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Abstract: Molecular modeling is widely utilized in subjects including but not limited to physics,
chemistry, biology, materials science and engineering. Impressive progress has been made in de-
velopment of theories, algorithms and software packages. To divide and conquer, and to cache
intermediate results have been long standing principles in development of algorithms. Not sur-
prisingly, most important methodological advancements in more than half century of molecular
modeling are various implementations of these two fundamental principles. In the mainstream
classical computational molecular science, tremendous efforts have been invested on two lines of
algorithm development. The first is coarse graining, which is to represent multiple basic particles
in higher resolution modeling as a single larger and softer particle in lower resolution counter-
part, with resulting force fields of partial transferability at the expense of some information loss.
The second is enhanced sampling, which realizes “dividing and conquering” and/or “caching”
in configurational space with focus either on reaction coordinates and collective variables as in
metadynamics and related algorithms, or on the transition matrix and state discretization as in
Markov state models. For this line of algorithms, spatial resolution is maintained but results are not
transferable. Deep learning has been utilized to realize more efficient and accurate ways of “dividing
and conquering” and “caching” along these two lines of algorithmic research. We proposed and
demonstrated the local free energy landscape approach, a new framework for classical computational
molecular science. This framework is based on a third class of algorithm that facilitates molecular
modeling through partially transferable in resolution “caching” of distributions for local clusters
of molecular degrees of freedom. Differences, connections and potential interactions among these
three algorithmic directions are discussed, with the hope to stimulate development of more elegant,
efficient and reliable formulations and algorithms for “dividing and conquering” and “caching” in
complex molecular systems.

Keywords: molecular modeling; multiscale; coarse graining; molecular dynamics simulation; Monte
Carlo simulation; force fields; neural network; many body interactions; sampling; local sampling;
local free energy landscape; generalized solvation free energy

1. Introduction

The impact of molecular modeling in scientific research is clearly embodied by the
number of publications. Statistics from a Web of Science (www.webofknowledge.com
(accessed on 15 February 2021)) search with various relevant key words is listed in Table 1.
However, despite widespread applications of molecular modeling, we remain far from
accurately predicting and designing molecular systems in general. Further methodological
development is highly desired to tap its full potential. Historically, molecular modeling
has been approached from a physical or application point of view, and numerous excellent
reviews are available in this regard [1–16]. From an algorithmic perspective, “dividing and
conquering” (DC) and “caching” intermediate results that need to be computed repetitively
are two fundamental principles in development of many important algorithms (e.g., dy-
namic programming [17]). As a matter of fact, the major focus of modern statistical machine
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learning is to learn (“caching” relevant information) and then carry out inference on top
of which [18]. In this review, we provide a brief discussion of important methodological
development in molecular modeling as specific applications of these two principles. The
content will be organized as follows. Part 2 describes fundamental challenges in molecular
modeling; Part 3 summarizes application of these two fundamental algorithmic princi-
ples in two lines of methodological research, coarse graining (CG) [18–27] and enhanced
sampling (ES) [28–31]; Part 4 covers how machine learning, particularly deep learning,
facilitates DC and “caching” in CG and ES [29,30,32–35], Part 5 introduces local free energy
landscape (LFEL) approach, a new framework for computational molecular science based
on partially transferable in resolution “caching” of local sampling. The first implementation
of this new framework in protein structural refinement based on generalized solvation free
energy (GSFE) theory [36] is briefly discussed; and Part 6 discusses connections among
these three lines of algorithmic development, their specific advantages and prospective
explorations. Due to the large body of literature and limited space, we apologize to authors
whose excellent works are not cited here.

Table 1. Number of publications from Web of Science search on 8 September 2020.

Key Words Number of Publications

Molecular dynamics simulation 241,748
Monte Carlo simulation 189,550
QM-MM (quantum mechanical—molecular mechanical) simulation 9907
Dissipative particle dynamics simulation 3693
Langevin dynamics simulation 3893
Molecular modeling 2,072,091
All of the above 2,243,182

2. Challenges in Molecular Modeling
2.1. Accurate Description of Molecular Interactions

Molecular interactions may be accurately described with high level molecular orbital
theories (e.g., coupled cluster theory [37,38]) or sophisticated density functionals combined
with large basis sets [39–43]. However, such quantum mechanically detailed computation
is prohibitively expensive for any realistic complex molecular systems. Molecular inter-
actions are traditionally represented by explicit functions and pairwise approximations
as exemplified by typical physics based atomistic molecular mechanical (MM) force fields
(FFs) [44–47]:

U(~R) = ∑
bonds

Kb(b− b0)
2 + ∑

angles
Kθ(θ − θ0)

2

+ ∑
dihedral

Kχ(1 + cos(nχ− δ))

+ ∑
impropers

Kimp(φ− φ0)
2

+ ∑
nonbonded

εij

(Rminij

rij

)12

−
(

Rminij

rij

)6
+

qiqj

εrij
(1)

or knowledge based potential functions [48–50]: these simple functions, while being
amenable to rapid computation and are physically sound grounded near local energy
minima (e.g., harmonic behavior of bonding, bending near equilibrium bond lengths
and bend angles), are potentially problematic for anharmonic interactions, which are very
common in some molecular systems [51]. It is well understood that properly parameterized
Lennard–Jones potentials are accurate only near the bottom of its potential well. Frustration
are ubiquitous in biomolecular systems and are likely fundamental driving force for
conformational fluctuations [52–54]. One may imagine that a molecular system with all its
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comprising particles at their respective “happy” energy minima positions would likely be
a stable “dead” molecule, which may be a good structural support but is likely not able to
provide dynamic functional behavior.

