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Cyber-attacks are deliberate attempts by adversaries to illegally access online
information of other individuals or organizations. There are likely to be severe monetary
consequences for organizations and its workers who face cyber-attacks. However,
currently, little is known on how monetary consequences of cyber-attacks may influence
the decision-making of defenders and adversaries. In this research, using a cyber-
security game, we evaluate the influence of monetary penalties on decisions made by
people performing in the roles of human defenders and adversaries via experimentation
and computational modeling. In a laboratory experiment, participants were randomly
assigned to the role of “hackers” (adversaries) or “analysts” (defenders) in a laboratory
experiment across three between-subject conditions: Equal payoffs (EQP), penalizing
defenders for false alarms (PDF) and penalizing defenders for misses (PDM). The PDF
and PDM conditions were 10-times costlier for defender participants compared to the
EQP condition, which served as a baseline. Results revealed an increase (decrease)
and decrease (increase) in attack (defend) actions in the PDF and PDM conditions,
respectively. Also, both attack-and-defend decisions deviated from Nash equilibriums.
To understand the reasons for our results, we calibrated a model based on Instance-
Based Learning Theory (IBLT) theory to the attack-and-defend decisions collected in
the experiment. The model’s parameters revealed an excessive reliance on recency,
frequency, and variability mechanisms by both defenders and adversaries. We discuss
the implications of our results to different cyber-attack situations where defenders are
penalized for their misses and false-alarms.

Keywords: monetary penalties, defenders, adversaries, cybersecurity, decision-making, instance-based learning
theory, recency, frequency

KEY POINTS

• Penalizing security defenders could be effective ways for organizations to improve their
productivity as well as performance.
• We perform a laboratory experiment involving participants to evaluate how penalizing

defenders influence attack-and-defend actions in simulated cyber-security games.
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• Penalizing defenders for misses causes them to increase
the defend proportions; whereas, penalizing them for false-
alarms causes them to decrease the defend proportions.
Attack proportions increased as a result of less no of defends
by the defender in Penalizing defenders for false alarms and
decreased in case of penalties for misses.
• Based upon the experiment, penalizing defenders for misses

and false-alarms may cause both adversaries and defenders
roles to deviate from their Nash proportions.
• A model based upon Instance-based Learning Theory

could account for adversary and defender decisions in
both conditions where defenders are penalized and where
adversaries are awarded.

INTRODUCTION

Cyber-attacks are increasing, and these attacks cause widespread
socio-economic damages to society and governance (Forbes,
2016; ThreatMetrix, 2016). Adversaries, people who break
into computer systems using bugs and exploits, wage cyber-
attacks that cause major disruptions in society (Webroot, 2015).
For example, in 2016, a major cyber-attack was carried out
against the power-grid in Ukraine (DARKReading, 2016). The
power-grid went down, leaving about 50% of homes with a
population of 1.4 million without power for several hours
(DARKReading, 2016).

Given the widespread damages due to cyber-attacks,
organizations have engaged defenders, people who defend and
protect computer networks from cyber-attacks (Dutt et al.,
2013; Truity, 2015; Maqbool et al., 2017; Prospects, 2017).
Defenders may miss detecting an attack on computer systems,
or they may commit false-alarms (Dutt et al., 2013; Han and
Dongre, 2014; Maqbool et al., 2017; Shang, 2018a). In both
situations, it is likely that defenders and their organizations
may face reputation damage and monetary consequences
(CSIS, 2014; CSO, 2016; Ponemon, 2017; The Guardian, 2017),
where some of these outcomes may even entail layoffs (CSO,
2017). For example, as per a recent survey, a technology
investment that led to a data or security breach (i.e., missing
to detect an attack) was considered a “fireable offense” by
38 to 39 percent of organizations (CSO, 2017). Similarly,
committing of false-alarms by defenders may result in short-
term or prolonged loss of availability, which can paralyze a
company with higher costs, lost revenue, and reputational
damage (Gheyas and Abdullah, 2016). Overall, it is expected
that such monetary consequences are likely to influence
defender’s decisions.

Furthermore, it is likely that the knowledge of defenders’
misses and false-alarms may indirectly cause adversary to
change their attack patterns (Dutt et al., 2013; Gheyas
and Abdullah, 2016; Maqbool et al., 2017). For example,
if defenders are penalized for false-alarms, then they
are likely to reduce their defending actions. In such
situations, adversary may indirectly attack the network
more due to the reduction in defending actions. Similarly,
if defenders are penalized for misses, then they are likely

to increase their defending actions. Again, adversary may
indirectly attack the network less due to the increase in
defending actions.

