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Fully Automatic Coronary Calcium Score Software 
Empowered by Artificial Intelligence Technology: 
Validation Study Using Three CT Cohorts
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1Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 
Korea; 2Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of 
Medicine, Seoul, Korea; 3Divison of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 
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Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium 
[CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented 
coronary calcium scoring (CAC_hand) system as the reference standard.
Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced 
CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent 
different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance 
of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston 
score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) 
and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification 
categories (Agatston score: 0, 1–10, 11–100, 101–400, > 400) was evaluated.
Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-
positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive 
lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels 
(left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between 
CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. 
The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 
lesions), and pericardial calcification (24.3%, 81/333 lesions).
Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared 
with manual method and risk category classification, which could potentially streamline CAC imaging workflows.
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INTRODUCTION

Since Arthur Agatston and his radiologist colleague, 
Warren Janowitz, proposed the coronary artery calcium 
(CAC) score based on electron beam computed tomography 
(CT) in 1990 [1], the Agatston score has been used to 
assess the risk of cardiovascular clinical outcomes [2,3]. 
More than 30 years after its introduction, CAC scoring still 
requires manual inputs from skilled professionals, which is 
associated with prolonged processing time [4,5]. Before 
the era of deep learning, researchers proposed feature-
based or atlas-based models (as well as combined feature- 
and atlas-based models) for CAC scoring automation [6-
10]. Some researchers have recently proposed a deep 
learning-based automatic CAC scoring (CAC_auto) system, 
with the reliability of calcium measurement mainly 
being evaluated using per-patient comparison [11-14] 
or per-vessel comparison [15]. Detailed error analysis is 
essential for applying any automatic algorithm to routine 
imaging workflows, and, for this, per-vessel and per-lesion 
analyses may be more suitable than per-patient analyses. 
Additionally, analyses of the causes of errors can help 
improve the algorithms for CAC_auto.

For the training of artificial intelligence (AI) algorithms 
based on the end-to-end training strategy [10-12], manual 
labels for the location of CAC (e.g., right coronary artery 
[RCA] or left main artery [LM]) are required. A weakness 
of this end-to-end training strategy may be that calcium 
near the coronary artery (e.g., cardiac valves or aortic wall 
calcium) can be mistaken for CAC. Moreover, the slice-by-
slice inference of CAC may take a relatively long time [1]. 
If an algorithm can identify the coronary tree, aortic root, 
and cardiac ventricles automatically in a CAC CT image 
without intravenous contrast enhancement, CAC_auto can 
be performed easily by including only calcium that overlaps 
the coronary artery tree region.

We developed a deep learning-based fully automatic 
calcium scoring system using non-enhanced CT, the atlas-
based CAC_auto. This study aimed to validate the atlas-
based CAC_auto using previously published cardiac CT cohort 
data from a single institution with the manually segmented 
CAC scoring (CAC_hand) system as the reference standard.

MATERIALS AND METHODS

The Institutional Review Board of Asan Medical Center 
(Seoul, Korea) approved this study, and the need for 

informed consent was waived due to its retrospective 
design (IRB No. 2018-1155). To minimize the possibility of 
unintentionally sharing information that can be used to re-
identify private information, a subset of the data generated 
for this study are available at the center for open science 
websites (https://osf.io/mu5k8/).

