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Abstract

Hill-type muscle models are widely used within the field of biomechanics to predict and under-

stand muscle behaviour, and are often essential where muscle forces cannot be directly

measured. However, these models have limited accuracy, particularly during cyclic contrac-

tions at the submaximal levels of activation that typically occur during locomotion. To address

this issue, recent studies have incorporated effects into Hill-type models that are oftentimes

neglected, such as size-dependent, history-dependent, and activation-dependent effects.

However, the contribution of these effects on muscle performance has yet to be evaluated

under common contractile conditions that reflect the range of activations, strains, and strain

rates that occur in vivo. The purpose of this study was to develop a modelling framework to

evaluate modifications to Hill-type muscle models when they contract in cyclic loops that are

typical of locomotor muscle function. Here we present a modelling framework composed of a

damped harmonic oscillator in series with a Hill-type muscle actuator that consists of a con-

tractile element and parallel elastic element. The intrinsic force-length and force-velocity

properties are described using Bézier curves where we present a system to relate physiologi-

cal parameters to the control points for these curves. The muscle-oscillator system can be

geometrically scaled while preserving dynamic and kinematic similarity to investigate the

muscle size effects while controlling for the dynamics of the harmonic oscillator. The model is

driven by time-varying muscle activations that cause the muscle to cyclically contract and

drive the dynamics of the harmonic oscillator. Thus, this framework provides a platform to

test current and future Hill-type model formulations and explore factors affecting muscle per-

formance in muscles of different sizes under a range of cyclic contractile conditions.

Author summary

One of the primary functions of skeletal muscle is to generate work and power to move

the body during locomotor tasks such as walking and running. Because it is difficult to

measure muscle behaviour in living animals, most of what we know about how muscles

perform this function is from experiments where the muscle is removed from the animal

and studied under controlled laboratory conditions, or from computer simulations of

such muscle contractions. Recent work has shown how internal mass within the muscle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006123 April 16, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ross SA, Nigam N, Wakeling JM (2018)

A modelling approach for exploring muscle

dynamics during cyclic contractions. PLoS Comput

Biol 14(4): e1006123. https://doi.org/10.1371/

journal.pcbi.1006123

Editor: Alison L. Marsden, Stanford University,

UNITED STATES

Received: December 24, 2017

Accepted: April 5, 2018

Published: April 16, 2018

Copyright: © 2018 Ross et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors gratefully acknowledge

funding from the Natural Sciences and Engineering

Research Council of Canada Discovery Grant

(RGPIN-2015-03966) to JMW. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006123
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006123&domain=pdf&date_stamp=2018-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006123&domain=pdf&date_stamp=2018-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006123&domain=pdf&date_stamp=2018-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006123&domain=pdf&date_stamp=2018-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006123&domain=pdf&date_stamp=2018-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006123&domain=pdf&date_stamp=2018-04-26
https://doi.org/10.1371/journal.pcbi.1006123
https://doi.org/10.1371/journal.pcbi.1006123
http://creativecommons.org/licenses/by/4.0/


causes scale-dependent changes to contractile properties. This study demonstrates a for-

ward-dynamic modelling framework that links a Hill-type muscle model to an oscillating

external load. Scaling relations are developed to preserve the kinematic and dynamic simi-

larity of the system to allow the model to be implemented from single fibre to whole mus-

cle sizes. The model replicates contraction cycles that are typically seen in real muscles.

The framework will allow the relative effects of history-dependent, internal mass and acti-

vation properties to be quantitatively evaluated for cyclic contractions.

This is a PLOS Computational Biology Methods paper.

Introduction

One of the primary functions of skeletal muscle is to perform work by cyclically contracting to

move an external load during locomotion. For the last half-century, experimental work-loop

studies have provided insight into how muscle force and length, and thus work, depend on

interactions between neural excitation and the external load placed on the muscle during cyclic

contractions. These interaction effects are supported by early in vitro studies examining the

behaviour of invertebrate flight muscles coupled to external loads with different elastic, viscous

and inertial properties [1–2]. More recently, in vivo studies on birds such as turkeys [3] and

guinea fowl [4], and larger vertebrates such as wallabies [5] and goats [6], have shown that

altering the characteristics of the external environment can substantially change the work a

muscle can do per contraction cycle. For example, [3] found that muscle fascicles within the

lateral gastrocnemius muscle in turkeys behave like a motor during uphill running by generat-

ing large forces for the duration of the shortening phase of the cycle, and act like a strut during

level running by minimizing their shortening while the force is high. Thus, the behaviour of

muscle depends on the demands of the task in addition to the properties of the muscle.

