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Wineries face unprecedented challenges due to new market demands and climate

change effects on wine quality. New yeast starters including non-conventional

Saccharomyces species, such as S. kudriavzevii, may contribute to deal with some

of these challenges. The design of new fermentations using non-conventional yeasts

requires an improved understanding of the physiology and metabolism of these cells.

Dynamic modeling brings the potential of exploring the most relevant mechanisms and

designing optimal processes more systematically. In this work we explore mechanisms

by means of a model selection, reduction and cross-validation pipeline which enables

to dissect the most relevant fermentation features for the species under consideration,

Saccharomyces cerevisiae T73 and Saccharomyces kudriavzevii CR85. The pipeline

involved the comparison of a collection of models which incorporate several alternative

mechanisms with emphasis on the inhibitory effects due to temperature and ethanol.

We focused on defining a minimal model with the minimum number of parameters, to

maximize the identifiability and the quality of cross-validation. The selected model was

then used to highlight differences in behavior between species. The analysis of model

parameters would indicate that the specific growth rate and the transport of hexoses

at initial times are higher for S. cervisiae T73 while S. kudriavzevii CR85 diverts more

flux for glycerol production and cellular maintenance. As a result, the fermentations with

S. kudriavzevii CR85 are typically slower; produce less ethanol but higher glycerol. Finally,

we also explored optimal initial inoculation and process temperature to find the best

compromise between final product characteristics and fermentation duration. Results

reveal that the production of glycerol is distinctive in S. kudriavzevii CR85, it was not

possible to achieve the same production of glycerol with S. cervisiae T73 in any of the

conditions tested. This result brings the idea that the optimal design of mixed cultures

may have an enormous potential for the improvement of final wine quality.

Keywords: Saccharomyces species, temperature, wine fermentation, dynamic modeling, parameter estimation,
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INTRODUCTION

Wine is obtained through the fermentation of grape must, a
complex media composed by a rich blend of amino acids, sugars,
organic acids, vitamins and the list goes on. Modern wine
industry selects specific yeasts to inoculate the grape must and
to perform controlled fermentations. This approach reduces the
risk of wine contamination while increasing reproducibility and
enabling the production of wines with specific aromas or other
compounds of interest. Selecting appropriate yeast species may
contribute to face the challenges brought by climate change, but
also to increase the variety and quality of wines, as consumers and
market demand.

Most of the commercial yeasts belong to the Saccharomyces
cerevisiae species, therefore being the most frequently used in
wine making, as well as the most studied species. However, other
yeasts, such as non-Saccharomyces species, have shown their
potential to solve the new challenges of the wine making industry
(Ciani et al., 2016; Pérez-Torrado et al., 2017). Interestingly,
species of the Saccharomyces genus, such as Saccharomyces
kudriavzevii, exhibit promising physiological properties. S.
kudriavzevii ferments at lower temperatures (Salvadó et al.,
2011), produces less ethanol and more glycerol (Oliveira et al.,
2014; Pérez-Torrado et al., 2016) with no increase in the acetic
acid levels in wine (Alonso-del Real et al., 2017), and generates a
higher content of aromatic superior alcohols (Stribny et al., 2016).

Temperature is one of the most important parameters
affecting the duration and rate of alcoholic fermentation and
final wine quality. Many wine makers prefer low-temperature
fermentations (10–15◦C) for the production of white and
“rosé”. Wines produced at low temperatures keep volatile aroma
compounds more efficiently; therefore, showing better sensory
attributes. However, the performance of S. cerevisiae at low
temperatures decreases, due to growth rate reduction and an
increased risk of stuck and sluggish fermentations (López-
Malo et al., 2013). Recent studies have confirmed that the
cryophilic yeast S. kudriavzevii performs better than S. cerevisiae
at low temperature, thus being an appealing alternative for
cold fermentations (Tronchoni et al., 2012). Additionally, S.
kudriavzevii produces less alcohol than S. cerevisiae offering
a means to handle the rising sugar content in grape must
(Alonso-del Real et al., 2017). Nevertheless, the feasibility of
using non-conventional yeasts, such as S. kudriavzevii, at the
industry, requires an improved understanding of the physiology
and metabolism of these cells.

Dynamic modeling brings the potential of exploring the most
relevant mechanisms underlying fermentation performance by
different species but also the possibility of designing optimal
operating conditions more systematically (Banga et al., 2005;
Pizarro et al., 2007). The modeling of wine fermentation
has received substantial attention. Depending on their aim,
available models can be classified into macroscopic kinetic or
intracellular metabolic. Macroscopic kinetic models are focused
on biomass growth and external metabolites. They require the
definition of kinetic rates as functions of the intervening species
concentrations. Metabolic models consider cellular metabolic
pathways which are defined in terms of fluxes; an optimization

based approach is then used to compute metabolic flux profiles
compatible with the measured dynamics of biomass growth.

The pioneering works by Boulton (1980) or Caro et al. (1991)
adopted the macroscopic scale modeling approach. Subsequently
several works focused on the efficiency of S. cerevisiae to
transform glucose to ethanol within a range of temperatures
around that corresponding to the optimal growth (see, for
example, the review by Marín, 1999 and the works cited therein).
More recently, Cramer et al. (2002), Malherbe et al. (2004),
and Coleman et al. (2007) also adopted the macroscopic scale
modeling approach to address the role of assimilable nitrogen
in ethanol and CO2 production. Agosin and collaborators
considered the cellular metabolismwithin a dynamic flux balance
modeling framework (Sainz et al., 2003; Varela et al., 2004;
Pizarro et al., 2007; Vargas et al., 2011). These models reproduced
the measured dynamics of biomass growth, substrates uptake as
well as ethanol and glycerol production. Alternatively Malherbe
et al. (2004) or David et al. (2010) adopted an intermediate
strategy that couples the kinetic modeling of external metabolites
with some intracellular mechanisms. Their focus is on the role of
nitrogen.