Development of CAC_Auto
The concept of the atlas-based CAC_auto, empowered 

by deep learning technology, is illustrated in Figure 1. If 
we know the spatial information (e.g., coronary artery, 
aortic valve, left ventricular myocardium) of a CAC image, 
CAC_auto can be performed easily. To perform semantic 
segmentation on a non-enhanced CAC image, we required 
a ‘labeled dataset’ for the training of a segmentation 
algorithm. However, the labeling of coronary and non-
coronary structures on a non-enhanced CAC image can be 
challenging because of the low attenuation differences 
between lesions. Therefore, we first generated a labeled 
mask on coronary CT angiography (CCTA) (Step 1 in Fig. 1). 
For the development dataset, 100 CCTA images (n = 100, 
mean age 64.1 ± 8.2 years; 76.3% male; mean body mass 
index, 25.3 ± 2.3 kg/m2; three CT vendors and six scanners) 
were chosen from a cohort used in a previously published 
investigation of CCTA-based myocardial segmentation 
[16]. All labeled masks in the development dataset were 
confirmed by a cardiac radiologist. The second step was 
the transfer of spatial information from CCTA to CAC images 
for obtaining the ‘labeled CAC dataset’ (Step 2 in Fig. 1) 
by image registration of the CCTA and CAC. The registration 
process, consisting of affine registration followed by 
B-spline registration, performed using the elastix [17,18], 
was applied to align the CAC images to the CCTA images 
with the labeled masks. This allowed a voxel-by-voxel 
comparison of the registered images. The final step was 
to develop a deep learning algorithm for the semantic 
segmentation of CAC images (Step 3 in Fig. 1). The basic 
network architecture is based on the three-dimensional 
(3D) U-Net [19], which was designed to input the 3D patch 
extracted from volumetric CT images and output the 3D 
patch from the multi-label semantic images. The transferred 
coronary artery region mask was dilated twice with 2 x 
2 x 1 morphological structuring elements to compensate 
for misregistration errors and include nearby regions. It 
interpolated the 3D CT images to have 1 mm resolutions 
in the x-, y-, and z-directions. The intensity of the voxels 
was adjusted with window width and level values of 350 
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and -100 Houndsfield units (HU), respectively. The network 
input consisted of 3D-patch-based CT images with 64 x 
64 x 64 voxels for each, which were randomly sampled for 
training procedures, similar to the structure used in our 

previous study [20]. The loss function of the network was 
the cross-entropy loss function, and the optimizer used 
was RMSprop. The training was performed with eight mini-
batches of the 3D patch, a 10-5 learning rate, and 105 

Fig. 1. Development process of the atlas-based coronary calcium scoring software. Step 1. Manual labeling of coronary and non-coronary 
regions using CCTA. Step 2. Spatial information transfer from CCTA to CAC images without contrast enhancement using image registration. Step 3. 
Deep learning for semantic segmentation of CAC images. CAC = coronary artery calcium, CCTA = coronary computed tomography angiography, 3D = 
three-dimensional
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iterations. The two 3D-patch-based U-Net models were 
trained separately for coronary artery regions and other 
surrounding structures, including the myocardium, left and 
right ventricle, aorta, papillary muscles, and rib. Calcium 
lesions were detected when the initial candidate was in 
contact with the coronary artery region, and it did not 
belong to other structures.

Validation Dataset
Three previously published CCTA cohort datasets were 

chosen for the CAC_auto validation dataset as follows: 1) 

asymptomatic population for health check-up (screening 
group; n = 2653) [21]; 2) symptomatic patients who 
underwent invasive fractional flow reserve measurements 
(FFR group; n = 222) [22]; and 3) patients with mitral valve 
prolapse who underwent preoperative CCTA (valve group,  
n = 145) [23]. Among the 3020 individuals in these cohorts, 
35 were excluded because of the lack of CAC image data, 
previous coronary stent insertion, or overlapping of cohorts. 
Finally, 2985 individuals were included in the validation 
dataset. The baseline and CT imaging characteristics are 
presented in Table 1. The screening, FFR, and valve groups 

Table 1. Characteristics of Validation Datasets
Characteristic Screening Group (n = 2647) FFR Group (n = 220) Valve Group (n = 118) All (n = 2985)

Baseline characteristics
Study period January 2008–December 2009 May 2011–July 2015 May 2011–October 2013
Age, years 54.1 ± 9.2 60.9 ± 10.3 52.7 ± 14.1 54.5 ± 9.7
Male  1807 (68.3) 169 (76.8) 81 (68.6) 2057 (68.9)
Body mass index, kg/m2 24.9 ± 3.3 25.2 ± 2.8 24.1 ± 3.1 24.8 ± 3.3
Diabetes mellitus    385 (14.5)   50 (22.7) 9 (7.6)   444 (14.9)
Hypertension*    908 (34.3) 128 (58.2) 38 (32.2) 1074 (36.0)
Current smoker    614 (23.2)   65 (29.5) 8 (6.8)   687 (23.0)
Hyperlipidemia†    422 (15.9) 153 (69.5) 66 (55.9)   641 (21.5)
Agatston calcium score‡ 0.0 (0.0–18.5) 76.1 (10.3–256.2) 0.0 (0.0–25.3) 0.0 (0.0–29.3)
Agatston calcium score risk category