Pairwise approximations are usually adopted for its computational convenience,
both in terms of dramatically reduced computational cost and tremendously smaller (when
compared with possible many body potentials) number of necessary parameters to be
fit in FF parameterization. It is widely acknowledged that construction of traditional
FF (e.g., Equation (1)) is a laborious process. Development of polarizable [9,55,56] and
more complex FF with larger parameter set [57] alleviates some shortcomings of earlier
counterpart. Expansion based treatments were incorporated to address anharmonicity [58].
However, to tackle limitation of explicit simple functional form and pairwise approximation
for better description of molecular interactions remains challenge to be met for molecular
modeling community. Additionally, even atomistic simulations are prohibitively expensive
for large biomolecular complexes at long time scales (e.g., milliseconds and beyond) [59–61].

2.2. Inherent Low Efficiency in Sampling of Configurational Space

Complexity of molecular systems is rooted in their molecular interactions, which en-
gender complex and non-linear correlations among molecular degrees of freedom (DOFs).
Consequently, effective number of DOFs are greatly reduced. Therefore, complex molecular
systems are confined to manifolds [62] of much lower dimensionality with near zero mea-
sure in corresponding nominal high dimensional space (NHDS). Consequently, sufficient
brute force random sampling in NHDS of interested molecular systems is hopeless.

In stochastic trajectory generation by Monte Carlo (MC) simulations or candidate
structural model proposal in protein structure prediction and refinement (or other similar
scenarios), new configuration proposal is carried out in NHDS. A lot of effort is inevitably
wasted due to sampling outside the actual manifold occupied by the target molecular
system. Such wasting may be avoided if we understood all correlations. However, under-
standing all correlations implicates accurate description of global free energy landscape
(FEL) and there is no need to investigate it further. Due to preference of lower energy
configurations by typical importance sampling strategies (e.g., Metropolis MC), stochastic
trajectories tend to be trapped in local minima of FEL. This is especially true for complex
molecular (e.g., biomolecular) systems which have hierarchical rugged FEL with many
local minima [63,64]. In trajectory generation by molecular dynamics (MD) simulations,
configurational space is explored by laws of classical mechanics and no wasting due to
random moves exists. However, molecular systems may well drift away from their true
manifolds due to insufficient accuracy of FF, resulting incorrect and wasted sampling.
Similar to stochastic trajectory generation, it takes long simulations to map FEL since
molecular system tend to staying at any local minimum, achieve equilibrium among many
local minima is just as challenging as in the case of stochastic counterpart.

3. DC and “Caching” in Traditional Molecular Modeling

To cope with fundamental difficulties in molecular modeling, two distinct lines of
methodological development (CG and ES) based on DC and “caching” strategies have
been conducted and tremendous progress has been made in understanding of molecular
systems. As summarized below:

3.1. Coarse Graining, a Partially Transferable “Caching” Strategy

Atomistic FF parameterization is the most well established coarse graining based on
time scale separation between each nuclei and its surrounding electrons. Theoretically,
MMFFs are potential of mean force (PMF) obtained by averaging over many electronic
DOFs for given atomic configurations. In practice, due to the fact that ab initio calculations
are expensive and may have significant error when level of theory (and/or basis set)
is not sufficient, reference data usually include results from both quantum mechanical
(QM) calculations and well-established experimental data [65–67]. The DC strategy is
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utilized by selecting atomic clusters of various size to facilitate generation of QM reference
data. The essential information learned from reference data is then permanently and
approximately “cached” in FF parameters through the parameterization process. Time scale
separation ensures that elimination of electronic DOFs is straight forward but comes with
the price of incapability in describing chemical reactions. To harvest benefits of both
quantum and atomistic simulations, a well-established DC strategy is to treat a small
region involved in interested chemical reaction at QM detail and its surrounding with
MMFF [68–73]. This series of pioneering work was awarded Nobel prize in 2013, and QM-
MM treatment continues to be the mainstream methodology for computational description
of chemical reactions [74,75].

The united atom model (UAM) is the next step in coarse graining [76], where hydrogen
atoms are merged into bonded heavy atoms. This is quite intuitive since hydrogens have
much smaller mass on the one hand, and are difficult to see by experimental detection tech-
niques utilizing electron diffraction (e.g., X-ray crystallography) on the other hand. For both
polymeric and biomolecular systems, UAM remains to be expensive for many interested
spatial and temporal scales. Therefore, further coarse graining in various forms have been
constructed. As a matter of fact, CG is usually used to denote modeling with particles that
representing multiple atoms in contrast to atomistic simulations, and the same convention
will be adopted in the remaining part of this review unless stated otherwise. Both “Top-
down” (that based on reproducing experimental data) and “bottom-up” ( that based on
reproducing certain properties of atomistic simulations) approaches are utilized [21,77].
For polymeric materials, beads are either utilized to represent monomers or defined on
consideration of persistent length [78], and dissipative particle dynamics (DPD) were
proposed to deal with complexities arise from much larger particles [79]. For biomolecular
systems, a wide variety of coarse grained models have been developed [20,21,23,24,80,81].
Another important subject of CG methodology development is materials science [82,83].
Earlier definition of CG particles are rather ad hoc [20]. More formulations with improved
statistical mechanical rigor appeared later on [22], with radial distribution function based
inversion [78,84–86], entropy divergence [19] and force matching algorithm [87–89] being
outstanding examples of systematic development. Present CG is essentially to realize the
following mapping as disclosed by Equation (4) in ref. [22] :