In this work we adopt the later strategy to model cold
fermentations mediated by non-conventional Saccharomyces
species. For this purpose we implemented an experimental-
modeling pipeline. The experimental pipeline is based in
micro-vinifications where small-scale wine fermentations are
undertaken at different controlled conditions while monitoring
growth rate and a number of critical extracellular metabolites
(glucose, fructose, ethanol, glycerol, and acetic acid).

The modeling pipeline is based on model selection, reduction,
ensemble modeling and cross-validation. Several candidate
models -which account for different biomass growth, transport
and inhibitory mechanisms found in the literature- are
compared attending to their properties, basically identifiability
and robustness in cross-validation. In this respect, we focused
on defining a minimal model with the minimum number
of parameters to guarantee structural identifiability, i.e. the
possibility of uniquely reconciling the model with the data while
iteratively improving practical identifiability (Chis et al., 2016).
For the most successful models we implemented an ensemble
modeling strategy so as to maximize their robustness, i.e., to
minimize the uncertainty of their predictions. The results from
the obtained models are discussed in a quantitative manner and
ensemble of models is used to devise robustified predictions for
processing conditions (initial inoculation and temperature) so
as to achieve a better compromise between alcohol and glycerol
production.

The selected model accounts for the transport of hexoses
(glucose and fructose) and their transformation into fructose
6-phosphate (F6P); the F6P is then directed to produce both
ethanol, acetic acid and glycerol. The model considers the
temperature effects in the cells specific growth rate; but also
temperature and ethanol as inhibitors of the transport of hexoses.
As a result it can be used to design cold wine fermentations to
optimize final product quality.

Finally, we show, by means of cross-validation, that using an
ensemble approach delivers more robust solutions than using
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a single model approach, thus rendering the ensemble models
useful to explain the differences in fermentation performance
between the species of interest and to design novel wine-making
processes.

MATERIALS AND METHODS

Experimental Methods
Strains
We considered two different Saccharomyces strains. We chose a
commercial strain, T73 (Lalvin T73 from Lallemand Montreal,
Canada), as our wine S. cerevisiae representative, and S.
kudriavzevii strain CR85, a natural isolate from oak tree bark
in Agudo, Ciudad Real, Spain. Throughout the rest of the this
paper these strains will be referred to as SKCR85 and SCT73,
respectively.

Synthetic Must Fermentations
All fermentations were performed in 3x replicates in 250
mL flasks that contained 200 mL of synthetic must (SM)
miming a standard natural must which is frequently used
in microvinification experiments (Rossignol et al., 2003). This
medium contains 100 g/L glucose and 100 g/L of fructose,
mineral salts (750 mg/L KH2PO4, 500 mg/L K2SO4, 250 mg/L
MgSO4.7H2O, 155 mg/L CaCl2.2H2O, 200 mg/L NaCl, 4 mg/L
MnSO4.H2O, 4 mg/L ZnSO4, 1 mg/L CuSO4.5H2O, 1 mg/L KI,
0.4 mg/L CoCl2.6H2O, 1 mg/L H3BO3, 1 mg/L NaMoO4.2H2O),
vitamins (20 mg/L myo-inositol, 2 mg/L nicotinic acid, 1.5 mg/L
calcium panthothenate, 0.25 mg/L thiamine HCl, 0.25 mg/L
pyridoxine HCl, 0.003 mg/L biotin), 300 mg/L of assimilable
nitrogen (ammoniacal nitrogen and α-amino nitrogen) provided
by amixture of 19 amino acids (612.6mg/L L-proline, 505.3mg/L
L-glutamine, 374.4 mg/L L-arginine, 179.3 mg/L L-tryptophan,
145.3 mg/L L-alanine, 120.4 mg/L L-glutamic acid, 78.5 mg/L L-
serine, 759.2 mg/L L-threonine, 48.4 mg/L L-leucine, 44.5 mg/L
L-aspartic acid, 44.5 mg/L L-valine, 37.9 mg/L L-phenylalanine,
32.7 mg/L L-isoleucine, 32.7 mg/L L-histidine, 31.4 mg/L L-
methionine, 18.3 mg/L L-tyrosine, 18.3 mg/L L-glycine, 17.0
mg/L L-lysine, and 13.1 mg/L L-cysteine) corresponding to 180
mg nitrogen and 460 mg/L ammonium chloride (corresponding
to 120 mg nitrogen). The pH was buffered at 3.3 with
NaOH.

We monitored the growth of each strain in monocultures
under the same conditions. Overnight precultures were grown
in YPD medium at 25◦C. Afterwards must was inoculated with
the corresponding yeast strain to reach an initial concentration
of 106 cells/mL, and was incubated at a fixed temperature (8, 12,
20, or 25◦C) with agitation at 100 RPMs during fermentation.

Cell samples were collected at several time points during
fermentation. Growth curves were obtained by considering cell
density calculated from cell counting in a Neubauer chamber
(Alonso-del Real et al., 2017). Müller valves were used to
monitor fermentation stage through weight loss, until it reached
a constant weight, when it was considered to be over. At this
point, samples of supernatant were kept at −20◦C for further
analyses.

