=1.48×10-47), AHR (p=7.44×10-8), 
and CYB5R4 (p=2.24×10-45). Hsa-miR-98 decreased the ex-
pression levels of ADRB2 (p=9.13×10-13).

The correlation analysis results showed that 19 miRNAs 
had a negative correlation between miRNA and expression 
levels of 15 pharmacogene mRNAs (Table 4, Fig. 5) to yield 
24 combinations between miRNAs and mRNAs. Hsa-miR-
520b (1.59×10-3) decreased ADRB1 mRNA expression lev-
els, whereas hsa-miR-152 decreased the expression levels 
of ABL2 (p=1.49×10-43), AHR (p=4.06×10-19), and CYB5R4 
mRNA (p=1.42×10-49). Hsa-miR-98 decreased the expression 
levels of ADRB2 mRNA (p=1.23×10-41).

Evaluation using GEO datasets
Through evaluation using GSE29623 and GSE57555 data-

sets, Hsa-miR-520b decreased mRNA expression of ADRB1, 
while hsa-miR-98 decreased mRNA expression of ADRB2 
(p<0.05). Additionally, hsa-miR-152 decreased mRNA expres-
sion levels of ABL2 and CYB5R4 (p<0.05). 

DISCUSSION

In the present study, we used the integrative analysis to 
identify miRNAs that contribute to altered expression of 
pharmacogenes in different tissues and tumors. The integra-
tive analysis of mRNA and miRNA expressions is a powerful 

Fig. 3. Pairwise comparison of miRNA expression levels in normal tissues. CHOL: cholangiocarcinoma, LIHC: liver hepatocellular cell car-
cinoma, COAD: colon adenocarcinoma, LUSC: lung squamous cell carcinoma, KIRC: kidney renal clear cell carcinoma.
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tool for identifying individual genes and genetic or epigenetic 
mechanisms of gene expression, as well as a means to under-
stand the relationship between target genes and downstream 
regulation by miRNA (Yang et al., 2016; Ye et al., 2016). miR-
NA and mRNA pharmacogene expression was analyzed in 
paired normal and tumorigenic samples derived from CHOL, 
COAD, KIRC, LIHC, and LUSC patients using TCGA data. 

The data included 95 pharmacogenes that were selected 
for analysis in our study. For LIHC, drug-metabolizing en-
zymes and transporters are abundantly expressed in both the 
liver and bile duct. The colon, kidneys, and lungs are the main 
organs involved in the elimination of chemotherapeutic drugs. 
Since lung and colorectal cancer are the first and second lead-
ing causes of cancer-related deaths worldwide, respectively 
(World Health Organization, 2014), patients with these types 
of cancer may receive chemotherapy despite the stage-de-
pendence of these drugs. 

The United States has announced a research initiative that 
aims to accelerate progress toward a new era of precision 
medicine that is tailored to individuals (http://www.whitehouse.
gov/precisionmedicine/). Genetic variations and epigenetic 
changes between individuals may be related to differences in 
drug responses (Dluzen and Lazarus, 2015). Most previous 
studies of miRNA in pharmacogenes examined only a limited 
number of genes with small sample sizes using traditional 
methods (Rieger et al., 2013), such that few global miRNA 
analyses of pharmacogene expression have been performed 
(Kim et al., 2014). Our results showed that the number of 
mRNAs expressed at lower levels in primary solid tumors was 

higher than that seen for normal solid tissues, while the num-
ber of miRNA expression levels of pharmacogenes varied in 
tumor tissues compared to normal tissues. These results in-
dicate that there are considerable differences in the level and 
distribution of miRNAs across normal and tumorigenic tissues. 
However, as expected, our results showed that miRNA and 
mRNA expression levels were similar between liver and bile 
duct tissues.

Biomol  Ther 25(5), 482-489 (2017) 

Table 3. miRNA expression negatively correlated with pharmacogene 
expression in different normal solid tissues derived from cancer patients 
(r2>0.3)

Classification Gene miRNA
FDR 

adjusted 
p-value

Adjusted 
Pearson 

correlation 
coefficient 

(r2)

Metabolizing  
  enzymes

ADH1B hsa-miR-429 2.48e-24 0.538
hsa-miR-577 2.15e-20 0.468

CYB5R4 hsa-miR-152 2.24e-45 0.812
hsa-miR-758 1.21e-07 0.437
hsa-miR-181d 6.30e-03 0.361

Receptors ADRB1 hsa-miR-let-7c 2.39e-05 0.538
ADRB2 hsa-miR-98 9.13e-13 0.738

Targets ABL1 hsa-miR-378g 1.08e-05 0.377
ABL2 hsa-miR-152 1.48e-47 0.800

hsa-miR-107 6.30e-12 0.452
hsa-miR-217 1.96e-09 0.323
hsa-miR-410 4.19e-04 0.317

ALOX5 hsa-miR-134 1.93e-02 0.636
Transcription  
  factors

ACE hsa-miR-511 3.92e-09 0.529
AHR hsa-miR-152 7.44e-08 0.597

hsa-miR-181d 2.88e-03 0.561
hsa-miR-429 1.63e-24 0.643
hsa-miR-520b 1.22e-03 0.558
hsa-miR-653 6.27e-13 0.630

FDR: false discovery rate.

Fig. 4. Correlation of RNA expression and miRNA changes across 
normal colon, bile duct, kidney, liver, and lung tissues derived 
from cancer patients. Line is fitted to the points. Open circle, bile 
duct; closed circle, kidney; open square, liver; closed square, 
lung; open triangle, colon (A) correlation of hsa-miR-152 with 
ABL2 (p=1.48e-47); (B) correlation of hsa-miR-429 with ADH1B 
(p=2.48e-24); (C) correlation of hsa-miR-98 with ADRB2 (p=9.13e-13). 