0  1654 (62.5)   43 (19.5) 64 (54.2) 1761 (59.0)
1–10  219 (8.3) 12 (5.5) 18 (15.3) 249 (8.3)
11–100    491 (18.5)   67 (30.5) 24 (20.3)   582 (19.5)
101–400  205 (7.7)   66 (30.0) 6 (5.1) 277 (9.3)
> 400    78 (2.9)   32 (14.5) 6 (5.1) 116 (3.9)

CT imaging characteristics
Scanner type 

GE discovery 750 HD      0 (0.0) 18 (8.2) 1 (0.8)   19 (0.6)
GE lightspeed VCT  2353 (88.9) 13 (5.9) 0 (0.0) 2366 (79.3)
Siemens definition    294 (11.1)   94 (42.7) 41 (34.8)   429 (14.4)
Siemens definition flash      0 (0.0)   95 (43.2) 76 (64.4) 171 (5.7)

ECG triggering Yes Yes Yes Yes
Tube voltage, kVp

100      0 (0.0) 15 (6.8) 0 (0.0)   15 (0.5)
120    2647 (100.0) 205 (93.2) 118 (100.0) 2970 (99.5)

Slice thickness, mm
2.5  2353 (88.9)   31 (14.1) 1 (0.8) 2385 (79.9)
3.0    294 (11.1) 189 (85.9) 117 (99.2)   600 (20.1)

Reconstruction kernel
B30f  166 (6.3)   5 (2.3) 4 (3.4) 175 (5.9)
B35f  128 (4.8) 184 (83.6) 113 (95.8)   425 (14.2)
STANDARD  2353 (88.9)   31 (14.1) 1 (0.8) 2385 (79.9)

Unless specified otherwise, continuous variables are presented as mean ± standard deviation, and categorical variables are expressed 
number (percentage). *Defined as receiving antihypertensive treatment or having systolic blood pressure ≥ 140 mm Hg or diastolic blood 
pressure ≥ 90 mm Hg, †Defined as total cholesterol > 200 mg/dL or receiving anti-lipidemic treatment, ‡Agatston calciums score are 
presented as median and interquartile range due to the skewed distribution of this variable. FFR = fractional flow reserve
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underwent CT examinations between 2008 and 2009, 2011 
and 2015, and 2011 and 2013, respectively. Among the 
2985 enrollees, 1761 (59.0%), 249 (8.3%), 582 (19.5%), 
277 (9.3%), and 116 (3.9%) belonged to the CAC 0, 1–10, 
11–100, 101–400, and > 400 risk categories, respectively. 
Four types of CT machines from two companies (GE, 
Siemens) were used in this study, and all the scans were 
taken in electrocardiography-triggered mode with a slice 
thickness of 2.5 or 3 mm.

Reference Standard Calcium Scoring: CAC_Hand
CAC_hand was performed by an experienced radiology 

technologist (> 500 CAC examinations) in all cases. An 
expert cardiac radiologist (15 years of experience, > 50000 
CAC and CCTA examinations) reviewed all the labeled 
results by the technologist. CAC_hand was performed 
using a research prototype (AVIEW CAC, Coreline Soft, Co. 
Ltd.) without the assistance of an automatic algorithm. 
After thresholding (> 130 HU) with a colored overlay, the 
observer manually labeled coronary calcifications according 
to their anatomical locations (i.e., LM, left anterior 
descending artery [LAD], left circumflex artery [LCX], RCA 
arteries). The labeled mask containing binary information 
indicating the presence or absence of calcium in each image 

slice was saved for per-lesion analysis.

Automatic Calcium Scoring: CAC_Auto
CAC_auto can be performed via batch processing without 

user interactions. After all CT data were loaded in a desktop 
computer (Intel Core 17-8700 3.19 GHz, 32 GB RAM, 
NVIDIA GeForce GTX 1060 6 GB), a research prototype 
software (AVIEW CAC, Coreline Soft, Co. Ltd.) automatically 
determined the CAC score, and there was no need to open 
the CT images (Fig. 2). The processing time for CAC_auto 
was recorded, and all the CAC results were downloaded as 
a single comma-separated value file. The labeled mask for 
the CAC_auto was saved for per-lesion comparison with the 
CAC_hand mask. 