High Performance Liquid Chromatography
Residual sugars (glucose and fructose), glycerol, ethanol and
acetic acid from the fermentation end point samples were
determined by HPLC (Thermo Fisher Scientific, Waltham, MA.
USA) using a refraction index detector and a HyperREZTM
XP Carbohydrate H+ 8µm column (Thermo Fisher Scientific)
equipped with a HyperREZTM XP Carbohydrate Guard
(Thermo Fisher Scientific). Samples were diluted to maintain
our target compounds within the allowed range of detection,
filtered through a 0.22 µM nylon filter (Symta, Madrid, Spain)
and injected in duplicate. The analysis conditions were: eluent,
1.5µMof H2SO4; 0.6 mL/min flux and a 50◦C oven temperature.

Theoretical Methods: The Modeling
Pipeline
Modeling was approached from a systems identification
perspective including the following steps: formulation of
candidate models, multi-experiment parameter estimation,
model selection and reduction, ensemble modeling and
cross-validation.

Formulation of Candidate Models
We formulated several candidate models which account for
the relevant process variables (biomass growth, sugars, ethanol,
glycerol, acetate) based on different mechanisms described in
literature. All candidate models consist of a set of ordinary
differential equations whose solution depends on the given initial
conditions, process temperature and the value of a number of
unknown parameters.

Parameter Estimation
The aim of parameter estimation is to compute the unknown
parameters - growth related constants and kinetic parameters -
that minimize the distance among data and model predictions.
The maximum-likelihood principle yields an appropriate
measure of such distance (Walter and Pronzato, 1997):

Jmc(θθθ) =

nexp
∑

k=1

nobs
∑

j=1

nst
∑

i=1

(

yk,j,i(θθθ)− ym
k,j,i

σk,j,i

)2

, (1)

where nexp, nobs and nst are, respectively, the number of
experiments, observables, and sampling times while σk,j,i
represents the standard deviation of the measured data as
obtained from the experimental replicates. ymj represents each

of the measured quantities, Xm and Cm in our case, and yj(θθθ)
corresponds to model predicted values, X and C .

Parameters are estimated by solving a nonlinear optimization
problem where the aim is to find the unknown parameter values
(θθθ) to minimize Jmc(θθθ), subject to the system dynamics—the
model—and parameter bounds (Vilas et al., 2018).

Model Selection and Reduction
Models were compared, first, attending to their capabilities to
fit the experimental data. Since models with a larger number
of parameters tend to provide better fits, which may lead to
over-fitting, we also considered the number of parameters in our
comparison. For this purpose we used the Akaike information
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criterion (AIC) defined as follows (Burnham and Anderson,
2002):

AIC = 2np + nd· ln(J), (2)

where np is the number of unknown adjustable parameters, nd
the number of data.

We started with most complex candidate models after data
fitting less influencing parameters were iteratively removed from
the model following an AIC based strategy. Parameters were
removed as long as the AIC was reduced, otherwise, the reduced
model was rejected. The decision tree used to simplify the models
is detailed in the Supplementary Information.

The most promising candidate models were further compared
in terms of their associated uncertainty in cross-validation.

Uncertainty Analysis
In practice, the value of the parameters θθθ compatible with noisy
experimental data is not unique, i.e., parameters are affected
by some uncertainty. The consequence of significant parametric
uncertainty is that the model may not be able to predict scenarios
other than those used in parameter estimation.

Tomeasure the actual model predictive capabilities, the model
is usually given a dataset of known data on which training is run
(training dataset), and a dataset of unknown data against which
the model is tested (testing dataset). The training dataset regards
the data used for parameter estimation; while the testing dataset is
obtained under untrained experimental conditions (for example,
a different process temperature).

To account for model uncertainty we used an ensemble

approach. To derive the ensemble we apply the bootstrap
smoothing technique, also known as bootstrap aggregation (the
Bagging method) in the prediction literature (Breiman, 1996;
Bühlmann, 2012). The bagging method is a well established and
effective ensemble model/model averaging device that reduces
variability of unstable estimators or classifiers (Bühlmann and
Yu, 2002). The underlying idea is to consider a family of models
with different parameter values 222 = [θθθ1 . . . θθθN]

T compatible
with the training data yyym, when using the model to predict
untested experimental setups. The matrix of parameter values
222 consistent with the data is obtained using N realizations of
the data obtained by bootstrap (Efron and Tibshirani, 1988).
Each data realization has the same size of the complete data-set
but it is constructed by sampling uniformly from all replicates
(3 biological replicates per sampling time). Therefore at each
bootstrap iteration, a given replicate has an approximate chance
of 37% from being left out, while others might appear several
times (2,3,...) in a given instance of the bootstrap. The family
of solutions, 222, is then used to make N predictions (dynamic
simulations) about a given experimental scenario. The median of
the simulated trajectories regards the model prediction while the
distribution of the individual solutions at a given sampling time
provide a measure of the uncertainty of the model.

Cross-validation In order to test the modeling predictions
under untested conditions we apply out-of-sample cross-
validation (Elsner and Schmertmann, 1994; Tashman, 2000). To
compute the ensemble of predictions for each tested temperature
for which we have experimental data, i.e., we omitted the

experimental data for each temperature and computed an
ensemblemodel for each scenario (Henriques et al., 2017). Finally
we used the obtained models to compute a median solution for
each temperature and assess the quality of the solutions using the
root mean square error metric:

RMSE(θθθ) =

√

√

√

√

∑nexp
k=1

∑nobs
j=1

∑nst
i=1(yk,j,i(θθθ)− ym

k,j,i
)2

NData
(3)

where NData corresponds to the number of data points used
for training and testing. The comparison between the root
mean square error in training and in testing gives a measure
of the capabilities of the model to predict untested conditions.
As it is defined, the RMSE is scale dependent. To provide
a normalized value (NRMSE) it is possible to divide by the
maximum measurement for each species.