exp[−βVCG(RCG)] ≡
∫

drδ(MR(r)− RCG)exp[−βV(r)] (2)

with r and R being coordinates in higher resolution and CG coordinates, MR(r) being the
map operator from r to R, V and VCG being relevant potential of mean force in higher
resolution and CG representation respectively. Due to lack of time scale separation (see
Figure 1) for essentially all CG mapping, strict realization of this equation/mapping with
exact transferability is not rigorously possible. A naive treatment of CG particles as basic
units (with no internal degrees of freedom) would result in wrong thermodynamics [22].
Due to corresponding significant loss of information, it is not possible to develop a def-
inition of CG and corresponding FF parameterization for comprehensive reproduction
of atomistic description of corresponding molecular systems. Different coarse graining
have distinct advantages and disadvantages, so choosing proper CG strategy is highly
dependent upon specific goal in mind. CG particles are usually isotropic larger and softer
particles with pairwise interactions, or simple convex anisotropic object (e.g., soft spheroids)
that may be treated analytically [24,90–92]. Such simplifications provide both convenience
of computation and certain deficiency for capturing physics of target molecular systems.
CG may be carried out iteratively to address increasingly larger spatial scales by “caching”
lower resolution CG distributions with ultra CG (UCG) FF [22,93–97]. Pairwise approxima-
tion remains to be limitation of interaction description for traditional CG FF, which may use
either explicit simple function form or tables. When compared with atomistic FF, pairwise
approximation deteriorate further due to lack of time scale separation (Figure 1).
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Another simple and powerful type of CG model for biomolecular systems is Gō
model [98,99] and elastic network models (ENM) [100–102] or gaussian network models
(GNM) [103,104] with native structure being defined as the equilibrium state, and with
quadratic/harmonic interactions between all residues within given cutoff. Only a few
parameters (e.g., cutoff distance, spring constant) are needed. Such models “caching” the
experimental structures and are proved to be useful in understanding major conformational
transitions and slow dynamics of many biomolecular systems [105,106].

Figure 1. Schematic illustration of time scale separation issue in CG. (A,B) show two situations
with Cα distances between two amino acids GLU and ALA being R, but with GLU have different
conformations. If Cα atoms were defined as CG site, then these two relative conformation with
distinct interactions would be treated as the same. In (A,B), CG site distance in both (A,B) are R,
but many other pairs of atoms have distinct distances as exemplified by r1 and r2. Such treatment
would only be true if for any small amount of displacement of Cα, side chains accomplished many
rotations and thus may be accurately represented by averaging (i.e., with good time scale separation).
This issue is apparently not limited to the specific definition of Cα being CG site, but rather general
for essentially all CG development.

3.2. Enhanced Sampling, a Nontransferable in Resolution DC and “Caching” Strategy

Umbrella sampling (US) [107] is probably the first combination of DC and “caching”
strategy for better sampling of molecular system along a given reaction coordinate (RC) (or
order parameter) s. DC strategy is first applied by dividing s into windows, information
for each window is then partially “cached” by corresponding bias potentials and lo-
cal statistics. Later on, adaptive US (AUS) [108,109] and weighted histogram analy-
sis method (WHAM) [110] were developed to improve both efficiency and accuracy.
MBAR [111,112] was developed to achieve error bound analysis which was not avail-
able in WHAM. Further development including adaptive bias force (ABF) [113–115] and
metadynamics [116–118]. Details of these methodologies were well explained by excellent
reviews [119–122]. The common trick to all of these algorithms (and their variants) is to
“cache” visited configurational space with bias potentials/force and local statistics, thus
reduce time spent in local minima and dramatically accelerate sampling of interested rare
events. Denote CV as s(r) (r being physical coordinates of atoms/particles in the target
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molecular system), equilibrium distribution and free energy on the CV may be expressed
as [30]:

p0(s) =
∫

drδ[s− s(r)]p0(r) = 〈δ[s− s(r)]〉 (3)

p0(r) =
e−βU(r)∫
dre−βU(r)

(4)

F(s) = − 1
β

log[p0(s)] (5)

F(s) = − 1
β

log[p(s)]−V(s) (6)

with p(s) being the sampled distribution in simulations with corresponding bias potential
V(s) for “caching” of visited configurational space.