While work-loop studies have provided insight into how changes in neural excitation and

external conditions alter the behaviour of muscle during cyclic contractions, the contribution

of the mechanical properties of the muscle itself remain largely unknown. Much of what we

know about the mechanisms that underlie muscle contractile behaviour is from measures on

small muscles or single fibres during maximal contractions under constant load. Furthermore,

the Hill-type muscle models that are used to predict and understand muscle behaviour rely on

the assumption that these mechanisms seen in small muscles or fibres under controlled condi-

tions are the same as that in large whole muscles during submaximal cyclic contractions under

varying load. However, these models have limited accuracy, particularly during cyclic contrac-

tions at the submaximal levels of activation that typically occur during locomotion and other

daily activities [7–11]. Most recently, Dick and colleagues [11] tested Hill-type model predic-

tions of human gastrocnemius forces during cycling against measured ultrasound and electro-

myography data and found that while model errors were low for slow contractions at high

activations, errors became substantially larger with increasing contraction speed and decreas-

ing activation. Thus, Hill-type models are currently unable to consistently replicate the salient

features of muscle contractile performance in humans and animals.

To improve the ability of Hill-type models to mimic whole muscle behaviour in vivo, recent

studies have incorporated effects into these models that are typically neglected. Wakeling

and colleagues [12] developed a Hill-type model that allowed for independent recruitment

of fast and slow contractile elements. When compared to models with single contractile ele-

ments or models with fast and slow elements that followed an orderly recruitment pattern, the
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differential recruitment model was most accurate in predicting in situ [12] and in vivo [10]

goat muscle forces. In addition to fibre recruitment, a muscle’s force depends on its previous

length and rate of length change [13–17]. When incorporated into the Hill-type muscle actua-

tors of multibody musculoskeletal models, these history-dependent effects have been shown to

substantially alter muscle power predictions in simulations of cycling [18], and muscle force

magnitude and timing predictions in simulations of countermovement jumping [19]. Other

such overlooked effects include inertia due to muscle tissue mass and tendon or serial elastic

element (SEE) dynamics. Ross and Wakeling [20] found that adding mass to a Hill-type model

leads to slower maximum contraction speeds, and this effect is more pronounced for larger

muscles and lower levels of activation, and Curtin and others [21] found that including a com-

pliant SEE in the model formulation improves muscle force predictions during sinusoidal

contractions. Further modelling studies have shown that serial compliance amplifies the maxi-

mum power a muscle can deliver to an inertial load [22], and varying the magnitude of this

compliance substantially alters estimates of muscle efficiency during locomotor tasks such as

walking and running [23]. Together these findings show promise for improving our under-

standing of muscle function and our ability to use Hill-type models to predict in vivo muscle

forces.

Despite the potential for improving Hill-type models by incorporating these different

effects, their influence on muscle performance has yet to be evaluated under common contrac-

tile conditions that reflect the range of activations, strains, and strain rates that occur in real

muscle. Herein we present a novel forward dynamics framework that consists of a Hill-type

muscle actuator in series with a damped harmonic oscillator to represent the physical load

placed on the muscle during locomotion. The system is driven by time-varying activation of

the muscle actuator to simulate the contraction cycles seen in vivo.

Methods and models

The model system is composed of a Hill-type muscle model in series with a damped harmonic

oscillator (Fig 1). The Hill-type model contains a contractile element and a parallel elastic ele-

ment, and does not account for the effects of a tendon. The muscle is assumed to only contain

parallel fibres that generate force along the longitudinal x-axis of the system. The length of the

muscle lm is equal to the sum of the fixed total length of the system ltot and the position x of the

oscillator mass m:

lm ¼ ltot � x ð1Þ

The motion of the system is constrained to be one-dimensional along the longitudinal axis of

the muscle. The dynamics of the system can be described by:

SF ¼ Fm � Fs � Fd ð2Þ

where ∑F is the sum of the forces acting on the mass, Fm is the muscle force, Fs is the spring

force, and Fd is the damping force. Fs is linearly dependent on the displacement Δx of the

mass, m:

Fs ¼ kDx ð3Þ

where k is the stiffness coefficient and Δx is equal to the difference between x and the resting

length of the oscillator x0. The force of the viscous damper is given by:

Fd ¼ b
dDx
dt

ð4Þ
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where b is the damping coefficient. Fm is given by:

Fm ¼ aFAFV þ FP ð5Þ

where FA and FP are the active and passive forces as a function of the dimensionless muscle

length l̂m, respectively, and FV is the active force as a function of the dimensionless muscle

velocity v̂m. l̂m is calculated as lm normalized by the muscle optimal length l0:

l̂m ¼
lm
l0

ð6Þ

and v̂m is calculated as the first time derivative of l̂m normalized by the maximum unloaded

shortening strain rate, _ε0:

v̂m ¼

d
dt

lm
l0

� �

_ε0

ð7Þ

By convention, l0 is defined as the muscle length corresponding to the maximum isometric

force and _ε0 is the maximum shortening strain rate and is equal to the maximum of the first

derivative of v̂m with respect to time. Combining and rearranging Eqs (2–5) gives:

m
d2Dx
dt2
þ b

dDx
dt
þ kDx ¼ aFAFV þ FP ð8Þ

Fig 1. Visualization of modelling framework. Second-order dynamic system composed of a Hill-type muscle model in

series with a damped harmonic oscillator (A). The force of the muscle is given by the sum of the active force due to the

contractile element (CE) as a function of its length (B) and velocity (C), and the passive force due to the parallel elastic

element (PEE) as a function of its length (B).

https://doi.org/10.1371/journal.pcbi.1006123.g001
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The model is driven with time-varying excitation u that determines the activation a by solv-

ing the following first-order bilinear differential equation [24]:

da
dt
þ a

1

tact
ðbþ uð1 � bÞÞ

� �

¼
1

tact
u ð9Þ

where τact is the activation time constant to account for the delay between onset of excitation

and maximum twitch force, β is the ratio between τact and the deactivation time delay, and u is

muscle excitation. u is represented by a repeating square wave function with a characteristic

frequency, f, and duty cycle, D.

Root model properties

The root muscle properties were chosen to represent a bundle of parallel muscle fibres that

generate force strictly along the length of the model. The maximum isometric force, F0, of the

root model is calculated as the product of the maximum isometric stress, σ0, and the muscle

cross-sectional area, A:

F0 ¼ s0A ð10Þ

The model is assumed to be cylindrical in shape so A is given by:

A ¼
p

4

l0
R

� �2

ð11Þ

where R is the aspect ratio between l0 and the diameter of the muscle model. The mass of the

muscle mm is the product of the muscle density ρ and the volume, and the volume is the prod-

uct of l0 and A. Therefore:

mm ¼ rl0A ð12Þ

While the properties of the muscle can be taken from empirical data, determining the prop-

erties of the harmonic oscillator is less straightforward because the external loads applied to

muscle in vivo cannot be resolved into their individual components such as limb inertia, pas-

sive elasticity, and gravitational forces. Therefore, the properties of the harmonic oscillator are

chosen so that the kinematics and dynamics of the muscle model replicate the behaviour of

muscle in vivo.

Given that one of the primary functions of muscle is to generate power, we chose the base

properties of the harmonic oscillator that maximize the average mass-specific mechanical

power output of the muscle per cycle P� [25]. Power is the rate of doing work, and the net

work of the muscle is given by the integral of the muscle force over the length change, so P
�

can be calculated as the product of the net mechanical muscle work output per cycle and the

frequency f, divided by the muscle mass mm:

P� ¼
R
FmðdlmÞf
mm

ð13Þ

Consult [26] for further explanation of P
�

. Because the muscle and harmonic oscillator are

mechanically coupled in our model, both Fm and the change in lm per cycle, and therefore P
�

,

depend on the chosen values of oscillator mass m, damping coefficient b, and spring stiffness

coefficient k. Although these parameters can be solved for directly using optimization, we have

chosen instead to link them to the properties of the muscle to reduce the number of unknown

parameters and provide values with greater physiological meaning. Because the muscle and
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harmonic oscillator are connected in series, the change in lm per cycle will be maximal when

the amplitude of the oscillator displacement is maximal. For a simple harmonic oscillator with-

out damping, this maximal amplitude occurs when the natural frequency ωn is equal to the

driving frequency ωd, where ωn is given by:

on ¼

ffiffiffiffi
k
m

r

ð14Þ

However, for a driven oscillator with damping, the maximal amplitude occurs when ωn is a