Model selection can be done by comparing the NRMSE as
obtained for the training and testing conditions. The lower the
NRMSE values the better the model.

Numerical Tools
To automatize the modeling pipeline we used the AMIGO2
toolbox (Balsa-Canto et al., 2016). AMIGO2 is a MATLAB based
software tool focused on parametric model identification and
optimization, including sensitivity and identifiability analyses.
It offers a suite of numerical methods for both simulation and
optimization. From the available options we selected CVODES
(Hindmarsh et al., 2005) to solve the model equations, and
Enhanced Scatter Search (eSS, Egea et al., 2009), to find the
optimal parameter values in reasonable time.

The ensemble model generation and cross-validation
procedures are computationally intensive. However, since each
parameter estimation instance in the ensemble is a completely
independent task, we were able to solve this problem in less
than a day using 60 CPU cores on a Linux cluster. These tasks
were automated with the help of bash scripts and the Open Grid
Scheduler. All the scripts necessary to reproduce the results are
distributed as part of the Supplementary Materials.

RESULTS AND DISCUSSION

Formulation of Candidate Models
This work seeks a minimal yet predictive model to describe the
fermentation processes mediated by two different Saccharomyces
species under a range of cold temperature processing conditions.

Previous modeling efforts focused on the efficiency of S.
cerevisiae to transform glucose to ethanol within a range of
temperatures around that corresponding to the optimal growth
(see, for example, the review by Marín, 1999 and the works cited
therein). Later, Cramer et al. (2002), Malherbe et al. (2004), or
David et al. (2010) proposed oenological models which account
for the role of nitrogen sources in sluggish or stuck fermentations.

However, the primary motivation to use other yeasts as wine
making starters is to improve final product characteristics such
as enhanced glycerol content, low temperature fermentation
kinetics or novel attractive aroma profiles. Unfortunately, these
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previous models do not include glycerol or acetic acid, and many
of them do not take into account the role of the temperature,
rendering them as non-valid for our purposes.

We put particular emphasis on developing a minimal
model, with nice mathematical properties (i.e., identifiable)
and yet comprehensive in the sense of the mechanisms
involved. With this aim we formulated three candidate models,
regarded as nominal models, which describe the accumulation
of extracellular ethanol, glycerol, acetic acid and release of
C02. We also included a simplified model of glycolisis that
respects mass conservation coupled to alternative growth
models and the transport of hexoses. Figure 1 shows an
overview of the relevant species included in the candidate
models.

Modeling Growth
We considered two different alternatives to model biomass
(X) dynamics. On the one hand, a linear model accounting
for substrate inhibition (in nominal models N1 & N2)
and on the other, the Verhulst logistic model (in nominal
model N3).

Nominal models N1 & N2 assume linear biomass growth
being the specific growth rate modulated by glucose (υtr,G) and
fructose transport (υtr,F):

Ẋ = µ(υtr,G, υtr,F)·X (4)

These models account for the growth inhibition due to limited
substrate. The synthetic must used in our experiments contains
300 mg/L of assimilable nitrogen which is enough for the yeast
to reach its maximum fermentation rate and for no issues to
arise during fermentation. Therefore assimilable nitrogen is not
considered as an inhibiting substrate. However, its initial amount
was considered in nominal model N1.

The logistic model (in nominal model N3) is the standard
in predictive microbiology (Baranyi and Roberts, 1994) and
was also used by Malherbe et al. (2004) or David et al. (2010)
to model wine fermentation. The model accounts for intra-
species competition for the available nutrients in such a way
that the specific growth rate (µ) depends on the environmental
conditions (temperature, T, in our case) and the maximum
biomass (Xmax), also known as the species carrying capacity,

FIGURE 1 | A simplified representation of the anaerobic metabolism of glucose and fructose. (A) Presents the key features of the process including yeast population

growth and the production of ethanol (E), glycerol (G), acetic acid (Ac), and CO2. The roles of the temperature and ethanol production in the hexoses transport

(glucose, Glx and fructose, F) and growth are also incorporated. (B) Presents the set of reactions. (C) Shows an overview of the mathematical model consisting of a

set of ordinary differential equations describing the dynamics of yeast population and the relevant metabolites concentrations. (D) summarizes the major mechanisms

included in the candidate models.
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depends on the available nutrients. The logistic model is defined
as follows:

Ẋ = µT(T)·X·

(

1−
X

Xmax

)

(5)

The specific growth rate depends on the temperature. To include
this dependency with the minimum number of parameters we
explored previously published data (Arroyo-López et al., 2009).
In the range of temperatures of interest, µ(T) can be well
approximated by a quadratic function.

µT(T) = kT2·T
2
− kT1·T + kT0 (6)

Modeling the Transport of Hexoses
Yeasts use several hexose transporters, which transport glucose
and fructose amongst other sugars, by facilitated diffusion (Boles
and Hollenberg, 1997). Although yeasts show preference for
glucose (Berthels et al., 2004), glucose and fructose can be
consumed simultaneously.

Hjersted et al. (2007) modeled the transport of hexoses using
a Michaelis-Menten (MM) type kinetics as follows:

υtr,H = X·
kH ·H

ksH +H
(7)

where kH , refers to the transport rate; ksH regards the Michaelis
constant; H refers to the relevant hexoses (glucose and fructose)
and X is the number of cells.