Per-Lesion Comparisons
Per-lesion comparisons between CAC_auto and CAC_hand 

were performed using the binary image mask described 
elsewhere [9]. For each CAC scan, the initial masks were 
generated by connected component analysis after applying 
thresholding at 130 HU and discarding all masks that were 
less than 2.5 mm3. Candidate coronary calcium masks 
were selected based on the coronary region and other 
structural information generated by CAC_auto. The masks 

Fig. 2. CAC_auto result for a patient with severe calcifications in both the aortic and mitral valves. CAC_auto can differentiate the 
coronary artery tree mask, aortic root mask (AO), and other cardiac area masks for non-enhanced calcium scoring of computed tomography 
images (central image with color masks). It is possible to distinguish calcium located in the heart region from that in the coronary artery or 
other areas, such as the aortic valve and MA. Additionally, the coronary tree mask enables the localization of calcium within blood vessels (i.e., 
LM, LAD, LCX, and RCA). AO = aorta, CAC_auto = automatic coronary artery calcium scoring, LAD = left anterior descending artery, LCX = left 
circumflex artery, LM = left main artery, MA = mitral annulus, RCA = right coronary artery
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were compared with manual masks. The overlapping 
lesions for the CAC_auto and CAC_hand were defined 
as coronary calcium, and the mismatched lesions were 
divided into false-positive results (e.g., valve or aortic wall 
calcifications) and false-negative results (i.e., coronary 
calcifications missed by CAC_auto) errors. The per-lesion 
sensitivity was calculated as (true positive lesion number/
total lesion number) x 100. The false-positive rate was 
calculated as (number of false-positive lesions/total 
patient number). All mismatched lesions were subsequently 
reviewed by a senior cardiovascular radiologist to analyze 
the causes of mismatches and lesion locations.

Statistical Analyses
The Agatston score and calcium volume (mm3) were 

calculated using CAC_auto and CAC_hand, and the values 
were compared. The reliability of the Agatston score and 
volume calculation using CAC_auto as compared with 
CAC_hand was evaluated using the intraclass correlation 
coefficient (ICC). Bland-Altman analysis was used to 
calculate the 95% limits of agreement between CAC_auto 
and CAC_hand. For cardiovascular risk stratification using 
the Agatston score, the following categories were used: 0, 

1–10, 11–100, 101–400, and < 400. The risk stratification 
results for CAC_auto and CAC_hand were compared using 
Cohen’s linearly weighted kappa statistic.

RESULTS

CAC_Auto for Coronary Calcium Measurement
For the Agatston score, CAC_auto yielded high ICCs (0.99) 

for all the patients in all the cohorts combined, as well as 
the screening, FFR, and valve groups, individually (Table 2). 
For the per-vessel evaluation, the ICCs for the Agatston 
scores of the LM, LAD, LCX, and RCA were 0.91, 0.99, 0.96, 
and 0.99, respectively (Fig. 3, Supplementary Fig. 1). In 
the Bland-Altman plot analysis, the 95% limit of agreement 
for the Agatston score was 1.6 ± 52.2, when all the cohorts 
were combined (Fig. 4). Systemic deviations did not occur 
in any subgroup or during the per-vessel analysis. The limits 
of agreement tended to increase in the severe CAC group 
compared with the mild CAC group (CAC 0–100, -0.4 ± 15.5; 
CAC 11–100, 5.5 ± 93.5; CAC > 400, 37.7 ± 197.0). The 
reliability of the calcium volume (mm3) was also high, with 
similar values yielded by the Agatston score measurement 
for both the per-patient and per-vessel analyses (Table 2). The 

Table 2. CAC_Auto for Calcium Volume and Agatston Calcium Score Measurements
Index Total LM LAD LCX RCA