The primary goal of this paper is to understand how
bounded rational adversaries and defenders would be
affected by punishments for their errors in cybersecurity
tasks. Also, an additional goal is to develop cognitive models
of adversary’s and defender’s decisions to understand their
cognitive processes and to test how these cognitive models
perform compared to other rational models. Specifically,
this paper studies how penalizing defenders for false alarms
and misses influences the decisions of both defenders and
adversaries in simulated cyber-security games. We compare
the performance of defenders and adversaries to the rational
Nash strategies, where the Nash strategies provide the best
decision a player can take given the other player’s decisions.
This comparison helps explain how penalizing defenders
makes defenders and adversaries deviate from optimal Nash
strategies. Furthermore, we develop models of cognition
(Busemeyer and Diedrich, 2009; Dutt et al., 2013) for the
adversary’s and defender’s decisions, and these models help
explain the reasons for the deviation of players’ actions from
their Nash strategies on account of cognitive limitations of
memory and recall.

A way of studying the influence of monetary penalties on the
interaction between defenders and adversaries is via behavioral
game theory (Camerer, 2003; Alpcan and Basar, 2010; Maqbool
et al., 2017). For example, Maqbool et al. (2017) studied this
interaction using cyber-security games. In these games, higher
rewards for waging successful attacks or detecting attacks caused
adversaries and defenders to increase their attack and defend
actions, respectively (Maqbool et al., 2017).

In the literature on cognitive theories of decision-making
(Dutt et al., 2013), Instance-based Learning Theory (IBLT)
(Lebiere, 1999; Gonzalez and Dutt, 2011; Kaur and Dutt,
2013; Maqbool et al., 2016), a theory of decisions from
experience in dynamic scenarios, has been used to explain
decisions made by participants performing as defenders and
adversaries. Maqbool et al. (2017) used IBLT to explain
their experimental result. However, Maqbool et al. (2017)
did not test the effect of monetary penalties on defender’s
decisions. Furthermore, these authors made human players
play against their Nash opponents and not against human
opponents, where human strategies are likely to be adaptive
compared to Nash strategies (Dutt et al., 2013). Also, although
Maqbool et al. (2017) explained their results based upon
IBLT, they did not test the ability of computational models
based upon IBLT to account for human decisions. Overall,
the main contribution of this paper is to overcome these
limitations in literature.

In this paper, we investigate how monetary penalties on
defenders impact the decision-making of defenders and indirectly
the decision-making of adversaries in cyber-security games.
Also, using IBLT, we suggest specific cognitive processes that
influence decisions of adversaries and defenders in cyber-
security games. The main novelty of this work is the use
of behavioral game theory and IBLT to understand the
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decisions of adversaries and defenders in scenarios involving
punishments to defenders for their errors. To the best
of authors’ knowledge, this work is the first of its kind
where behavioral game theory and IBLT have been used to
understand the role of monetary punishments on decisions of
adversaries and defenders.

In what follows, first, we discuss a cyber-security game that
we used in this paper. Next, we state our expectations concerning
monetary penalties and test these expectations via an experiment
and a cognitive model based upon IBLT.

THE CYBER-SECURITY GAME

Figure 1 shows a cyber-security game (Alpcan and Basar, 2010).
In this game, the action set of the adversary includes the
attack (a) and not-attack (na) actions. The action set of the
defender includes the defend (d) and not-defend (nd) actions.
The A and D represent costs for attacking and defending,
and in this scheme, a negative (−) cost is a benefit. While
playing the game, there will be benefits for the adversary
[-A(a, nd)] due to successful attacks and costs [A(a, d)]
due to unsuccessful attacks. Similarly, there will be benefits
for the defender [-D(a, d)] for catching cyber-attacks; and,
costs resulting from mounting defense when there is no
attack [D(na, d)] and not mounting defense when there is
an attack [D(a, nd)]. We use this game-theoretic framework
for investigating the role of monetary penalties on attack-and-
defend decisions.

EFFECT OF MONETARY PENALTIES IN
THE CYBER-SECURITY GAME

We varied the defender’s payoff across different conditions
in the cyber-security game (Figure 1) and kept the payoff
for the adversary constant. These conditions included, equal
payoffs (EQP), penalizing defender for false-alarms (PDF), and
penalizing defender for misses (PDM) (see Figure 2).

The EQP condition and its payoffs was proposed by Alpcan
and Basar (2010) and it was used by Maqbool et al. (2017). In
EQP condition, defenders receive equal penalties (−5) for a-nd
and na-d actions, and this condition acts as a baseline (control)
for the PDF and PDM conditions. In PDF condition, defenders
are penalized −50 points for a na-d action profile, which is
10-times the penalty in EQP. In PDM condition, defenders

FIGURE 1 | Set of actions and costs for adversaries and defenders. The first
value in each cell corresponds to adversary’s cost [e.g., A(a, d)] and the
second value corresponds to defender’s cost [e.g., D(a, d)]. Negative cost is a
benefit.