The starting point of these “caching” algorithms is specification of reaction coordinates
(RC) or collective variables (CVs), which is a very challenging task for complex molecular
systems in many cases. Traditionally, principle component analysis (PCA) [123] is the
most widely utilized and a robust way for disclosing DOFs associated with the largest
variations. To deal with ubiquitous nonlinear correlations, kernels are often used albeit
with the difficulty of choosing proper kernels [124]. Additional methodologies, include
multidimensional scaling (MDS) [125], isomap [126], locally linear embedding (LLE) [127],
diffusion map [128,129] and sketch map [130] have been developed to map out manifold
for high dimensional data. However, each has it own limitations. For example, LLE [127]
is sensitive to noise and therefore has difficulty with molecular simulation trajectories
which are quite noisy; Isomap [126] requires relatively homogeneously sampled manifold
to be accurate. Both LLE and Isomap do not provide explicit mapping between molecular
coordinates and CVs; diffusion and sketch maps are likely to be more suitable to analyze
molecular simulation trajectories. Nonetheless, their successful application for large and
complex molecular systems remains to be tested. All of above non-linear mapping al-
gorithm are mainly suitable for manifold on a single scale, and capturing manifold on
multiple scales simultaneously in molecular simulations has not been reported yet. When
we are interested in finding paths for transitions among known metastable states, transition
path sampling (TPS) [131–133] methodology maybe utilized to establish CV.

Apparently, RC and/or CV based ES is a different path for facilitate simulation of
complex molecular systems on longer time scales from coarse graining. One apparent plus
side is that these algorithms are “in resolution” as no systematic discarding of molecular
DOFs occur. With specification of RC and/or CVs, computational resource is presumably
directed toward the most interesting dynamics of the target molecular system, and RC
and/or CV maybe repetitively refined to obtain mechanistic understanding of interested
molecular processes. However, the down side is that “cached” information on local
configurational space is not transferable to other similar molecular systems. While rigorous
transferability may not be easily established for any CG FF, practical utility of CG FF for
molecular systems with similar composition and thermodynamic conditions have been
quite common and useful [24]. Therefore, CG FF may be deemed as partially transferable.

An important recent development of DC strategy for enhanced sampling is Markov
state models (MSM) [134–137], one great advantage of which is that no RC or CV is needed.
Instead, it extracts long-time dynamics from independent short trajectories distributed
in configurational space. Many important biomolecular functional processes have been
characterized with this great technique [138–140]. The most fundamental assumption is
that all states for a target molecular system form an ergodic Markov chain:

π(t + τ) = π(t)P (7)

with π(t) and π(t + τ) being a vector of probabilities for all states at time t and t + τ re-
spectively. P is the transition matrix with its element Pij being probability of the molecular
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system being found in state j after an implied lag time (τ) from the previous state i. Appar-
ently as t goes to infinity for an equilibrium molecular system, a stationary distribution π
will arise as defined below:

π = πP (8)

The advantage of not needing RC/CV does not come for free but with accompanying
difficulties. Firstly, one has to distribute start points of trajectories to statistically impor-
tant and different part of configurational space, then select proper (usually hierarchical,
with each level of hierarchy corresponds to a specific lag time) partition of configura-
tional space into discrete states. This is the key step of DC strategy in MSM. No formal
rule is available and experience is important. In many cases some try and error is nec-
essary. Secondly, within each discrete state at a given level of hierarchy, equilibration is
assumed to be achieved instantly and this assumption causes systematic discretization
error, which fortunately may be controlled with proper partition and sufficiently long lag
time [141]. Apparently, metastable states obtained from MSM analysis is molecular system
specific and thus not transferable.

Another important class of enhanced sampling is to facilitate sampling with non-
Boltzmann distributions and restore property at targeted thermodynamic condition through
proper reweight [142]. Most outstanding examples are Tsallis statistics [143,144], parallel
tempering [145,146], replica exchange molecular dynamics [147,148], Landau-Wang algo-
rithm [149] and integrated tempering sampling (ITS) [150–152]. These algorithms are not
direct applications of DC and “caching” strategies and are not discussed further here.

4. Machine Learning Improves “Caching”
4.1. Toward Ab Initio Accuracy of Molecular Simulation Potentials

Fixed functional form and pairwise approximation of non-bonded interactions are
two major factors limiting the accuracy of molecular interaction description in both atom-
istic and some CG FF. Neural network (NN) has capability of approximating arbitrary
functions and therefore has potential to address these two issues. Not surprisingly, sig-
nificant progress has been made in this regard as summarized by recent excellent re-
views [27,153–157]. Cutoff and attention to local interactions remains the DC strategy for
development of machine learning potentials. The major improvement over traditional FF is
better “caching” that overcomes pairwise approximation and fixed functional form limita-
tions. NN FF naturally tackle both issues as explicit functions are not necessary since NNs
are universal approximators. The significance of many-body potentials [158] and extent of
pairwise contributions were analyzed [159,160]. It is important to note that despite the fact
that pairwise interactions account for the majority of energy contributions, high ordered
interactions are likely to be significant in shaping differences of subtly distinct molecular
systems. There are also efforts to search for different and proper simple functional forms,
which are expected to be more accurate than present functional forms in traditional FF on
the one hand, and alleviate overfitting/generalization difficulty and reduce computational
cost of complex NN FF on the other hand [161,162], especially when training dataset is
small. While most machine learning FF are trained by energy data [153,157], gradient-
domain machine learning (GDML) approach [163] directly learns from forces and realizes
great savings of data generation.