All
Agatston score, ICC 0.99 (0.99, 0.99) 0.91 (0.90, 0.91) 0.99 (0.99, 0.99) 0.96 (0.96, 0.96) 0.99 (0.99, 0.99)
Agatston score, limits of agreement  1.6 ± 52.2 -1.1 ± 28.3 2.1 ± 37.4  0.3 ± 30.2  0.3 ± 23.8
Volume, mm3, ICC 0.99 (0.99, 0.99) 0.91 (0.90, 0.92) 0.99 (0.99, 0.99) 0.96 (0.96, 0.96) 0.99 (0.99, 0.99)
Volume, mm3, limits of agreement  1.1 ± 42.1 -0.9 ± 22.9 1.6 ± 28.9  0.2 ± 24.8  0.2 ± 20.1

Screening group
Agatston score, ICC 0.99 (0.99, 0.99) 0.91 (0.90, 0.91) 0.98 (0.98, 0.98) 0.95 (0.95, 0.95) 0.99 (0.99, 0.99)
Agatston score, limits of agreement 2.1 ± 52.4 -0.6 ± 26.8 1.8 ± 37.1  0.3 ± 29.4  0.6 ± 22.7
Volume, mm3, ICC 0.99 (0.99, 0.99) 0.91 (0.90, 0.92) 0.98 (0.98, 0.98) 0.95 (0.94, 0.95) 0.99 (0.99, 0.99)
Volume, mm3, limits of agreement  1.5 ± 41.7 -0.5 ± 21.7 1.4 ± 28.5  0.2 ± 24.2  0.4 ± 18.4

FFR group
Agatston score, ICC 0.99 (0.99, 0.99) 0.89 (0.84, 0.92) 0.99 (0.99, 0.99) 0.98 (0.98, 0.99) 0.99 (0.99, 0.99)
Agatston score, limits of agreement 0.3 ± 41.3 -5.9 ± 41.0 5.8 ± 44.2  1.7 ± 40.8 -1.3 ± 25.5
Volume, mm3, ICC 0.99 (0.99, 0.99) 0.90 (0.86, 0.92) 0.99 (0.99, 0.99) 0.98 (0.98, 0.99) 0.99 (0.99, 0.99)
Volume, mm3, limits of agreement -0.1 ± 33.2 -4.8 ± 33.1 4.3 ± 35.0  1.4 ± 33.0 -1.1 ± 20.8

Valve group
Agatston score, ICC 0.99 (0.99, 0.99) 0.93 (0.91, 0.95) 0.99 (0.99, 0.99) 0.91 (0.88, 0.94) 0.97 (0.96, 0.98)
Agatston score, limits of agreement -6.4 ± 61.9 -2.6 ± 29.7 0.8 ± 27.8 -1.7 ± 23.5 -2.9 ± 37.9
Volume, mm3, ICC 0.99 (0.98, 0.99) 0.94 (0.92, 0.96) 0.99 (0.99, 0.99) 0.91 (0.87, 0.94) 0.95 (0.93, 0.96)
Volume, mm3, limits of agreement -6.2 ± 60.7   -2 ± 23.5 0.5 ± 21.6 -1.6 ± 19.5 -3.1 ± 42.0

Numbers in parentheses indicate 95% confidence intervals. CAC_auto = automatic coronary artery calcium scoring, ICC = intraclass 
correlation coefficient, LAD = left anterior descending artery, LCX = left circumflex artery, LM = left main artery, RCA = right coronary 
artery
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mean CAC_auto computation duration ± standard deviation 
was 57 ± 11 seconds (range, 41–80 seconds).

CAC_Auto for Risk Category by Agatston Score 
Assignment

CAC_auto achieved high weighted kappa values of 0.94, 
0.94, 0.96, and 0.82 for all patients and the screening, 
FFR, and valve groups, respectively (Table 3). The CAC_

auto assigned the participants to the correct cardiovascular 
risk category 93.9% of the time (2804/2985) and to a 
neighboring category 5.3% of the time (159/2985). Only 
0.7% (22/2985) of participants had more than two category 
differences between CAC_auto and CAC_hand (Fig. 2, Table 3).