FIGURE 2 | Payoffs for both defenders and adversaries across different
conditions. (A) Penalizing Defenders for False-alarms (PDF). (B) Penalizing
Defenders for Misses (PDM). The Nash Proportions of attack (p) and defend
(q) actions are also shown.

are penalized −50 points for an a-nd action combination,
which is 10-times the penalty in EQP condition. Thus, in
the PDF condition, defenders are penalized for false-alarms;
whereas, in the PDM condition, defenders are penalized for
misses. The optimal mixed-strategy Nash proportions for attack
actions (p) and defend actions (q) are also shown in Figure 2
for each condition.

Instance-Based Learning Theory (Gonzalez et al., 2003;
Gonzalez and Dutt, 2012) may be applicable for decisions
of human adversaries and defenders (Arora and Dutt, 2013;
Dutt et al., 2013; Maqbool et al., 2017). According to IBLT,
both adversaries and defenders possess cognitive limitations
on memory and rely on recency, frequency, and variability
mechanisms to make decisions. In the presence of such
limitations, human players would tend to take those actions
that they perceive as maximizing their expected rewards based
upon recent and frequent experiences from their memory
(Dutt et al., 2013).

The defenders are penalized −50 points for a na-d
action combination in the PDF condition. Thus, defenders
perceiving losses due to false-alarms would tend to reduce
their defending actions in PDF condition compared to EQP
condition. The reduction in defending actions would likely result
in higher attack proportions in the PDF condition compared
to EQP condition as successful attacks give +5 points to
the adversaries.

Similarly, in PDM condition, the defender is penalized −50
points for an a-nd action combination. Thus, defenders would
tend to increase defending actions in PDM condition compared
to EQP condition to increase their perceived gains. The increase
in the defending proportion in PDM condition would likely
result in lower attack proportions by adversaries compared to
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those in the EQP condition. That is because adversaries will
likely get caught and lose −10 points when defenders defend
excessively in the PDM condition. As per IBLT, adversaries
would tend to minimize this monetary loss by reducing their
attack proportions.

MATERIALS AND METHODS

Experimental Design
We evaluated the effects of monetary penalties on attack-and-
defend decisions by varying them across three between-subject
conditions: EQP (N = 50 participants), PDF (N = 50 participants),
and PDM (N = 50 participants). In each condition, human
players acting as adversaries or defenders were randomly paired
to play against each other in a cyber-security game across 50-
repeated trials. For example, in EQP, 25 defenders were randomly
paired with against 25 adversaries in the cyber-security game
(making a total of 25 participants). In each condition, dependent
measures included attack proportions and defend proportions
averaged across participants and trials. For computing the attack
or defend proportions, each attack/defend action by a participant
in a trial was coded as 1 and each not-attack/not-defend action
by a participant in a trial was coded as 0. Later, the 1 s
and 0 s were averaged across participants and trials to yield
different proportions. We used one-way analysis of variance
(ANOVA; Field, 2013) to compare performance across different
conditions. The alpha level (the probability of rejecting the null
hypothesis when it was true) was set at 0.05 and power (the

probability of rejecting the null hypothesis when it was false)
was set at 0.80.

Stimulus and Apparatus
Figure 3 shows the interface shown to participants acting in the
roles of “hacker” (adversary) (A) and “analysts” (defender) (B).
Participants were given the following feedback from the last trial:
payoff matrices, actions chosen by them and their opponents,
current payoffs obtained by them and their opponents, and
total payoffs obtained by them and their opponents since the
start of the experiment. Both participants were asked to choose
between attack or non-attack actions (adversary) and defend or
not-defend actions (defender) in each trial.

Participants
This study was carried out in accordance with the
recommendations of the Ethics Committee at the Indian
Institute of Technology Mandi (IITM/DST-ICPSCPS/VD/251)
with written informed consent from all participants. Participation
was voluntary and all participants gave written informed consent
before starting their study. All participants were students at
the Indian Institute of Technology Mandi. Participants were
recruited through an online advertisement and participation
was voluntary. One hundred sixty-two participants in
the age group of 18–30 years (Average = 22.1 years and
standard deviation = 2 years) participated in this experiment.
Twenty-one percent were females. Participants were from
different education levels: 74% were pursuing undergraduate
degrees, 22% were pursuing master’s degrees, and 4% were

FIGURE 3 | The experimental interface presented to participants in cyber-security game. The interface provided feedback on the actions taken and payoffs obtained
in the last trial by both players. Also, the interface showed the cost matrices to participants. The interface seen by participants acting as hackers (A) and analysts (B)
in a trial.
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pursuing Ph.D. degrees. Furthermore, all participants were
pursuing degrees in engineering disciplines. About 35%
of the participants had computer science and engineering
degrees, where these participants had done a course in
computer networks.