Just as in the case of traditional FF, transferability and accuracy is always a tradeoff.
More transferability implicates less attention is paid to “cache” detailed differences among
different molecular systems, hence less accuracy. Exploration in this regard, however,
remains not as much as necessary [164–166]. Unlike manual fitting of traditional FF, sys-
tematic investigation of tradeoff strategies is potentially feasible for machine learning
fitting [167], and yet to be done for many interesting molecular systems. With expediency
of NN training, development of a NN FF hierarchy with increasing transferability/accuracy
and decreasing accuracy/transferability is likely to become a pleasing reality in the near fu-
ture. Rapid further development of machine learning potentials, particularly NN potentials,
are expected. However, significant challenges for NN potentials remain on better general-
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ization capability, description/treatment of long range interactions [168,169], wide range
of transferability, [170] faster computation [171] and proper characterization of their error
bounds. Should further significant progress be made on these issues, it is promising we
may have routine molecular simulations with both classical efficiency and ab initio accuracy
in the near future.

4.2. Machine Learning and Coarse Graining

As in the case of constructing atomic level potentials, machine learning has been
applied to address two outstanding pending issues in coarse graining, which are definition
of CG sites/particles and parameterization of corresponding interactions between/among
these sites/particles. Traditional CG FF, suffers from both pairwise approximation and,
for some, accuracy ceiling of simple fixed functional forms which are easy to fit. By using
more complex (but fixed functional form) potentials with a machine learning fitting process,
Chan et al. [172] developed ML-BOP CG water model with great success. Deep neural
network (DNN) was utilized to facilitate parameterization of CG potentials when given
radial distribution functions (RDF) from atomistic simulations [173]. CGnet demonstrated
great success with simple model systems (alanine dipeptide) [174]. DeePCG model was
developed to overcome pair approximation and fixed functional form and demonstrated
with water [175]. Using oxygen site to represent water is rather intuitive. However, for
more complex biomolecules such as proteins, possibility for selection of CG site explodes.
To improve over intuitive or manual try and error definition of CG sites, a number of studies
have been carried out [176–179] to provide better and faster options for choosing CG sites.
However, no consensus strategy is available up to date and more investigations are desired.
The fundamental difficulty is that there is no sufficient time scale separation between
explicit CG DOFs and discarded implicit DOFs, regardless of specific selection scheme
being utilized. Intuitively, one would expect CG FF parameters to be dependent upon
definition of CG sites/particles. In this regard, auto-encoders were utilized to construct
a generative framework that accomplishes CG representation and parameterization in a
unified way [33]. The spirit of generative adversarial networks was utilized to facilitate CG
construction and parameterization, particularly with virtual site representation [180]. It was
found that description of off-target property by CG exhibit strong correlation with CG
resolution, to which on-target property being much less sensitive [181]. Such observation
suggests that adjust CG for specific target properties might be a better strategy than
searching for a single best CG representation. Despite potentially more severe impact of
pairwise approximation for CG FF than in atomistic FF, quantitative analysis in this regard
remain to be done to the best of our knowledge.

4.3. Machine Learning in Searching for RC/CVs and Construction of MSM

To overcome difficulties of earlier nonlinear CV construction algorithms [126–128,130]
and to reduce reliance on human experience, auto-encoders, which is well-established
for trainable (non-linear) dimensionality reduction, are utilized in a few studies [182–185].
Chen and Ferguson [183] first utilized autoencoders to learn nonlinear CVs that are ex-
plicit and differentiable functions of molecular coordinates, thus enabling direct utility
in molecular simulations for more effective exploration of configurational space. Further
improvement [182] was achieved through circular network nodes and hierarchical net-
work architectures to rank-order CVs. Wehmeyer and Noé [184] developed time-lagged
auto-encoder to search for low dimensional embeddings that capture slow dynamics.
Ribeiro et al. [185] proposed the reweighted autoencoded variational Bayes to iteratively
refine RC and demonstrated in computation of the binding free energy profile for a hy-
drophobic ligand-substrate system. Building a MSM for any specific molecular system
requires tremendous experience and many steps in process are error prone. To overcome
these pitfalls, VAMPnet that based on variational approach for Markov process was de-
veloped to realize the complete mapping steps from molecular trajectories to Markov
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states [186]. As physical understanding of interested molecular systems is essential and
the ultimate goal, application of these methods as black boxes are not encouraged.