It should be noted that the transport of hexoses is a very
complex process which will be affected by both temperature and
ethanol. We took these effects into account by modifying the
Equation 7 as follows:

υtr,H = X·φT ·φE
kH ·H

ksH +H
(8)

in such a way that we uncouple the effects of temperature (φT)
and ethanol(φE).

We modeled the effect of temperature with a couple of
empirical functions taken from the literature, φT,A and φT,B,
defined as follows:

φT,A = (a/T2)· e−b/T
+ c·N0 (9)

This expression, proposed by Pizarro et al. (2007), was considered
in nominal model N1 and accounts, not only for the effect
of temperature but also for the initial amount of assimilable
nitrogen. The expression contains three parameters: a, b and c
to be estimated from data; N0 regards the initial amount of
assimilable nitrogen in the medium.

φT,B = a· e−b/T (10)

where a regards the intensity of the temperature effect and b is the
rate of the exponential function and T is the temperature. This
expression, proposed by Malherbe et al. (2004) and later used
by Charnomordic et al. (2010), indicates that transport increases

with temperature. This increase is an overall effect resulting
from the contribution of different processes: the production of
different transporters with different transport affinities which
may depend on temperature (Tai et al., 2007; Postmus et al., 2008)
and the effect of the amount of intracellular hexoses (Teusink
et al., 1998) being directed to glycolysis. φT,B was incorporated
in the nominal model N2.

Finally, ethanol has been reported as a non-competitive
inhibitor (Leão and Van Uden, 1982) of glucose transport. We
modeled its effect as follows (Hjersted et al., 2007):

φE =
1

1+ E/KEi
(11)

where KEi defines the strength of the inhibitory effect.
It should be noted that, to guarantee structural identifiability,

kH and a can not be simultaneously estimated from experimental
data, but only their product, νG = kH · a.

Metabolic Model
In order to provide a simple representation of the metabolism
while avoiding over-parameterization and lack of identifiability,
we assume that upon transport, glucose and fructose are rapidly
metabolized into Fructose 6-Phosphate (F6P).

During alcoholic fermentation, F6Pin (which regards the
concentration of F6P per cell) is metabolized to pyruvate,
through a number of steps, via the glycolytic pathway. Pyruvate
is then decarboxylated into acetaldehyde and finally reduced
to ethanol or acetate. All these intermediate steps are lumped
into the rates υF6p→E and υF6P→Ace first is described using
irreversible Michaelis-Menten type kinetics while the later is
described using mass action law. Additionally, part of the carbon
flux is redirected to the glycerol pathway. Glycerol production
is described with a mass action type equation. Moreover, the
rate function, υmanteinance, explaining the conversion of F6P into
biomass or other maintenance costs is added to account for what
was not converted into Glx, G or ACE. From the former rates
we are able to derive the following set of ordinary differential
equations (ODEs) describing the molar concentration of the
different metabolites considered:

F6Pin =
F6P

X
(12)

υMaintenance =X· kMaintenance· F6Pin (13)

υF6P→E =X· kE ·
F6Pin

ks,E + F6Pin
(14)

υF6P→Ace =X· kAce· F6Pin (15)

υF6P→G =X· kG· F6Pin (16)

˙F6P =υtr,Glx + υtr,F − υF6P→E − υF6P→G

− υF6P→Ace − υMaintenance (17)

Ė =2·υF6P→E (18)

Ġ =2·υF6P→G (19)

˙Ace =2·υF6P→Ace (20)

˙CO2 =2·υF6P→Ace + 2·υF6P→E (21)
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where F6Pin corresponds to the concentration of F6P per
cell; kMaintenance, kAce, kG correspond to reaction rates for
biomass maintenance and the production acetate and glycerol
respectively; ks,E is the FP6 per cell concentration at which
the reaction rate is half of its maximum, ks,E; CO2 represents
the concentration of carbon dioxide released when ACE and E
are produced. The coefficient (2) included in Equations 19–21
accounts for the stoichiometry of the reaction as described in
Figure 1.

Model Selection and Reduction
All nominal candidate models consist of 7 ordinary differential
equations. However, they differ in the number of adjustable
unknown parameters. The parameter estimation for each model
was performed by using the total of 329 data points for both
species. It should be noted that a limited number of sampling
times is available for the experiments performed at 20◦C. The
parameter estimation of the nominal models revealed several
non influencing parameters which called for model reduction.
Details on the various intermediate reduced models can be found
in the Supplementary Information. Table 1 presents the major
characteristics of and the best fit statistics for the nominal models
plus the final reduced models.

Reduced models are better in terms of the Akaike criterion
as compared to their nominal counterparts. The best model in
terms of quality of fit is the nominal model N3; while models
N1 and N2 based on linear growth with growth rate depending
on the substrates where less successful. Note, however, that
the reduced model R3 is indeed better than N3 in terms of
the Akaike criterion. In R3 the Michaelis-Menten (MM) type
kinetics explaining hexoses transport (Hjersted et al., 2007) was
reduced to mass action kinetics. Remarkably this reduction was
also needed for nominal models 1 and 2, indicating that data
coming from fermentations occurring at different initial amounts
of glucose and fructose are required to identifyMichaelis-Menten
kinetics. Similarly, in N1 the term corresponding to the initial
amount of assimilable nitrogen was reduced due to lack of
identifiability.