Procedure
Participants were randomly assigned to different conditions
and to the analyst and hacker roles in each condition. Next,
instructions regarding the game play, game objectives, and
payment were provided to participants. Questions concerning
game play, game objectives, and payment were answered before
participants could start performing in the game. The experiment
started with an initial score of 2500 for both adversaries
and defenders participants. This initial score ensured that
the total score would not become negative for any player
by the end of the game. The experiment took 30-min to
complete for a pair of participants playing against each other.
Participants received a base payment of 50 cents after they
finished their study. Participants were also rewarded based
on performance in the game. For calculating the performance
incentive, final score in the game was converted to real money
in the following ratio: 250 points in the game = 1.5 cents
in real money. The maximum and minimum performance
bonus possible across different conditions was 11 cents and 0
cents, respectively.

RESULTS

Proportion of Attack-and-Defend Actions
One-way ANOVAs were performed on attack-and-defend
proportions with conditions as a between-subjects factor.
Figures 4A,B show the attack-and-defend proportions
in different conditions from human participants and the
corresponding Nash equilibria (the model results will be
discussed ahead in the paper).

As seen in Figures 4A,B, the attack-and-defend proportions
were influenced by the condition (attack: F(2, 72) = 12.881,
p < 0.05, w2 = 0.24; defend: F(2, 72) = 10.839, p < 0.05,
w2 = 0.21; where, w2 is the effect-size). The Student-Newman-
Keuls (SNK; Field, 2013) post hoc test revealed that the attack
proportions were significantly greater in the PDF condition
(0.45) compared to in the EQP condition (0.33) (p < 0.05).
Similarly, the attack proportions were significantly smaller in
the PDM condition (0.24) compared to in the EQP condition
(0.33) (p < 0.05). Furthermore, the defend proportions were
significantly smaller in the PDF condition (0.31) compared to in
the EQP condition (0.46) (p < 0.05). Also, the defend proportion
in the PDM condition were significantly higher than those in the
EQP condition (0.62 > 0.46; p < 0.05). Overall, these results are
as per our expectations.

The attack proportions did not deviate from the Nash level
in EQP condition (0.33 ∼ 0.33; t(24) = 0.042, p = 0.97,
r = 0.008, where r is the effect-size). However, the attack
proportions deviated significantly from their Nash levels in the
PDF and PDM conditions (PDF: 0.45 < 0.83; t(24) = −10.413,

p < 0.001, r = 0.90; PDM: 0.24 > 0.08; t(24) = 5.404,
p < 0.001, r = 0.73). The defend proportions deviated
significantly from their Nash levels in the EQP condition
(0.46 > 0.33, t(24) = 3.307, p < 0.05, r = 0.54) and in the PDM
condition (0.62 > 0.33; t(24) = 5.379, p < 0.001, r = 0.73).
However, defend proportions did not deviate from their Nash
level in the PDF condition (0.31 ∼ 0.33; t(24) = −0.994,
p = 0.30, r = 0.33). Overall, in a majority of conditions there
was a significant deviation from the Nash levels for both
adversary and defenders.

THE IBL MODEL

The cognitive model of adversary and defender is implemented
using IBLT (Gonzalez et al., 2003). IBLT has been used to model
decision making processes of adversaries, defenders and end-
users in various cybersecurity situations (Aggarwal et al., 2017,
2018; Cranford et al., 2019a,b).

We developed a model based upon IBLT to explain our
experimental results. An instance, smallest unit of experience,
in the IBL model consists of three parts: a situation in a
task (a set of attributes that define the decision situation), a
decision of choosing an alternative in a task, and an outcome
resulting from choosing an alternative in that situation. In the
IBL model, instances accumulate over time, are retrieved from
memory according to the activation strength in memory. This
activation strength of instances is measured by a statistical
mechanism called activation, originally implemented in the
ACT-R architecture (Anderson and Lebiere, 1998). The activation
relies on the frequency and recency of experienced choices and
outcomes. IBLT assumes that the instances experienced by the
decision maker are activated in memory as a function of their
previous occurrence: more recent and frequent instances are
more active in memory than less recent and less frequent ones.
We make two single-person IBL models (one for the adversary
and the other for the defender) to interact with each other in the
game shown in Figure 1 repeatedly.