Per-Lesion Analysis
Among 2985 enrollees, 6218 lesions were identified using 

Fig. 3. Scatter plots showing the correlation between CAC_hand and CAC_auto. 
A. All. B. Screening group. C. FFR group. D. Valvular heart disease (valve) group. CAC_auto = automatic coronary artery calcium scoring,  
CAC_hand = manually segmented coronary calcium scoring, FFR = fractional flow reserve
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CAC_hand and compared with calcium lesions categorized 
by CAC_auto. CAC_auto yielded a per-lesion sensitivity of 
93.3% (5800 of 6218 lesions) and a false-positive rate of 
0.11 per patient (333 lesions among 2985 patients). The 
main causes of false positive results were image noise or 
artifacts (29.1%, 97/333) and aortic wall calcification 
(25.5%, 85/333) (Table 4, Fig. 5). Among 85 aortic wall 
calcifications falsely detected by CAC_auto, 64 (75.3%) 
were classified as LM lesions. Among 81 false-positive 
pericardial calcifications, 26 (32.1%) were categorized 
as LCX lesions. Of interest, 15.9% (53/333) of the false-
positive lesions were judged to be human errors committed 

during the initial labeling for the CAC_hand. In these 
cases, CAC_auto facilitated the detection of lesions that 
were neglected during human labeling due to the small 
size of calcium or confusion with surrounding image noise 
(Fig. 5). After excluding image noise (or artifacts) and 
human error, the number of ‘anatomically’ false-positive 
results decreased to 183 (0.06 false-positive lesions per 
patient). Among the 2985 patients, 161 (5.4%) showed 
calcification at the mitral valve or annulus, and three 
mitral annular calcifications were misclassified as LCX 
lesions. Thus, the false-positive rate of CAC_auto regarding 
mitral calcification was 1.9% (3/161). There were 418 

Fig. 4. Bland-Altman analysis graphs for CAC_hand CAC_auto. 
A. All. B. CAC 0–100 group. C. CAC 101–400 group. D. CAC > 400 group. Outliers are indicated by arrows and their values. CAC_auto = automatic 
coronary artery calcium scoring, CAC_hand = manually segmented coronary calcium scoring
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false-negative results, and the most common location of 
missed lesions was the RCA (n = 164, 39.2%), followed by 
the LCX, LAD, and LM (Table 4).

DISCUSSION

We developed a novel atlas-based CAC_auto system and 
validated it using three CT angiography cohort datasets and 
a manually generated reference standard (CAC_hand). The 
major findings of this study were as follows: 1) CAC_auto 
demonstrated high reliability for the coronary calcium score 
(ICC 0.99) and volume (ICC 0.99) measurements, and it 
yielded a high accuracy for the assignment of risk categories 
(kappa value 0.94); 2) during the lesion-based analysis, 
CAC_auto provided a high sensitivity (93.3%) and a low 
false-positive rate (0.11 false-positive lesions per patient); 
3) among the 333 false-positive lesions, the true anatomical 
false-positive rate, except for artifacts and human errors, was 
as low as 0.06 lesions per patient. Several of the anatomical 

Table 3. CAC_Auto for Risk Category by Agatston Score Assignment

CAC_Hand
CAC_Auto

0
(n = 1761)

1–10
(n = 249)

11–100
(n = 582)

101–400
(n = 277)

> 400
(n = 116)

Linearly Weighted 
Kappa (95% CI)

All 0.94 (0.94, 0.95)
0 1650 11 5 0 1
1–10 96 223 12 0 0
11–100 13 15 561 11 1
101–400 2 0 4 264 8
> 400 0 0 0 2 106

Screening group 0.94 (0.94, 0.95)
0 1562 10 5 0 1
1–10 84 199 11 0 0
11–100 8 10 472 9 1
101–400 0 0 3 194 6
> 400 0 0 0 2 70

FFR group 0.96 (0.93, 0.99)
0 37 1 0 0 0
1–10 5 11 0 0 0
11–100 0 0 66 2 0
101–400 1 0 1 64 1
> 400 0 0 0 0 31

Valve group 0.82 (0.73, 0.90)
0 51 0 0 0 0
1–10 7 13 1 0 0
11–100 5 5 23 0 0
101–400 1 0 0 6 1
> 400 0 0 0 0 5

CAC_auto = automatic coronary artery calcium scoring, CAC_hand = manually segmented coronary calcium scoring, CI = confidence interval, 
FFR = fractional flow reserve, kappa = linearly weighted kappa value

Table 4. Mismatched Lesions between CAC_Auto and CAC_Hand

Category Data
False-positive errors (n = 333)