5. The Local Free Energy Landscape Approach

Both CG and ES methodologies facilitate molecular simulation by effectively reducing
local sampling. In CG, it is realized through “caching” (integration) of distributions for
faster/discarded DOFs with proper CG FF, and thus has the inevitable cost of losing res-
olution (information), accompanied by the desired attribute of (partial) transferability to
various extent. ES reduces lingering time of molecular systems in local minima through
“caching” visited local configurational space, which is usually defined by relevant DC
strategies, with biasing potentials. When compared with CG, there is no resolution loss.
However, “cached” manifold of configurational space is molecular process specific and thus
not transferable at all. In molecular modeling community, these two lines of methodologies
are developed quite independently. Nevertheless, one might want to ask why not have
both advantages in one method, that is to reduce repetitive local sampling without loss
of resolution and with “cached” results being partially transferable. The local free energy
landscape (LFEL) approach [187] is proposed with this intention in mind. Historically,
parameterization of FF by coarse graining has been the only viable framework due to two
fundamental constraints. Firstly, in earlier days of molecular modeling, typical computers
have memory space of megabytes or less, render it impossible to accommodate millions
or more parameters needed to fit complex LFEL; secondly, while both neural network
and autodifferentiation were invented decades ago, the computational molecular science
community did not master these techniques for fitting large number of parameters effi-
ciently until recently. With these two constraints removed, possibility for alternative path
arise to break monopoly of classical molecular modeling by FF parameterization via coarse
graining. Specifically, one may carry out direct fitting of LFEL and all important infor-
mation on local distributions of molecular DOFs obtained from expensive local sampling
may be “cached”. This is in strong contrast to coarse graining based parameterization,
in which local distributions are substituted by averaging in relevant lower dimensional
space projection (e.g., pairwise distances among CG sites). However, it is essential to
assemble LFEL and construct FEL of the interested molecular system, and this is the core
of the LFEL approach. For a molecular system with N DOFs, this LFEL approach may be
expressed as:

P(r1, r2, · · · , rN) = P(R1, R2, · · · , RM)(M ≤ N) (9)

Ri = (ri1 , ri2 , · · · , ril ) (10)

P(R1, R2, · · · , RM)

=
M

∏
i=1

P(Ri)
P(R1, R2, · · · , RM)

∏M
i=1 P(Ri)

(11)

≈
M

∏
i=1

P(Ri), and sampling all Rs with mediated GCF (12)

G = −kBTlnP(r1, r2, · · · , rN)

= −kBTlnP(R1, R2, · · · , RM)

≈ −kBT
M

∑
i

lnP(Ri), and sampling all Rs with mediated GCF (13)

an N-DOF molecular system is reorganized into M overlapping regions (Equation (9)),
each region has some number of DOFs (Equation (10)). The key step of LFEL approach is
expressed in Equation (11), in which the first product term (addressed as “local term(s)”
hereafter) treat M regions as if they were independent, and all correlations among different
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regions are incorporated by the fraction term, which is termed global correlation fraction
(GCF) and is extremely difficult, if ever possible, to be calculated directly. However, GCF
is a unnormalized probability distribution, when all molecular DOFs in local terms are
(approximately) sampled according to GCF, then we do not need GCF explicitly anymore
(Equations (12) and (13)). GCF represents two types of global correlations. The first type
is mediated correlations among different regions by the fact that they overlap, and rele-
vant molecular DOFs in such overlapping space shared by different regions should have
exact same state for all concerning regions. The second type is direct global correlations
among molecular DOFs in different regions caused by genuine long-range interactions (e.g.,
electrostatic interactions). Satisfying the first type with sampling is trivial, and ensuring
all overlapping regions share the exact same state is sufficient (Equations (12) and (13)).
The second type of global correlations need more involved treatment. These equations
are apparently of general utility for any multiple-variable (high-dimensional) problem.
In the specific case of a complex molecular system, using one set of coordinates realizes
the mediated contribution of GCF. The approximation in Equation (12) is made by ig-
noring the second type of global correlations. Free energy minimization of a molecular
system in thermodynamic equilibrium may be treated as maximization of joint probability
(Equation (13)). For molecular systems (or biological systems) off equilibrium, the joint
distribution remains our focus despite free energy is not well defined anymore. A schematic
representation of the LFEL approach in contrast to FF framework is shown in (Figure 2).
While we only demonstrated GSFE implementation of LFEL at residue level for protein
structural refinement. LFEL approach may be utilized to “cache” local distributions at any
spatial scales. Just as there are many methodological developments in the mainstream
FF framework, there are certainly many possible ways to develop algorithms in the LFEL
approach. We explored a first step toward this direction through a neural network imple-
mentation of the generalized solvation free energy (GSFE) theory [36]. In GSFE theory,
each comprising unit in a complex molecular system is solvated by its neighboring units.
Therefore, each unit is both a solute itself and a comprising solvent unit of its solvent units.
Let (xi, yi) = Ri denote a region i defined by a solute xi and its solvent yi, a molecular
system of N units has N overlapping regions. Each local term may be further expanded:

P(Ri) = P(xi, yi)

= P(xi|yi)P(yi) (14)

Both terms may be learned from either experimental or computational datasets, as long
as they are sufficiently representative and reliable. The first term in Equation (14) is the
likelihood term when xi is the given, it quantifies the extent of match between the solute xi
and its solvent yi. The second term is the local prior term, it quantifies the stability of the
solvent environment yi. Computation of the prior term is more difficult than the likelihood
term, but certainly learnable when sufficient data is available. A local maximum likelihood
approximation of GSFE (LMLA-GSFE) is to simply ignore local prior terms.