L
o
g

(m
R

N
A

e
x
p
re

s
s
io

n
)

2

20

15

10

5

0
0 153 6 9 12

Log (miRNA expression)2

A

L
o
g

(m
R

N
A

e
x
p
re

s
s
io

n
)

2

20

15

10

5

0
0 153 6 9 12

Log (miRNA expression)2

B

L
o
g

(m
R

N
A

e
x
p
re

s
s
io

n
)

2

20

15

10

5

0
0 153 6 9 12

Log (miRNA expression)2

C



www.biomolther.org

Han et al.   miRNAs for Regulation of Pharmacogenes

487

The expression of several drug-metabolizing enzymes and 
transporter genes was regulated by miRNAs. For example, 
miR-27a and miR-548a repressed mRNA expression levels of 
ABCB1 and CYP3A4, respectively (Wei et al., 2014; Messing-
erova et al., 2016). Although we found negative correlations 
of the expression of these miRNAs and mRNAs in our study, 
they were excluded because their relationships did not occur 
in more than three miRNA target prediction databases.

Nevertheless, we could use the integrative analysis of 
massive miRNA-mRNA expression data to identify new vari-
ous miRNAs for various drug-metabolizing enzyme (ADH1B, 
CYB5R4), receptor (ADRB1, ADRB2), target (ABL1, ABL2, 
ALOX5) genes, and transcription factor (ACE, AHR) that con-
tribute to their differential expression in bile duct, colon, kidney, 
liver, and lung tissues. Expression of hsa-miR-148 and hsa-
miR-152 was reported to be downregulated in gastrointesti-
nal cancer tissues, suggesting that these two miRNAs may 
be involved during the early stage of gastric carcinogenesis 
(Chen et al., 2010). The hsa-miR-520 was also decreased in 
n colorectal carcinoma when compared with normal colorectal 
tissues (Bahar et al., 2017). Associations between these miR-
NAs and pharmacogenes have not been previously reported. 
let-7 family members such as let-7, let-7a, let-7b, let-7c, let-7d, 
let-7e, let-7f, let-7g, let-7i, and miR-98 were previously shown 
to target ADRB2 (Wang et al., 2011), but to our knowledge this 
is the first study to show that hsa-miR-98 can also regulate 
ADRB2 expression.

Even with targeted therapy, the response to cancer drugs is 
not solely dependent on tumor epigenetics (Nasr et al., 2016). 
Moreover, germ line epigenetics can play a role in drug ef-
fects. Therefore, understanding and considering the contribu-
tion of both somatic and germ line epigenetics is important 
when predicting drug response and toxicity.

Recently, there has been a rapid increase in knowledge 
of how pharmacogenes are regulated by epigenetic mecha-
nisms and methods to analyze this regulation (Koturbash et 
al., 2015). Although we examined a limited set of genes known 
to be involved in drug responses, the methodology described 
herein can be easily applied to future studies. One limita-
tion of our study is that we did not stratify the data for age, 
gender, or racial/ethnic backgrounds, although miRNAs have 
been shown to exhibit differences related to these parameters 
(Huang et al., 2011; Kwekel et al., 2015). miRNAs regulate 

gene expression by repressing translation and/or by mRNA 
deadenylation and decay (Djuranovic et al., 2012). Several 
groups demonstrated that protein repression can occur in 
the absence of mRNA degradation (Wilczynska and Bushell, 
2015), but we did not analyze protein expression levels of the 
pharmacogenes targeted in our study. Although there are fur-
ther challenges to defining the role of miRNA in drug respons-
es, here we identified miRNA-mediated changes in pharma-
cogene expression that may influence therapeutic responses.

Fig. 5. Correlation of RNA expression and miRNA changes across 
normal and tumor colon, kidney, liver and lung tissues derived 
from cancer patients. Line is fitted to the points. Open circle, bile 
duct; closed circle, kidney; open square, liver; closed square, lung; 
open triangle, colon (A) correlation of hsa-miR-152 with CYB5R4 
(p=1.42e-49); (B) correlation of hsa-miR-98 with ADRB2 (p=1.23e-41) 
(C) correlation of hsa-miR-152 with ABL2 (p=1.49e-43).
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Table 4. miRNA expression negatively correlated with pharmacogene 
expression in different normal and tumor solid tissues derived from can-
cer patients  (r2>0.3)

Classification Gene miRNA
FDR 

adjusted 
p-value

Adjusted 
Pearson 

correlation 
coefficient 

(r2)

Receptors ADRB1 hsa-miR-520b 1.59e-03 0.450
ADRB2 hsa-miR-98 1.23e-41 0.450

Targets ABL2 hsa-miR-152 1.49e-43 0.482
Metabolizing  
  enzymes

CYB5R4 hsa-miR-152 1.42e-49 0.510

FDR, false discovery rate.
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In conclusion, epigenomic changes, including miRNA-in-
duced regulation of expression of genes encoding drug-me-
tabolizing enzymes, transporters, or targets, can potentially 
lead to changes in drug activity that may contribute to drug 
sensitivity, resistance, and toxicity. Here we investigated miR-
NA using publicly available epigenomic and transcriptomic da-
tabases in an effort to advance pharmacogenomics research. 
We believe the current analysis will lead to more rapid identifi-
cation of functional miRNAs that are relevant to understanding 
variability in drug responses of cancer patients.
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