Model Ensemble and Cross-Validation for
Reduced Models
To further compare the most successful reduced models we
performed N = 100 independent parameter estimations from
different bootstrapped realizations of the available data to obtain
the ensemble of the reduced models. Besides, to test whether
reduced models can predict the process out of the training data
set we performed a cross-validation analysis. Figures 2A–C show
the normalized root mean square error obtained with the training
data set vs. the prediction data sets for each reduced model and
the corresponding ensemble model (marked with a triangle).

Results demonstrate that the training error is low for all
models in all scenarios, between 0.08 − 0.11. The prediction
error increases for all models; to a maximum of 0.28 for the
second reduced model. As expected, the maximum discrepancy
in cross-validation corresponds to extrapolation scenarios for all
models.

TABLE 1 | Major characteristics and best fist statistics for nominal models and

final reduced models.

Model Model characteristics Best fit, J AIC #Pars

N1 - Linear growth 6.78 335.63 31

- Growth rate depending on the transport

of hexoses

- Michaelis-Menten transport of hexoses

- φT, A

- φE

N2 - Linear growth 5.51 313.95 35

- Growth rate depending on the transport

of hexoses

- Michaelis-Menten transport of hexoses

- φT, B

- φE

N3 - Logistic growth 4.68 286.65 33

- Quadratic growth rate

- Michaelis-Menten transport of hexoses

- φT, B

- φE

R1 - Linear growth 6.92 326.52 25

- Michaelis-Menten transport of hexoses

- φT, A

- φE

R2 - Linear growth 5.73 291.58 21

- Linear transport of hexoses

- φT, B

- φE

R3 - Logistic growth 4.87 276.26 25

- Quadratic growth rate

- Linear transport of hexoses

- φT, B

- φE

Remarkably, for model R3 the ensemble solutions, marked
with triangles, are more robust than the individual solutions. In
fact, in many cases, it is observed that an individual model with
a low RMSE value for the training data set does not necessarily
performwell in cross-validation. On the contrary, the ensemble is
consistent, providing a good compromise between both training
and prediction errors.

Figure 2D presents a comparison of the ensembles of all
models. R3 model is more robust than the others with the
assembles clustered together in the lower error area, NRMSE
lower than 0.086 in training and 0.139 in prediction. It should
be noted that, despite having less data for the experiments at
20◦C, the training NRMSE for the ensemble in cross-validation is
only a 7% higher than that obtained for the best case. This result
emphasizes the benefits of using multi-experiment data fitting for
parameter estimation and cross-validation.

Its consistency, and the associated lower error values, render
the ensemble model R3 the best model of those tested to explain
and predict cold fermentations by the two species under the
specified wine model.
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FIGURE 2 | Cross-validation for the selected reduced models. The prediction RMSE is plotted here against the training RMSE for each individual model (dots) and the

ensemble (triangle) with different colors owing to different cross-validation scenarios. (A–C) Correspond to models R1, R2, and R3 respectively. (D) Presents the

comparison of all three model ensembles.

The Best Model
Figure 3 shows the experimental data and the ensemble of time
course model predictions for both species as obtained for the best
ensemble model R3.

The model adequately explains the measurements and
the corresponding error bars for both species at all tested
temperatures. Temperature affects the duration and rate of
alcoholic fermentation as well as final wine quality. At 8◦C the
system evolves slowly for both species, taking more than 16 days
to achieve the maximum biomass. In fact, at 8◦C, and after 600
hours the glucose and fructose have not been entirely consumed.
In consequence, the production of ethanol and glycerol is
significantly lower than the production at higher temperatures.
The model fits the glucose and fructose satisfactorily, with the
maximum deviations found at the lowest temperature. Both
species prefer glucose to fructose, being glucose the first to
be consumed in all experimental temperatures. Remarkably,
SKCR85 produces less ethanol than SCT73, while producing
more glycerol. On the contrary, at 8◦C, the production of ethanol
is similar in both species, while SKCR85 produces significantly
more glycerol, confirming that this species is particularly suited
for cold fermentations (Tronchoni et al., 2012).

Ensemble of Parameters for the Selected Model
The ensemble of parameters allows gaining further insights
into the mechanisms contributing to the differences observed
in the performance of the fermentations mediated by SCT73
and SKCR85. Figure 4 presents the parameter distributions,
while Table 2 reports the mean values and the corresponding
confidence intervals.

Results reveal that, except for νGlx and νF for SCT73,
parameters are computed with high reliability. The mean relative
standard deviation corresponds to a 13.35% for those parameters
related to SKCR85 and a 14.85% for SCT73. The case of νGlx
and νF in SCT73 is particular, since those parameters are highly
correlated (See Figure 2 in Supplemental Data) and some outliers
appear in the ensemble bootstrap approach due to the large
bounds used in parameter estimation.

Parameter values differ substantially for SCT73 and SKCR85,
indicating distinct behaviors concerning growth, hexoses
transport, and metabolism.

The maximum carrying capacity (Xmax) is 3% higher for
SCT73, meaning that the intra-specific competence is lower
for SCT73 than for SKCR85. Temperature and ethanol content
strongly affect the specific growth rate. Despite OD600 data
does not suffice to distinguish temperature and ethanol effects
in biomass growth, we can draw some conclusions from the
comparative analysis of the specific growth rate for both species
(Figure 5A). The cryotolerant SKCR85 and SCT73 grow at
similar rates at lower temperatures, between 8 and 12◦C; cases
in which the maximum ethanol would barely exceed 50 g/L. At
higher temperatures, closer to the optimal growth temperature,
SCT73 grows around a 40% faster than SKCR85. The fact
that at those temperatures ethanol production is high would
indicate that SKCR85 is more susceptible to ethanol, which is in
agreement with previously published results (Arroyo-López et al.,
2010).