Image noise or motion artifact 97 (29.1)
Aortic wall 85 (25.5)
Pericardium 81 (24.3)
Human error 53 (15.9)
Myocardium 10 (3.0)
Mitral valve or annulus 3 (0.9)
Rib 3 (0.9)
Lung 1 (0.3)

False-negative errors (n = 418)
LM 41 (9.8)
LAD 106 (25.4)
LCX 107 (25.6)
RCA 164 (39.2)

Data are number with percentage in the parentheses. CAC_
auto = automatic coronary artery calcium scoring, CAC_hand = 
manually segmented coronary calcium scoring, LAD = left anterior 
descending artery, LCX = left circumflex artery, LM = left main 
artery, RCA = right coronary artery
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errors were caused by the aortic wall and pericardial calcium, 
and the extracardiac error rate was low.

We followed the atlas-based approach [8,9] but 
incorporated a deep-learning-based semantic segmentation 
model to replace the time-consuming non-rigid registration 
of the multi-atlas method. The false-positive rate of 0.11 
per patient in the present study was significantly lower than 
what was reported previously for the lesion-based analysis 
by Kurkure et al. [7] (4.7 false positives per patient), 
Shahzad et al. [9] (1.0 to 1.5 false positives per patient), 
and Wolterink et al. [10] (0.2 false positives per patient). 
Recently, two studies adopting deep learning-based 
methods reported high reliability for CAC_auto defined by 
ICC and kappa values [11,12], which was comparable to 
that of the present study. However, the investigators did 
not perform per-lesion analyses. Moreover, the sample sizes 
of electrocardiogram-synchronized CT scans were relatively 
small: 87 scans by van Velzen et al. [11] and 511 scans 
by Martin et al. [12]. Supplementary Table 1 summarizes 
the previous publications [6-14,24] related to CAC_auto. 
The present study used the largest electrocardiogram-

synchronized CT dataset (n = 2985) and showed comparable 
results to those of state-of-the-art studies, as reflected in 
the ICC (0.99), per-lesion sensitivity (93.3%), and false-
positive rate per CT scan (0.11).

Isgum et al. [6] proposed a feature-based method that 
extracted the size, shape, spatial, and appearance features 
from calcium candidate objects and applied classifiers to 
minimize the false-positive rate. Kurkure et al. [7] also 
utilized features and extended the classifier model in 
a two-stage mode. These feature-based approaches do 
not require the spatial information of coronary arteries. 
However, the results were not comprehensive and required 
careful selection of several operational parameters for 
calcium candidate object detection and classification. In 
another method, Brunner et al. [8] presented an atlas-
based approach using coronary artery region models. 
This method incorporates image transformation to align 
cardiac volumes across patients and provides coronary 
artery zones and sections. However, the performance of 
this atlas-based method was inferior to that of feature-
based methods. To combine the benefits of feature- and 

Fig. 5. Mismatched lesions detected based on CAC_hand and CAC_auto. Examples of mismatched lesions (arrows) detected based on 
CAC_hand and CAC_auto. In the areas (pink; spine, rib, and image noise) where the Hounsfield number was 130 or more, each coronary artery 
calcification was marked with a different color (i.e., LAD, yellow; LCX, blue; RCA, red). Human error was identified when CAC_hand did not lead to 
the detection of a small calcification in the RCA, but CAC_auto did. CAC_auto = automatic coronary artery calcium scoring, CAC_hand = manually 
segmented coronary calcium scoring, LAD = left anterior descending artery, LCX = left circumflex artery, RCA = right coronary artery
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atlas-based methods, Shahzad et al. [9] proposed a multi-
atlas-based method. Spatial information was obtained 
from the pairwise registration of the 10 atlas images. 
However, this multiatlas-based method had a scalability 
problem. The method was slower when more atlases were 
included because of the heavy computation of non-rigid 
registration. In our previous study, when 100 atlases were 
used, it took approximately 30 minutes [25]. In the present 
study, to solve the problem of atlas-based methods using 
registration, we incorporated deep learning–based semantic 
segmentation to reduce the execution time.