fraction c1 of ωd [27]:

on ¼ c1od ð15Þ

Converting ωd from an angular to a temporal frequency fd gives:

on ¼ 2pc1 fd ð16Þ

Combining Eq (14) and Eq (16) gives an expression for k in terms of c1, m, and fd:

k ¼ mð2pc1 fdÞ
2

ð17Þ

To relate b to c1, m, and fd we can constrain b to be at a critical level (for a critically damped

system) such that:

b ¼
ffiffiffiffiffiffiffiffiffi
4mk
p

ð18Þ

Substituting Eq (17) into Eq (18) gives:

b ¼ 4pmc1 fd ð19Þ

To relate the inertial load due to mass m to the maximum isometric force F0, we can set m to

be equal to a fraction c2 of F0:

m ¼ c2F0 ð20Þ

Substituting Eq (20) into Eq (17) and Eq (19) gives:

k ¼ c2F0ð2pc1 fdÞ
2

ð21Þ

and

b ¼ 4pc2F0c1 fd ð22Þ

In addition to the spring stiffness k, the force applied to the muscle due to the spring also

depends on the resting length x0 of the harmonic oscillator (Eq 3). If at rest lm is equal to l0,

and the total length of the system ltot is the sum of the lengths of the oscillator and the muscle

(Eq 1), then the oscillator length when the muscle is at l0 is equal to ltot minus l0. If we set x0 to

be a fraction c3 of the oscillator length when lm is l0, then:

x0 ¼ c3ðltot � l0Þ ð23Þ

High P
�

would occur for contractions that have a high activation throughout shortening, but

minimal activation during lengthening of the muscle. Thus, the value of P
�

also depends on the

duty cycle D that represents the fraction of each excitation cycle where the muscle is excited

[28], as well as the activation dynamics that govern how rapidly the activation state can be

turned on and off for the shortening phase. The unknown parameters c1, c2, c3, fd and D were

optimized for by maximizing the model output P
�

using nonlinear global optimization for a
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fast muscle with _ε0 of 10 s-1 and umax of 1. Values of the model and equation parameters can

be found in Table 1.

Model non-dimensionalization and scaling

The standard Hill-type formulation assumes that whole muscles behave as single fibres, with

the muscle forces scaling with cross-sectional area and muscle lengths scaling with optimal

length. However, it has been shown that the presence of mass in muscle causes a scale-depen-

dent distortion that limits this assumption [20]. To explore the contribution of these scale-

dependent distortions in muscles of different sizes, the model framework must be able to scale

geometrically while preserving kinematic and dynamic similarity. In other words, a larger

muscle would have greater forces, lengths and power outputs, but the non-dimensional forms

of these parameters should remain the same. To achieve this, the spring-mass-damper proper-

ties of the damped harmonic oscillator must be adjusted to preserve kinematic and dynamic

similarity of the whole system. For kinematic and dynamic similarity to occur, all dimension-

less parameter groups, shown in curly brackets, are held constant for simulations with different

geometric scales. To identify these dimensionless parameter groups, the dimensional system

variables must be non-dimensionalized using methods presented in [32].

Eq (9) contains 3 dimensional variables to be normalized: a, u, and t. Because u is defined as

a square wave that varies in amplitude between 0 and 1, u and a in Eq (9) can be denoted as û
and â, respectively. The remaining time variable t can be normalized by a muscle time scale, tm:

t̂ ¼
t
tm

ð24Þ

This gives the following equation:

dâ
dt̂
þ

tm � b

tact

� �

âð1 � ûÞ ¼
tm

tact

� �

ûð1 � âÞ ð25Þ

Table 1. Model and equation parameters.

Parameter Definition Value Source

l0 Muscle optimal length 0.02 m Estimated from literature [29]

σ0 Muscle maximum isometric stress 225000 Pa Estimated from literature [30]

ρ Muscle density 1060 kg m-3 Literature [31]

R Muscle aspect ratio (l0:diameter) 100

A Muscle cross-sectional area Varied Calculated (Eq 11)

F0 Muscle maximum isometric force Varied Calculated (Eq 10)

mm Muscle mass Varied Calculated (Eq 12)

τact Time constant for activation 0.045 s for _ε0 of 5 s-1; 0.025 s for _ε0 of 10 s-1 Literature [11]

β Ratio of τact to deactivation time constant 0.6 Literature [11]