A particular implementation of the LMLA-GSFE for protein structure refinement with
residues defined as comprising unit was conducted [187]. In this scheme, GSFE is integrated
with autodifferentiation and coordinate transformation to construct a computational graph
for free energy optimization. With fully trainable LFEL derived from backbone and Cβ

atom coordinates of selected experimental protein structures, we achieved superb efficiency
and competitive accuracy when compared with state of the art atomistic protein refinement
refinement methodologies. With our newly developed pipeline, refinement of typical
protein structure decoys (within 300 amino acids) takes a few seconds on a single CPU core,
in contrast to a few hours by typical efficient sampling/minimization based algorithms
(e.g., FastRelax [188]) and thousands of hours for MD based refinement [189]. In the
latest CASP14 refinement contest (predictioncenter.org/casp14/index.cgi (accessed on
15 February 2021)), our method ranked the the first for the 13 targets with start GDT-TS
score larger than 60. We expect incorporation of complete heavy atom information and
local prior terms to further improve this method in the future. GSFE theory in particular

predictioncenter.org/casp14/index.cgi
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and the LFEL approach in general, are certainly extendable to modeling of other soft matter
molecular systems.

Figure 2. Schematic illustration of the LFEL approach in contrast to present mainstream FF frame-
work. FF parameterization is the foundation for present classical computational molecular science.
Training of neural network for “caching” LFEL is the foundation for LFEL approach, the source data
can be either of experimental or computational origin. In FF framework, simulation (with or without
ES) is driven by FF, in LFEL approach, propagation of molecular systems to minimize free energy (or
maximize joint probability) is driven by compromise among many LFELs. Expensive repetitive local
sampling in FF framework is substituted by differentiation w.r.t. LFELs.

6. More on Connections among CG, ES and LFEL Approach

All of these algorithms have a common goal of accelerating computation of a joint
distribution for a given molecular system at some target resolution, albeit from distinct
perspectives. The fundamental underpinning is the fact that molecular correlations among
its various DOFs limit a molecular system to a manifold of significantly lower dimension.
Both ES and CG in the FF framework and the LFEL approach are distinct strategies to
“cache” manifolds from either configurational space (Figure 3) or physical space perspective
(Figure 4). Commonality and differences of these strategies are summarized in Table 2 and
discussed below.

Table 2. Commonality and difference among three types of algorithms.

Algorithm Coarse Graining Enhanced Sampling LFEL Approach

Resolution Lower In In
Transferable? Partial No Partial

Dividing space Physical Configurational Physical
Free energy unit Partially Specified Specified Arbitrary

Both MSM and RC/CV based ES are designed to first describe local parts of the ap-
proximate manifold in the configurational space formed by all molecular DOFs of the target
molecular system. Information for such local configurational space is partially “cached”
either as bias potentials or transition counts, which are further processed to map FEL and
dynamics of interested molecular processes. Computational process (or educated guess)
for establishment of RC/CVs is essentially “caching” results from sampling/guessing local
parts of the configurational as approximate relevant manifold (Figure 3B). Subsequent sam-
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pling along RC/CV is hoped to disclose our interested molecular processes (e.g., biomolec-
ular conformational transitions, substrate binding/release in catalysis). Involved molecular
DOFs for RC/CVs are not necessarily spatially adjacent on the one hand, and may be differ-
ent for different molecular processes of the same molecular system. Apparently, RC/CVs
are molecular process specific and not transferable, even among different molecular process
of the same molecular system. Nonetheless, the methodology for searching CVs may be
applied to many different molecular processes/systems.

In contrast, both CG in the FF framework and the LFEL approach are motivated to
“cache” relevant information on the complete configurational distribution for local clusters
of molecular DOFs. Such local clusters are building blocks for many similar molecular
systems (e.g., AAs in protein molecular systems) and consequently have limited and
approximate transferability. In CG, strongly correlated local clusters of molecular DOFs
are represented as a single particle, complex many body correlations/interactions of CG
particles within selected cutoff distances are represented by simplified CG FF in a lower
resolution and longer range correlations/interactions are incorporated either through more
coarser CG models or by separate long-range interaction computation. In LMLA-GSFE
implementation of LFEL, all complex many body correlations within selected regions
(i.e., each solute and its specific solvent) are decomposed into two terms in Equation (14),
local likelihoods and local priors in the same resolution, with local priors and direct genuine
long-range interactions simply ignored, and LFEL being approximated by local likelihood
terms. More and better ways for implementing LFEL are expected in the future.