Nevertheless, the differences in growth between both species
do not explain their distinct fermentation performance. In fact,
the differences found in the transport of hexoses play a crucial
role (see Figures 5B–D).

In our model, both the temperature and the ethanol affect
the transport of hexoses. As mentioned above, both species
prefer glucose to fructose (νGlx > νF), being glucose the first
to be consumed in all experimental temperatures. However, the
transport rates vary significantly between species.

Figures 5B,C present the ensemble solutions and the
associated uncertainty for the glucose and fructose transport. The
uncertainty on the associated parameters explains the uncertainty
of the transport activity for SCT73. However, since there is no
overlap between the uncertainty intervals between species and
the ensemble solutions are clearly distinguishable we are able
to perform a fair comparison of the transport activities between
species.

The rates of transport of glucose and fructose for SCT73 are
around 3.7 the value obtained for SKCR85. This result would
confirm that the fitness advantage of S. cerevisiae species in
fermentation is related to a quicker sugar uptake (Piškur et al.,
2006; López-Malo et al., 2013).

Hexoses are carried via facilitated diffusion mediated by the
HXT gene family. Different genes show distinct capacities and
affinities toward hexoses (see the recent review by Bisson and
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FIGURE 3 | Ensemble of time course predictions for both strains (rows) under different temperatures (columns) as compared to experimental data. The shaded bands

depict the predicted non-symmetric 95% confidence interval for SKCR85 (blue) and SCT73 (red). Biomass is shown in decimal logarithm scale (cells/L) while the

metabolites are shown in g/L.

Walker, 2016). In general, carriers display lower affinities for
fructose as compared to glucose (Boles and Hollenberg, 1997),
which would explain that νGlx is greater than νF in both species.

Remarkably, Karpel et al. (2008) showed that hexose
transporters are distinctly tuned and specialized in S. cerevisiae
laboratory and wine strains. As for SKCR85, the genetic
sequences identities are much lower than between different S.
cerevisiae strains (data not shown). Our hypothesis is that these
lower identities may eventually mean differences in transporters
affinity, level and moment of expression during fermentation
which would explain the disparity in transport found by the
modeling approach.

On the other hand, transport is affected by temperature and
ethanol. The intensity of the temperature effect as measured by
the parameter b differs a 10% between species. These differences
have a clear impact on the initial transport of hexoses (when

E ≈ 0) as illustrated in Figures 5B,C. The Figures show that
specially at higher temperatures, SCT73 presents a greater hexose
transport per cell. Remark that this is still true despite the
variability associated with the transport parameters for SCT73.

The transport of hexoses will vary with time, i.e., as soon as
the cells start producing ethanol. Figure 5D shows the inhibition
of the transport of hexoses due to the production of ethanol
(φE(E)). The ethanol inhibition is driven by the value of kEi
which is around three times higher in SKCR85 than in SCT73.
This difference between the parameter values leads to greater
inhibition of the transport in SCT73 than in SKCR85 and the
inhibitory effect increases with the amount of ethanol. Our results
indicate that transport would be reduced to up to a 20% for
SCT73 and 40% for SCR85.

Santos et al. (2008) analyzed how the individual glucose
transporters respond to the presence of ethanol, and how the

Frontiers in Microbiology | www.frontiersin.org 9 February 2018 | Volume 9 | Article 88

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Henriques et al. Saccharomyces Species Wine Fermentation Modeling

FIGURE 4 | Ensemble of parameter solutions resulting for the multi-experiment data fitting for both strains (model R3). Figures present a comparative analysis of the

distributions of parameter values obtained for both species: (A) Parameters related to growth, (B) Parameters related to transport of hexoses, and (C) Parameters

related to metabolism. Blue distributions correspond to SKCR85 and red distributions correspond to SCT73.

TABLE 2 | Mean values of the parameters (θ*) obtained for each strain and the

corresponding standard deviation (σ ) across the bootstrap estimations.

SKCR85 SCT73

Parameter name θ* σ (%) θ* σ (%)

Xmax 4.75×108 3.70 4.90×108 4.39

kT0 4.05×10−2 11.10 5.76×10−2 7.30

kT1 7.14×10−3 9.56 1.16×10−2 6.30

kT2 5.14×10−4 5.13 7.81×10−4 4.01

b 33.5 4.15 36.6 3.81

νGlx 4.64×10−9 17.90 1.70e-08 80.33

νF 1.78×10−9 18.76 6.90×10−9 80.32

KEi 9.28 25.85 2.93 42.49

kAce 4.27×10−2 11.41 1.77×10−1 15.29

kE 1.41×10−6 18.32 1.63×10−6 25.08

ks,E 2.52×10−7 17.85 6.89e-08 24.99

kG 2.57×10−1 11.43 7.01×10−1 14.97

kMaintenance 1.01 17.17 0.00 −

growth phase influenced that response. Their results revealed that
all the relevant transporters (HXT1-HXT7), except for HXT2,
showed different sensitivities to ethanol as a function of the
growth stage. For some strains, they demonstrated that the
transporters HXT1 and HXT3 were less sensitive to ethanol in
exponential-phase cells than in stationary-phase cells. In contrast,

the intermediate- and high-affinity transporters HXT4-HXT7
exhibited a higher inhibition of glucose transport by ethanol
in exponential-phase cells than in stationary-phase cells while
HXT2 transporter was strongly inhibited in both growth phases.
Taking into consideration their results it is plausible that the
inhibitory effect gradually increases to achieve its maximum at
later stages of the fermentation (stationary phase) when more
ethanol is present. Our results indicate that transport would be
reduced up to 20% for SCT73 and a 40% for SCR85.