D Excitation duty cycle S1 Table Optimized

fd Driving frequency S1 Table Optimized

c1 Ratio between ωn and ωd S1 Table Optimized

c2 Ratio between m and F0 S1 Table Optimized

c3 Ratio between x0 and l0 S1 Table Optimized

m Oscillator mass Varied Calculated (Eq 20)

k Oscillator stiffness coefficient Varied Calculated (Eq 21)

b Oscillator damping coefficient Varied Calculated (Eq 22)

x0 Resting length of oscillator Varied Calculated (Eq 23)

ltot Total length of model 2 l0

https://doi.org/10.1371/journal.pcbi.1006123.t001
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Since the excitation input is prescribed as a normalized value, û can be scaled using:

û ¼
u

umax
ð26Þ

where umax is the maximum possible muscle excitation for a given simulation.

Eq (8) contains 5 dimensional variables: FA, FP, FV, Δx, and t. The forces FA, FP and FV are

normalized by the maximum isometric force, F0:

F̂A ¼
FA

F0

ð27Þ

F̂P ¼
FP

F0

ð28Þ

F̂V ¼
FV

F0

ð29Þ

The displacement of the harmonic oscillator, Δx, is normalized with its resting length, x0:

Dx̂ ¼
Dx
x0

ð30Þ

and t is normalized with an oscillator time scale, th:

t̂ ¼
t
th

ð31Þ

Both th and tm are set to a value of 1 as there is no experimental evidence to suggest that muscle

behaviour scales in the time dimension. Combining Eq (9) and Eqs (26–31) gives the equation

of motion:

mx0

F0th
2

� �
d2Dx̂
dt̂2
þ

bth

m

� �
dDx̂
dt̂
þ

kth
2

m

� �

Dx̂
� �

¼ F0umax½âF̂AF̂V þ F̂P� ð32Þ

To ensure dynamic similarity between the root and scaled model, the dimensionless groups

(curly brackets) from Eq (32) must remain constant:

mr � x0;r

F0;r�th;r
2
¼

ms � x0;s

F0;s�th;s
2

ð33Þ

br � th;r

mr
¼

bs � th;s

ms
ð34Þ

kr � th;r
2

mr
¼

ks � th;s
2

ms
ð35Þ

where the subscripts r and s indicate the root and scaled models, respectively.

We can define the following scaling factors for each parameter, p, as the ratio λ between the

parameter value of the scale model and root model:

lp ¼
ps

pr
ð36Þ

Rearranging Eqs (33–35) and substituting in the scaling factors gives the following scaling
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006123 April 16, 2018 8 / 18

https://doi.org/10.1371/journal.pcbi.1006123


laws:

lm � lx0
¼ lth

� lF0
ð37Þ

lb � lth
¼ lm ð38Þ

lk � lth
2
¼ lm ð39Þ

To ensure geometric similarity between models, the muscle length scale factor is set equal to

the harmonic oscillator length scale:

lx0
¼ ll0

ð40Þ

To ensure kinematic similarity, the velocity of the muscle must scale with the velocity of the

harmonic oscillator. The muscle velocity scale factor is proportional to the muscle length scale

factor ll0
divided by the muscle time scale factor ltm

, and the oscillator velocity scale factor is

equal to the oscillator length scale factor lx0
divided by the oscillator time scale factor lth

. This

leads to:

lx0

lth

¼
ll0

ltm

ð41Þ

Combining and rearranging Eqs (40) and (41) gives:

lth
¼ ltm

ð42Þ

To solve for the remaining scale factors in terms of ll0
, additional assumptions must be intro-

duced. Experimental evidence suggests that the maximum isometric stress of skeletal muscle is

roughly constant across a range of animals, and does not appear to scale with muscle or animal

size [30]. Therefore, we can assume that the maximum isometric stress σ0 is constant and ls0
is

equal to 1. Stress is calculated as force over cross-sectional area which gives:

ls0
¼

lF0

ll0
2

ð43Þ

Substituting in the value of ls0
leads to:

lF0
¼ ll0

2
ð44Þ

In addition to stress, muscle density ρ is typically assumed to remain constant across muscles

of different sizes [25], and therefore the muscle density scale factor λρ is equal to 1. Density is

calculated as mass divided by volume, and since the model is geometrically scaled, the change

in volume is proportional to the change in length cubed:

lr ¼
lmm

ll0
3

ð45Þ

Solving for the muscle mass scale factor lmm
gives:

lmm
¼ ll0

3
ð46Þ

The average mass-specific power output per cycle P
�

at a given cycle frequency is also relatively
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constant across a range of vertebrate muscles [25]. Therefore:

lF0
ll0
¼ ltm

lmm
ð47Þ

Combining Eqs (44), (46) and (47) gives:

ltm
¼ 1 ð48Þ

and combining Eqs (42) and (48) gives:

lth
¼ 1 ð49Þ

Substituting Eqs (40), (44) and (49) into Eq (37) results in an expression for λm in terms of ll0
:

lm ¼ ll0
ð50Þ

Similarly, an expression for λb in terms of ll0
can be found by substituting Eqs (49) and (50)

into Eq (38):

lb ¼ ll0
ð51Þ

Combining Eqs (39), (49) and (50) gives:

lk ¼ ll0
ð52Þ

A summary of the scaling factors values can be found in Table 2.

Force-velocity and force-length curves

A variety of different functions have been used to represent the intrinsic force-velocity and

force-length relationships, including piecewise [33–36], polynomial [35–38], hyperbolic [39–

40], trigonometric [41–42], logarithmic [40], and exponential [34,39,43] functions. There

is typically a trade-off between accuracy and cost when choosing curves to model these intrin-

sic properties. For example, piecewise functions typically provide the best physiological repre-

sentation but they can create computational issues due to singularities in the first derivative of

the function within the operating range of muscle lengths and velocities. In contrast, polyno-

mials are smooth continuous functions that are easy to implement, however, they are typically

poor at representing the behaviour of muscle outside of the usual operating range. This

Table 2. Model scaling factors.

Scaling factor Value Source

ll0
1 or 10 Varied

ls0
1 Literature [30]

λρ 1 Literature [25]

λP� 1 Literature [25]

lx0
ll0 Calculated (Eq 40)

lF 0
ll0

2 Calculated (Eq 44)

lmm
ll0

3 Calculated (Eq 46)

ltm
1 Calculated (Eq 48)

lt h
1 Calculated (Eq 49)

λm ll0
Calculated (Eq 50)

λb ll0
Calculated (Eq 51)

λk ll0
Calculated (Eq 52)

https://doi.org/10.1371/journal.pcbi.1006123.t002

Modelling cyclic muscle contractions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006123 April 16, 2018 10 / 18

https://doi.org/10.1371/journal.pcbi.1006123.t002
https://doi.org/10.1371/journal.pcbi.1006123


particularly becomes an issue for forward dynamics simulations where the lengths and veloci-

ties can be unconstrained.

Bézier splines have been presented as an alternative formulation that provides both

improved accuracy and computational efficiency over traditional representations of force-

velocity and force-length curves [9]. These functions are parametric curves based on a set of

polynomials that smoothly interpolate user-defined control points. For further details on the

characteristics and formulation of Bézier curves, consult [44] and [45]. For this study, we used

composite cubic Bézier curves to represent the force-velocity and active force-length relation-

ships, and a single cubic Bézier curve to represent the passive force-length relationship (Fig 2).

We chose to use composite cubic curves rather than quintic curves as in [9] as they allow more

local control when relating the control points for the Bézier curve description to the physiolog-

ical constraints within empirical muscle data.

The normalized force-velocity curve (Fig 2A) is composed of two cubic Bézier curves joined

at a normalized muscle velocity v̂m of 0 and normalized muscle force F̂m equal to the maxi-

mum isometric force F0. The concentric portion of the curve intersects with the � v̂m axis at

the maximum shortening strain rate _ε0, corresponding to v̂m of -1, and is symmetric about the

line F̂m ¼ � v̂m consistent with Hill’s hyperbolic force-velocity curve [46]. The eccentric por-

tion of the curve passes through and plateaus at a F̂m value equal to the maximum eccentric

force Fmax. The normalized force-velocity curve is linearly extrapolated for the extreme v̂m val-

ues less than -1 and greater than 1, where F̂m is set to be equal to 0 and Fmax, respectively. To

achieve continuity of the curve’s first derivative, the slope of the eccentric and concentric por-

tions of the curve are constrained to be equal where they meet at isometric v̂m. Additionally,

the slope of the curve at a v̂m value of 1 and F̂m of Fmax is constrained to be equal to zero. Given

these experimentally-derived physiological constraints, it is not possible to maintain C1-conti-

nuity of the concentric portion of the curve at _ε0; however, the presented curve is C1-continu-

ous throughout the physiological range of v̂m.