The first step of CG is to partition atoms/particles of high resolution representation
into highly correlated local clusters that will be represented by corresponding single CG
particles, and moderately correlated regions define interaction cutoff for CG particles;
The second step is to select a site (usually one of the comprising high resolution parti-
cles) to represent the corresponding highly correlated cluster; The third step is to select
functional forms to describe molecular interactions among newly defined CG particles,
and parameters are optimized by selected loss functions (e.g., differences of average force in
force matching [87,88]) based on sampling in the whole configurational space of molecular
systems and hopefully to be transferable to some extent. One may imagine that both best
clustering and optimal representation sites of clusters may vary with different functional
forms used to describe CG particle interactions and in different part of configurational
space. Neural network based CG potentials do not have limitation of fixed functional
form and pairwise approximations. However, the need to partition molecular systems into
transferable clusters and to specify representation site/particle remain. For all different
forms of CG, the fundamental essence is to “cache” many body potential of mean force
(PMF) in simplified CG FF at a lower resolution. In contrast, LFEL approach is to first
using a DC strategy to divide molecular systems into local regions, then directly “cache”
many body PMF (or LFEL) of such local regions in the original resolution. The cached
complex local multivariate distributions in NN are subsequently utilized to construct FEL
of target molecular system through dynamic puzzle assembly based on sampling with
GCF as expressed in Equations (12) and (13). In language of statistical machine learning.
Training of LFEL is the learning step, while construction of global FEL is the inference step.
The advantage of CG is a simpler resulting physical model, but is inflexible due to fixed
clustering and representation on the one hand, and lost resolution/information on the other
hand. Properly implemented LFEL while has selected spatial regions comprising many
molecular DOFs, composition of such regions are fully dynamic. For example, in GSFE
implementation of LFEL, a region is defined by a solute unit and all of its solvent units,
and comprising units for the solvent is dynamically updated in each iteration of free energy
optimization. Additionally, no loss of resolution is involved for LFEL approach. Hence all
difficulties and uncertainties associated with molecular DOF partition, CG site selection
and time scale separation, all of which apparently limit transferability of CG FF, disappear.
Correspondingly, the extent of transferability of a LFEL model is in principle at least no
worse than CG FF. Differences of CG and specific implementation of LFEL by GSFE theory
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is schematically illustrated in Figure 4. The superior efficiency of LFEL approach comes
with a price. The assembled global FEL has arbitrary unit for two reasons. Firstly, it is
extremely difficult to obtain the partition function (normalization constant) for local regions
directly during the training/caching stage, therefore we effectively obtain the LFEL up to
an unknown constant. Secondly, for two different molecular systems, the number of local
regions are usually different and so is the corresponding normalization constant.

These three lines of algorithms may be combined to facilitate molecular modeling.
For example, one might first utilize deep learning based near quantum accuracy many body
FF to perform atomistic simulations for protein molecular systems, and then extracting
local distributions properly with some form of LFEL, which may potentially be utilized to
simulate protein molecular systems with near-quantum accuracy and at regular amino-acid
based CG or even much faster speed! Similarly, one may extract and “cache” large body of
information from residue level CG simulations with proper LFEL implementation, which
may be utilized to achieve ultra CG (UCG) efficiency with residue resolution. Application
of CV and MSM based ES algorithm for CG models is straight forward. Combination of
LFEL with CV or MSM based ES is more subtle and yet to be investigated.

Figure 3. Schematic illustration of essential features for enhanced sampling by metadynamics and MSM. (A) The “S” shape
grey line represents the unknown manifold in the configurational space (represented by the square) of a molecular system.
(B) Small circles connected by blue arrows represent computed (guessed) RC/CVs for the molecular system, which is
utilized to conduct metadynamics simulations. (C) The FEL of the molecular system along the computed/selected RC/CV
in (B,D) “Caching” of the LFEL by bias potentials (gaussians represented by blue bell shaped lines) accumulated in the
course of metadynamics simulations. (E) Distribution of the molecular system to the whole configurational space at the
start of a MSM simulation, small circles represent initial start points for short MSM trajectories. (F) Sampling results of short
MSM trajectories fall mainly near the manifold, distinct “states” are represented by different colors. (G) Establishment of
transition matrix by transition counts between “states” obtained from short trajectories.
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Figure 4. Schematic illustration of difference between CG and GSFE implementation of LFEL using protein as an example.
(A) Target molecular systems in physical space. Due to the goal of constructing partially transferable models and/or force
fields, usually many different but similar molecular systems are considered. (B) Selection of local atom/particle clusters
to be represented as one particle in CG model. (C) Selection of CG sites. (D) Comparison between atomistic (or higher
resolution) simulation results and CG (lower resolution) results. (E) Adjust of CG FF parameter according to comparison
from (D). (F) Definition of solvent region for each solute unit. (G) Feature extraction for each solute. (H) “Caching” of LFEL
with neural network by training with prepared data sets.

7. Conclusions and Prospect

The application of “dividing and conquering” and “caching” principle in development
of molecular modeling algorithms is briefed. Historically, coarse graining and enhanced
sampling have been two independent lines of methodological development in the main-
stream FF framework. While they share the common goal of reducing local sampling,
the formulations are completely different with distinct (dis)advantages. Coarse graining
obtains partial transferable FFs but loses resolution, enhanced sampling retains resolution
but results are not transferable. The LFEL approach suggests a third strategy to directly
approximate global joint distribution by superposition of LFEL, which may be learned
from available dataset of either experimental or computational origin. Through integration
of coordinate transformation, autodifferentiation and neural network implementation of
GSFE, our recent work of protein structure refinement demonstrated that simultaneous
realization of transferable in-resolution “caching” of local sampling is not only feasible, but
also highly efficient due to replacement of local sampling by differentiation. It is hoped
that this review stimulates further development of better “dividing and conquering” strate-
gies for complex molecular systems through more elegant, efficient and accurate ways of
“caching” potentially repetitive computations in molecular modeling at various spatial and
temporal scales. With diverse molecular systems (e.g., nanomaterials, biomolecular sys-
tems), specialization of methodology is essential to take advantage of distinct constraints
and characteristics.
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