In the IBL model, each instance corresponds to an alternative
to choose for a player (i.e., to attack or not-attack for the adversary
and to defend or not-defend for the defender) and the outcome
obtained (e.g., −10 points for the adversary for a caught attack).
As the situation remains the same for each binary decision, the
structure of an instance is simply [alternative, outcome]. In each
trial t of the game, the process of choosing an alternative in the
model for a player starts with calculation of blended values for
each alternative based on the previously observed outcomes in
similar situations. The blended value of alternative j is defined as:

vj =

n∑
i=1

pijxij (1)

Where, pij is the probability of retrieval of instance i
corresponding to alternative j from memory; xij is the outcome
stored in instance i corresponding to alternative j; and, n is
the total number of instances corresponding to the alternative
j in memory. The alternative with the highest blended value
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FIGURE 4 | Attack and defend proportions across different conditions from human participants, ACT-R model and the IBL model. (A) The comparison between
model and human adversaries. (B) The comparison between model and human defenders. The black line on each bar shows the corresponding Nash proportions
and the error bars represent the 95% confidence interval.

is selected by the model in each trial (Dutt et al., 2013). The
equation 1 defines that the blended value for each option is the
sum of all observed outcomes weighed by their probability of
retrieval. The probability of retrieval is a function of activation
which is defined as:

pij =
e

Aij
τ∑n

i=1 e
Aij
τ

(2)

Where, Aij is the activation of instance i corresponding to
alternative j in memory; τ is random noise defined as τ =

σ×
√

2; and, σ is a free parameter called noise to capture the
imprecision of recalling past experiences from memory (details
below). The activation of each instance in memory depends upon
a mechanism from ACT-R (Anderson and Lebiere, 1998). The
activation of an instance in a given trial is a function of the
frequency of its outcome’s occurrence and the time difference
between the current time and past times when the instance’s
outcome occurred in the task. At each trial t, the activation Ai

of an instance i is defined as:

Ai = ln

 ∑
tp,i∈{1,...,t−1}

(t− tp,i)
−d

+ σ · ln
(

1− γi,t

γi,t

)
(3)

Where, d and σ are free parameters called memory decay and
cognitive noise; t is the current trial; tp,i are the previous trials
where the instance i with an outcome was created or the instance’s
activation was reinforced due to outcome’s occurrence in the task;
and, γi,t is a random draw from a uniform distribution in trial
t that is bounded between 0 and 1. The summation in the first
term in equation 3 includes the frequency of observations and
the difference of two time periods correspond to the recency
of observations.

Therefore, the activation of an instance corresponding to an
observed outcome increases with the frequency of observation
of outcomes in the task (i.e., by increasing the number of
occurrences in the summation) and with the recency of those
outcome observations (i.e., by t− tp,i differences that correspond
to that instance in memory). The decay parameter d has a default
value of 0.5 in ACT-R and it captures the rate of forgetting. The
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higher the value of the d parameter, the more is the reliance on
recency and the faster is the decay of memory. The σ · ln(

1−γi,t
γi,t

)

term represents Gaussian noise, which represents the random
error to the activation process and it is intended to represent
the noise associated with memory activation. The higher the σ

value, the more variability there will be in instance activations
and in trial-to-trial decisions. As per IBLT, we expect a decrease
in the defend proportions when the defender is penalized for false
alarms and an increase in defend proportions when the defender
is penalized for misses. Furthermore, we expect an increase in
the attack proportions when the defender is penalized for false
alarms and a decrease in attack proportions when the defender is
penalized misses.

Calibration of Model Parameters
We assumed two versions of the IBL models. One version of the
IBL model used calibrated values of d and σ parameters (referred
to as “calibrated model”) and the other version of the IBL model
used the ACT-R default values for the d and σ parameters
(referred to as “ACT-R model”). The ACT-R model refers to an
agent that relies less upon recency, frequency, and variability
in decisions. In the calibrated model, the d and σ parameters
for the adversary were equated with d and σ parameters of
the defender, respectively. Thus, both adversary and defender
agents possessed the same values of the calibrated d and σ

parameters in the calibrated model. The reason for equating the
parameters of adversary and defender agents was because in the
experimental setup human participants were randomly assigned
to the adversary and defender roles. The d and σ parameters
were calibrated in all the three experimental conditions using the
human data collected in these conditions. In these calibrations,
we minimized the sum of root mean square deviations (RMSDs)
on attack and defend actions between model and human data.
The RMSD was defined as:

RMSD =

√√√√ 1
50

50∑
t=1

(modelt − humant)2 (4)

Where modelt and humant refer to the average proportion
of actions in trial t from model and human participants,
respectively, and t refers to the trial number from 1 to 50. The
RMSD has units of a proportion similar to the attack or defend
action proportion. Smaller the value of RMSD, the better is the
model’s fit to human data. Genetic algorithm (GA; Holland,
1992), which is an optimization algorithm, was used to calibrate
d and σ parameters for both model participants. GA is known
to generate high-quality solutions to optimization problems by
relying on bio-inspired operators such as mutation, crossover,
and selection (Mitchell, 1998). In the GA, the d and σ parameters
were varied between 0.0 and 30.0. These ranges ensured that the
optimization could capture the optimal parameter values with
high confidence. In the GA, the crossover and mutation rates
were kept at their default values of 80% and 1%, respectively. The
GA’s stopping criteria was when there was no change in the fitness
function for the last 50 generations. There were 50 parameter
tuples per agent in each generation of the GA.