The normalized active force-length curve (Fig 2B) is composed of two cubic Bézier curves

representing the ascending and descending limbs joined at optimal length and maximum iso-

metric force which corresponds to a normalized muscle length l̂m and F̂m of 1. The slopes of

both the ascending and descending limbs at l0 are constrained to be equal to 0, so the first

derivative of the curve is continuous at this point. Similarly, the slope of the curve is set to 0 at

Fig 2. Force-velocity and force-length curves. Normalized force-velocity (A), active force-length (B) and passive force-length (C) curves (black

lines). The force-velocity curve and the active and passive force-length curves are fitted to experimental data from [47] and [48], respectively (grey

points). The Bézier control points for each curve are shown as red asterisks.

https://doi.org/10.1371/journal.pcbi.1006123.g002
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the start of the ascending limb and at the end of the descending limb so that the curve is

C1-continous and the end points beyond where the value of F̂m is set to zero.

In contrast to the force-velocity and active force-length curves, the normalized passive

force-length curve (Fig 2C) is a single cubic Bézier curve. F̂m is set to 0 for l̂m less than or equal

to l̂m of 0.7. The curve is also linearly extrapolated for lengths longer than l̂m of 1.65, with the

slope of the extrapolated region being equal to the slope of the line between the last and second

to last control points. Matching the slopes on either side of the first and last control points

guarantees continuity of the passive force-length curve and its first derivative.

The unconstrained degrees of freedom of the force-velocity and force-length relationships

were determined by fitting the curves to experimental data from [47] and [48], respectively, by

minimizing the coefficient of determination r2 using numerical nonlinear global optimization.

Numerical simulations

To provide a computational proof of our methods, we tested the model at different excitation

frequencies f, maximum excitation umax, maximum shortening strain rates _ε0, and muscle

length scale factors ll0
. The value of umax was either 0.1 or 1 to simulate a muscle contracting

at 10% and 100% of maximal excitation, respectively. The contractile element of the model

behaved as either an entirely fast muscle with a _ε0 of 10 s-1 or an entirely slow muscle with a _ε0

of 5 s-1. ll0
was either 1 or 10, where the models with ll0

of 1 had the geometric dimensions of

the root model. Finally, f was set to a value of either 0.5, 1 or 2 Hz.

A single set of forward dynamic simulations were run for each possible combination of f,
umax, _ε0 and ll0

. The output muscle force Fm, velocity vm, and length lm were measured from

the steady-state solution of the system. Due to the presence of damping, the steady-state solu-

tion does not depend on initial conditions, unlike the transient solution. The instantaneous

muscle power was calculated as the product of Fm and vm, and the average mass-specific power

per cycle P
�

was calculated as in Eq (38). All simulations were performed in Wolfram Mathe-

matica Version 11.1.1 [49].

Results and discussion

In this study, we presented a novel forward dynamics framework that consists of a damped

harmonic oscillator in series with a Hill-type muscle actuator driven by time-varying activa-

tion. We also provided a description of how to build and implement Bézier splines to represent

the intrinsic force-length and force-velocity properties of muscle. The r2 for each fitted curve

was greater than 0.87, comparable to the r2 values for curves from [34,37–42] fitted to the same

experimental data from [47–48]. However, the Bézier splines improve upon these more com-

monly used curves by allowing greater control in replicating the physiological features found

in experimental muscle data.

We additionally provided methods to geometrically scale the system while preserving kine-

matic and dynamic similarity. Increasing ll0
from 1 to 10 altered the dimensional dynamics

and kinematics of the model, with muscle lengths lm and velocities vm scaling with ll0
, muscle

forces Fm scaling with ll0
2, and the muscle powers scaling with ll0

3 (Fig 3). However, the

dimensionless output variables for different values of ll0
were identical for simulations with

the same f, umax and _ε0 values, including P
�

(Table 3). Geometrically scaling the system allows

this framework to be used in future to investigate the effects of muscle size while controlling

for the dynamic behaviour of the damped harmonic oscillator. Correctly modeling muscle size

is important when scaling muscle data from single fibres to predict the function of whole
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muscles in animals and humans, and is even more important for predicting the function of

large extinct species such as dinosaurs.