The values of the metabolism-related parameters suggest that
SCT73 metabolism is faster than SCR85. While SKCR85 requires
directing some hexoses to cellular maintenance, it seems that
SCT73 heads practically all hexoses to fermentation products,
i.e., contributing to its enhanced fermentative performance. As
a consequence, the process characteristic times (for example the
time to consume the 90% of hexoses, t90) are longer for SKCR85.

Besides, there are substantial differences in the final
production of ethanol. SCT73 produces more ethanol than
SKCR85, particularly at higher temperatures. This fact may be
explained taking into account that SKCR85 directs greater part of
the FP6 to produce glycerol as already discussed in the literature
(Oliveira et al., 2014) and predicted by the model.

Optimization of Fermentation Parameters
The design of novel wine making processes must take into
account the final composition of wine as well as the ability for
yeast to consume the hexoses present in the must. We now use
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FIGURE 5 | Strain dependent ensemble predictions for (A) maximum specific growth rate depending on the temperature; (B) temperature dependent glucose

transport per cell for initial concentration 100 g/L glucose and 0 g/L ethanol; (C) temperature dependent fructose transport per cell for initial concentration 100 g/L

fructose and 0 g/L ethanol; (D) inhibitory effect of ethanol on the transport of glucose and fructose.

FIGURE 6 | Yields of ethanol, glycerol and acetate as functions of the initial inoculation and the fermentation temperatures for both species as obtained with the

ensemble model R3.
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FIGURE 7 | Wine final composition and t90 as functions of the initial inoculation and the fermentation temperatures for both species as obtained with the ensemble

model R3.

themodel to analyze the effects on processing temperature (in the
range, 8–25◦C) and initial inoculation (in the range, 0−5· 105) on
the most relevant fermentation parameters: process yields, final
ethanol and glycerol content and the time required to consume
the 90% of the initial glucose and fructose content (t90). Results
are shown in Figures 6, 7.

Figure 6 show how SCT73 is substantially more effective in
transforming hexoses in ethanol for all tested conditions. The
maximum yield corresponds to a 0.96 for SCT73 and 0.81 for
SKCR85. Only at very low temperatures the yield for SCT73
reduces to a value similar to the maximum achieved by SKCR85.
SKCR85 is more effective than SCT73 yielding glycerol for
all conditions tested. SCT73 achieves the maximum glycerol
yield at higher temperatures (T>22.5◦C) for all inoculations.
Similar values can be achieved at around 17◦C by increasing
the initial inoculation. The yield of acetate is quite insensitive

to temperature and initial inoculation, only at very low
temperatures (T<10◦C) a slight reduction in yield is observed for
both species.

Differences in yields explain the results shown in Figure 7.
SKCR85 will produce wines with less ethanol but with higher
amounts of glycerol than SCT73 in all tested conditions.
Remarkably the production of glycerol is distinctive in SKCR85, it
was not possible to achieve the same production of glycerol with
SCT73 in any of the conditions tested.

SKCR85 performs similarly, in the sense of final ethanol and
glycerol production, in a wide range of temperatures 12.5 −

25◦C. Of course, process duration and energy consumption
would be different. In contrast, to maximize glycerol content
in fermentations driven by SCT73 we would need higher
temperatures in the range 18 − 22◦C depending on the initial
inoculation.
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Summing up, the use of SKCR85 will lead to lower
ethanol and higher glycerol wines no matter the temperature
or the initial inoculation; the best compromise will come
from the ethanol/glycerol sought and energy-processing time
considerations.

CONCLUSIONS

This work approached the modeling of wine fermentation by
two Saccharomyces yeast species under different low processing
temperatures. We paid major emphasis on achieving a minimal
yet robust model. For this purpose we implemented a modeling
pipeline which involved the formulation of several candidate
models whose parameters were computed by multi-experiment
data fitting; models were subsequently reduced and selected
attending to the compromise between the quality of fit and
the number of parameters (Akaike criterion) as well as their
cross-validation properties.

The best model is based on the logistic growth model. The
more usual models incorporating the role of substrates inhibition
in growth resulted in less robust alternatives due to the poor
identifiability of the corresponding parameters. Also, the usual
Michaelis-Menten transport formulation could be reduced to a
generalized mass action model (linear model) without impacting
the quality of the fit and predictive capabilities.

Model predictions were robustified by an ensemble
modeling approach. The ensemble satisfactorily predicts
process performance thus being suitable for exploring alternative
fermentation conditions to optimize final product quality.

We have explored some possibilities by modifying the
temperature and initial inoculation. However, more flexibility
could be achieved if we also design the feed of hexoses and
assimilable nitrogen. This flexibility could be attained by training
the models with additional data obtained under various initial
hexoses and nitrogen contents. This would allow to either

identify an explicit dependency of Nmax on substrates or to
improve identifiability of other candidate models N1 or N2.

In addition, the somehow complementary performance
observed between the two species: higher ethanol production by
SCT73 and higher glycerol production by SKCR85, offer even
further possibilities to improve the feasibility of low-temperature
wine fermentations. Here we explored mono-culture cold
fermentations. However, we envision that the optimal design of
co-culture based processes may have a tremendous potential for
the wine-making industry.
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