Some researchers have recently proposed deep-learning-
based CAC_auto techniques [6,11,12]. Lessmann et al. 
[13] used a convolutional neural network (CNN) to classify 
calcium candidate objects. In this approach, two 2.5D 
CNNs with different receptive fields were consecutively 
applied. This algorithm can eliminate the feature extraction 
step in previous approaches and can be trained on large 
datasets. However, this did not provide spatial information 
about the coronary artery regions or other surrounding 
structures. It also requires more computation time to apply 
voxel-by-voxel classification. Martin et al. [12] presented 
a multistep deep-learning model. The first step was used 
to identify and segment the regions, such as the coronary 
artery, aorta, aortic valve, and mitral valve. The second 
step classified the voxels as coronary calcium. Zhang et 
al. [15] reported a multi-step deep learning model, which 
incorporated finding the calcium candidate region in the 
axial image and performing a false-positive reduction using 
shape constraints. The incremental value of this current 
approach is that it can precisely detect coronary artery 
regions with a deep learning model based on semantic 
segmentation in a single step. This method can also provide 
regional information on the coronary artery and surrounding 
structures, such as the aorta, ventricular chambers, and 
myocardium. Therefore, this method can be easily extended 
to the segmentation of the aortic and mitral valves. On the 
other hand, the previously used methods share a structural 
similarity, related to the initial candidate detection and 
false-positive reduction [12,13,15]. In the first part, a 
convolutional deep learning model was used to determine 
whether the region of interest was a coronary artery and 
it included the aorta, aortic valve, and mitral valve. In the 
latter part, a convolutional deep learning model was applied 
to classify whether calcium candidates above 130 HU were 
coronary calcium. The latter part was added because the 
number of false positives was large only for the first part. 

Although CAC_auto exhibited high reliability in this study, 
there were still some outliers, as well as false-positive and 
false-negative errors. The limits of agreement in the high 
CAC (> 400) group were still high (37.7 ± 197.0) despite a 
high ICC value. Because the ICC is calculated using variance, 
the ICC value tends to increase when the data range is wide 
[26]. Further studies to improve the CAC_auto algorithm 
are warranted. Two approaches for the improved algorithm 
were considered. The first approach involves image quality 
improvement using deep learning. The most frequent reason 
for mismatched lesions in this study was image noise or 
motion artifacts. In our previous study [27], we effectively 
reduced noise in low-dose cardiac CT. The second approach 
is to improve the training dataset in terms of size and 
quality. Owing to the nature of AI technology, generalization 
can be increased when various types of datasets are included 
during training. In this study, 100 cases of hard-labeled 
(pixel-by-pixel labeling) data were used for training. We 
are considering not only adding more training data but 
also applying data augmentation to capture the variability 
of the heart or aorta shape due to severe cardiovascular 
disease. Moreover, a reliable but straightforward verification 
step for CAC_auto, such as multiple color-coded volume 
rendering of CAC (Fig. 2), would help shorten the time 
needed for human confirmation in a CAC_auto workflow. 
Second, although our study included three different cohort 
datasets representing three different scenarios and four CT 
machines, it was still fraught with the limitations of single-
center retrospective studies. In addition, a relatively small 
number (n = 116) of patients with high CAC (> 400) would 
not be sufficient for AI model validation. Therefore, further 
multicenter investigations covering larger varieties of CT 
machines, disease spectrum, and CAC imaging protocols are 
required. Third, the present study did not evaluate whether 
CAC_auto streamlined the actual CAC imaging workflow. 
In follow-up studies, it will be necessary to confirm that 
CAC_auto can reduce the analysis time while maintaining 
accuracy when compared with manual work. Finally, since 
our study used an atlas-based method, theoretically, mitral 
annular calcification and aortic valve calcification could be 
automatically evaluated. Considering recent research that 
reported a link between structural heart disease and non-
coronary calcification [28], automatic quantification of 
valvular or paravalvular calcium would also be promising. 
Further investigation of the automatic quantification of non-
coronary calcifications is warranted.

In conclusion, the atlas-based CAC_auto empowered by 
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deep learning provided accurate calcium score measurement 
as compared with manual method and risk category 
classification, which could potentially streamline CAC 
imaging workflows.

Supplement

The Supplement is available with this article at  
https://doi.org/10.3348/kjr.2021.0148.
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