All simulations resulted in muscle length, velocity, force, and power outputs that qualita-

tively resemble the behaviour of in vivo muscle during cyclic contractions where the muscle is

generating mechanical power (Figs 3 and 4). Faster muscles with _ε0 of 10 s-1 generated greater

average mass-specific power per cycle P
�

than slower muscles with _ε0 of 5 s-1 at a given cycle

frequency f. A higher _ε0 allows muscle to generate more force at a given contraction velocity,

which translates to greater power. Additionally, faster muscles generate greater P
�

because they

have faster rates of activation and deactivation than slower muscles. Theoretically, a muscle

would generate the greatest P
�

if it could activate and deactivate instantaneously at the begin-

ning and end of the shortening phase of the contraction cycle. However, in vivo activation and

deactivation is not instantaneous, and therefore muscle is activated before reaching peak

Fig 3. Sample raw output traces. Muscle excitation and activation (A,F), force (B,G), length (C,H), velocity (D,I) and power (E,J) traces

for two representative simulations with umax of 1, f of 1 Hz, _ε0 of 5 s-1, and ll0
of 1 (A-E) and 10 (F-J). n denotes the cycle number.

https://doi.org/10.1371/journal.pcbi.1006123.g003
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length and deactivated while shortening to maximize mechanical work and P
�

[50], consistent

with the behaviour of our model (Fig 3). These delays to peak activation and relaxation con-

tribute to reduced P
�

for simulations with higher values of f, particularly for slower muscles

with greater τact where there is insufficient time in the shortening phase for the muscle to

reach full activation, and insufficient time to fully deactivate during lengthening.

Some unexpected effects also occurred as a result of assumptions made in developing the

system. The maximum excitation umax scales the forces in the muscle and therefore the power,

so higher umax resulted in higher P
�

values. However, this effect was greater than that predicted

from sinusoidal contraction cycles about optimal length [51] due to a shift in the operating

range of muscle lengths at different values of umax. The muscle model contracted primarily on

the ascending limb and plateau of the active force-length relationship when umax was 1, and on

the descending limb when umax was 0.1. This effect is likely a consequence of the forward

dynamics nature of the simulations where the muscle lengths respond to the dynamics of the

contraction. Lower mean F̂m at lower umax results in the muscle being in a less contracted

state, and thus operating at longer muscle lengths. This differs from in situ studies [51–57]

where muscle is typically tested with contraction cycles centred about l0.

Hill-type muscle models are widely used within the field of biomechanics to predict muscle

function in living animals where measurement is oftentimes not feasible. To evaluate the effects

of different model formulations, Hill-type models are typically assessed within inverse dynamics

frameworks using steady, non-cyclic kinematics. However, such simulations are limited in their

ability to assess how changing different muscle properties impacts the behaviour of muscle,

including work and power output during cyclic contractions. The framework in this study will

provide a testing platform whereby current and future formulations of Hill-type muscle models

can be tested under common contractile regimes that emulate the contractions cycles typical in

locomotion. This framework is also consistent across scales, and so can be used to reconcile

information from single fibre to whole muscle experiments. Future work could utilize this

methodology to evaluate the relative influence of effects such as history-dependent, internal

mass, activation, and tendon effects on the behaviour of muscle during cyclic contractions

under a wider range of cycle frequencies, excitations, and loading conditions.

Table 3. Output mass-specific mechanical power output P
�

for all simulations.

f (Hz) _ε0 (s-1) umax λl0
P
�

(W kg-1)

0.5 5 0.1 1 1.22

0.5 5 0.1 10 1.22

0.5 5 1 1 20.18

0.5 5 1 10 20.18

1 5 0.1 1 1.43

1 5 0.1 10 1.43

1 5 1 1 25.55

1 5 1 10 25.55

1 10 0.1 1 2.03

1 10 0.1 10 2.03

1 10 1 1 40.60

1 10 1 10 40.60

2 10 0.1 1 1.14

2 10 0.1 10 1.14

2 10 1 1 25.85

2 10 1 10 25.85

https://doi.org/10.1371/journal.pcbi.1006123.t003
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Fig 4. Output simulation work-loops. Muscle work-loops showing normalized muscle force F̂m versus normalized muscle length l̂m for each simulation. Simulations

with umax of 0.1 are shown in panels A and C, and simulations with umax of 1 are shown in B and D. The non-dimensional muscle forces and lengths are identical for

simulations with ll0
of 1 (A,B) and 10 (C,D).

https://doi.org/10.1371/journal.pcbi.1006123.g004
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