In the ACT-R model, we set d = 0.5 and σ = 0.25, i.e., the
default values of the d and s parameters. The smaller values
of d (∼ 0.5) and s parameters (∼ 0.25) indicate lesser reliance
on recency and frequency and smaller variability in trial-to-
trial decisions, respectively. Also, higher values of d parameter
indicate a greater reliance on recency and frequency of outcomes
and higher values of σ parameter indicate an increased trial-to-
trial variability in decisions. We compared the performance of the
calibrated model and ACT-R model in explaining human data.

Table 1 shows the parameters and RMSDs obtained for
both the adversary and defender model players across the three
conditions. As seen in Table 1, the RMSDs for the adversary
and defender roles were small, suggesting a good model fit to
human data (RMSDs <=20%, i.e., a deviation of less than or equal
to 20% between model and human decisions can be considered
as a good model fit in literature in this area (Aggarwal, 2018).
Across all conditions, the calibrated d values in the IBL model
were much higher compared to its default ACT-R value (=0.5) for
both adversaries and defenders. Also, the calibrated σ parameter
values were much higher compared to the ACT-R value (=0.25)
for both adversaries and defenders. Thus, both adversaries and
defenders showed excessive reliance on recency and frequency of
experienced outcomes as well as greater trial-to-trial variability in
decisions in the calibrated model.

IBL Model Generalization
The RMSDs obtained by the ACT-R model were smaller
compared to the calibrated model in the calibration conditions
for both adversary and defender roles (see Table 1). Thus,
next, we evaluated the performance of the calibrated and ACT-
R models in a neutral setting by generalizing both models to
human data in Maqbool et al. (2017). Maqbool et al. (2017)
made participants perform as hackers and analysts across three
between-subject conditions: Equal payoff (EQ), where the payoffs
were same as the EQP condition in the current study; rewarding
hacker (RH), where the adversaries were rewarded 10-times the
Equal Payoff for an undetected attack; and, rewarding analyst
(RA), where the defenders were rewarded 10-times the Equal
Payoff for a successful defense. In each condition, half of
the participants were human defenders playing against Nash
adversaries (adversary bots playing as per Nash proportion
of attack actions) and half were human adversaries playing
against Nash defenders (defenders bots playing as per Nash
proportion of defend actions). In each condition, the calibrated

TABLE 1 | Parameter and RMSDs from the models across EQP, PDF,
and PDM conditions.

Condition Model dA dD σA σD RMSDA RMSDD

EQP Calibrated-IBL 27.67 27.67 9.10 9.10 0.15 0.11

ACT-R 0.50 0.50 0.25 0.25 0.18 0.15

PDF Calibrated-IBL 28.41 28.41 13.20 13.20 0.18 0.15

ACT-R 0.50 0.50 0.25 0.25 0.30 0.2

PDM Calibrated-IBL 29.57 29.57 8.43 8.43 0.13 0.12

ACT-R 0.50 0.50 0.25 0.25 0.16 0.31

The subscript “D” and “A” refer to the defender and adversary roles; respectively.

Frontiers in Psychology | www.frontiersin.org 7 January 2020 | Volume 11 | Article 11

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00011 January 28, 2020 Time: 13:29 # 8

Maqbool et al. Effects of Penalizing Cyber Defenders

FIGURE 5 | Average proportion of attack and defend actions from adversaries
and defenders across the three conditions, Equal-Payoff (EQ),: Rewarding
Analyst (RA) and Rewarding Hacker (RH). The horizontal bars show the
corresponding optimal/Nash proportions. The error-bars show the 95% CI
around the mean.

and ACT-R models replaced the human player and played
against the Nash player. The conditions used and the results
obtained in the current experiment are different from those in
Maqbool et al. (2017), except for those in the EQP condition.
The current experiment’s results in EQP condition (Figure 5)
agree with Maqbool et al. (2017)’s results in the EQ condition
(Figure 5, where defenders defended excessively (64%) for a
smaller proportion of Nash attack actions (33%).

Table 2 shows the RMSDs obtained during the generalization
of calibrated and ACT-R model parameters from the current
experiment to different conditions in Maqbool et al. (2017). For
this generalization, all set of calibrated parameters from Table 1
were generalized to all conditions in Maqbool et al. (2017).
For example, the PDF condition’s parameters from Table 1
were generalized to the EQ, RA, and RH conditions in the
Maqbool et al. (2017) (see the second row in Table 2). As
shown in Table 2, we found that the PDF condition’s parameters
in the calibrated model generalized best to the EQ condition
for the adversary role (RMSD = 0.19). The PDM condition’s
parameters in the calibrated model generalized best to the EQ
condition for the defender role (RMSD = 0.13). Similarly, it
can be observed that the PDF condition’s parameters in the
calibrated model generalized best to the RA condition for

adversary role (RMSD = 0.16). The EQP condition’s parameters
in the calibrated model generalized best in the RA condition
for defender (RMSD = 0.15). Furthermore, the EQP condition’s
parameters in the calibrated model generalized best in the RH
condition for the adversary role (RMSD = 0.16). The PDM
condition’s parameters in the calibrated model generalized best
in the RH condition for the defender role (RMSD = 0.15). Also,
we found the calibrated model to perform better compared to the
ACT-R model across all cases of best generalization of parameters
to Maqbool et al. (2017) conditions.

Figure 6 shows the calibrated model’s performance in different
conditions of Maqbool et al. (2017) for a set of generalization
parameters that yielded the lowest RMSDs in Table 2. In Figure 6,
the PDF condition’s and PDM condition’s parameters generalized
best (lowest RMSDs) in the EQ condition for the adversary
and defender roles, respectively. The PDF condition’s and EQP
condition’s parameters generalized best in the RA condition
for the adversary and defender roles, respectively. Finally, the
EQP condition’s and PDM condition’s parameters generalized
best in the RH condition for the adversary and defender
roles, respectively. Mostly, the calibrated model generalized
reasonably well to the Maqbool et al. (2017) dataset with small
RMSDs (<=20%).

DISCUSSION AND CONCLUSION

In this paper, we investigated how monetary penalties on
defenders for false-alarms and misses influenced the decision-
making of participants performing as adversaries and defenders.
Also, we used (IBLT; Dutt et al., 2013) to model the
decisions of participants performing as adversaries and defenders
across different conditions involving penalties and rewards.
Results revealed that monetary penalties on defenders for
false-alarms and misses influenced the defend proportions
as well as the attack proportions. Furthermore, penalizing
defender decisions made adversaries perform differently from
Nash proportions. Defenders agreed with Nash proportions
when penalized for false-alarms and deviated from the Nash
proportions when penalized for misses. The parameters of
the IBL model calibrated to defender’s and adversary’s actions
indicated excessive reliance on recency, frequency, and variability

TABLE 2 | The Generalization of IBL model and its parameters to different conditions in Maqbool et al. (2017).

Generalization conditions

Calibration condition Model EQ (Maqbool et al., 2017) RA (Maqbool et al., 2017) RH (Maqbool et al., 2017)

RMSDA RMSDD RMSDA RMSDD RMSDA RMSDD

EQP Calibrated IBL 0.26 0.25 0.28 0.15 0.16 0.30

ACT-R 0.22 0.29 0.25 0.12 0.18 0.41

PDF Calibrated IBL 0.19 0.48 0.16 0.23 0.24 0.54

ACT-R 0.29 0.40 0.24 0.2 0.44 0.46

PDM Calibrated IBL 0.35 0.13 0.34 0.26 0.20 0.15

ACT-R 0.35 0.31 0.33 0.16 0.20 0.33

The subscript “D” and “A” refer to the defender and adversary roles, respectively. Boldfaced values correspond to minimum RMSD values.
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FIGURE 6 | The generalization of the best performing parameters in the calibrated model to different conditions in Maqbool et al. (2017) for the adversary role (A)
and defender role (B).

processes among participants in the current study as well as
those in Maqbool et al. (2017).

First, the defend proportions decreased and increased
when defenders were penalized for false-alarms and misses,
respectively. This result could be explained based upon IBLT.
When a player is penalized for an action, then, according to
IBLT, the perceived value (blended value) for the penalized
action becomes less than that for other non-penalized action
(Dutt et al., 2013). According to Dutt et al. (2013), in such a
situation, the action that provides a higher blended value will
be the one performed a higher number of times. Thus, when
defenders were penalized for false-alarms, they decreased the
defend proportions and moved toward the Nash proportions.
However, when defenders were penalized for misses, they
increased the defend proportions and deviated from their
Nash proportions.

Second, attack proportions were also influenced by the
monetary penalties on defenders for false-alarms and misses.
Most likely the adversary’s perception of defender’s actions

caused him to change his own actions. From IBLT, the
blended values of attack and not-attack actions were influenced
indirectly by the positive and negative payoffs due reduced
or increased defend actions, respectively. This explanation is
plausible because the adversary possessed information about
different penalties on their defender opponents in the experiment
and experiencing these payoffs in the game made adversaries to
change their actions.

Third, the calibration of the IBL model to human data
indicated excessive reliance on recency, frequency, and variability
mechanisms among both adversary and defender participants.
Due to the high decay (d) value, both adversaries and defenders
relied excessively on recently and frequently occurring outcome
information in the IBL model. This reliance on recency and
frequency likely caused both adversaries and defenders to deviate
significantly from Nash proportions in a majority of conditions.
These deviations of attack and defend proportions from the
Nash proportions are similar to the sluggish-beta movements in
signal-detection theory (Wickens and Hollands, 2000).
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Furthermore, we observed a high trial-to-trial variability
among defenders and adversaries across all calibration
conditions. One likely reason for this observation may be
that penalizing defenders for false alarms and misses caused
both defenders and adversaries to change their decisions based
upon their opponent’s decisions. However, the trial-to-trial
variability found in participant’s decisions could also be due to
the availability of information about opponents’ trial-to-trial
actions and payoff matrices. Overall, one needs to systematically
evaluate the reasons for the presence of excessive variability in
player’s decisions as part of future research.

In our model results, we also found the calibrated model
to perform better compared to the model with ACT-R default
parameters. One likely reason for this finding could be that in
the experiment participants tended to rely heavily on recency,
frequency, and variability mechanisms in making decisions
across different conditions. When the defender was punished
for her misses, ACT-R model for the adversary performed better
compared to the ACT-R model for the defender. Although we can
only speculate, this difference in the MSDs between adversary and
defender ACT-R models could be because the smaller recency and
cognitive noise values seem to fit the adversary’s actions better
compared to those of defender’s actions.

We performed a laboratory experiment using abstract games,
and our conclusions should be seen with these assumptions in
mind. Yet, the results of this experiment have certain real-world
implications. First, penalizing defenders for their misses may not
be a good strategy as it caused them to overshoot their optimal
Nash proportions. However, penalizing defenders for misses
also caused adversaries to deviate from their Nash proportions.
Thus, organizations, who take the risk of penalizing defenders
for misses, may also reap the rewards by making adversaries
perform non-optimally. Furthermore, under the assumptions of
the game played in the experiment, penalizing defenders for false-
alarms could be a better organizational strategy compared to
penalizing them for misses. That is because penalizing defenders
for false-alarms made defenders to perform as per their Nash
proportions and made adversaries to deviate from their Nash
proportions. Overall, the deviations from Nash proportions
for both players suggest that both players possessed cognitive
limitations on memory and recall (Dutt et al., 2013; Maqbool
et al., 2017) and did not perform as rational agents in the game
(Wickens and Hollands, 2000).

Although we utilized concepts from behavioral game theory as
well as cognitive science to investigate how monetary penalties on
defenders influenced decision-making of participants performing
as adversaries and defenders, the external and ecological validity
of this lab-based study needs to be discussed. For example,
in the real-world, cyber-defense exercises may involve high
fidelity and the experimental paradigm discussed here may
be an abstraction of the real-world phenomena. Similarly,
under real-world conditions, defenders may work in teams,
i.e., decisions to protect systems are likely made in groups. In
this study, we investigated the decision-making of defenders
as single individuals. Although this investigation is important,
future research may extend the single individual game-theoretic
paradigm to multiple individuals. Although we could only

speculate, we expect that group decisions to be more informed
compared to single-individual decisions, where cognitive biases
and interests shown by certain individuals in the group maybe
moderated by other individuals in the group. From the IBL model
perspective, it would be interesting to investigate individual
models interacting in the group, where the preferences of
different individual models may be combined using different
aggregation assumptions. Here, models that average the opinions
of different bounded-rational agents with filtering of certain
opinions (Shang, 2018b) may prove to be useful.

Furthermore, in our experiment, defenders and adversaries
knew their actions but did not know whether these actions
will succeed when they made decisions. In our setup, if a
defender defended and the adversary attacked, then it was
100% guaranteed that the defender’s action would succeed. This
scenario matches well with the real world, where the defenders,
after installing an anti-virus, maybe 99.99% confident that it is
likely to succeed. However, it may be worthwhile to contextualize
the defend actions as successful for certain kinds of attacks and
not successful for other kinds of attacks as part of future research.
Still, beyond monetary motivations, several other factors like
information availability among opponents and technology
constraints (ability of a network to respond to defender’s actions)
are likely to influence adversary’s and defender’s decisions in
cyber-security games. We plan to investigate some of these ideas
as part of our research in the near future.
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