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Abstract

Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary 

source of nitrogen in soil, is linked to generation of the redox signal nitric oxide (NO). An 

important mechanism by which NO regulates plant development and stress responses is through S-

nitrosylation, i.e. covalent attachment of NO to cysteines to form S-nitrosothiols (SNO). Despite 

the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these 

pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake 

and reduction by transporters and reductases, respectively, to fine-tune nitrate homeostasis. 

Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione 

Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major 

cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation 

and scavenging by modulating nitrate assimilation and GSNOR1 activity.

Introduction

Nitrogen is a conspicuous building block of many central biomolecules, such as nucleic 

acids, amino acids, and cofactors. The primary source of nitrogen available to land plants is 

inorganic nitrate (NO3
−), the concentration of which can vary from micromolar to 

millimolar amounts in soils1. To cope with such large fluctuations in nitrate availability, 

higher plants have evolved sophisticated high-affinity (HATS) and low-affinity (LATS) 

transport systems2,3. These systems rely mainly on two families of membrane-bound nitrate 

transporters (NRT) of which NRT2 members are high-affinity, while most members of 
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NRT1 are low-affinity nitrate transporters2,3. NRT2.1 and NRT1.1 (firstly identified as 

CHL1, for chlorate resistant 1) are particularly important for nitrate uptake by roots of 

Arabidopsis thaliana plants4. AtNRT2.1 is a pure high-affinity nitrate transporter that is 

repressed by high nitrate levels and activated under low-nitrate conditions5. AtNRT1.1 is an 

exception in the NRT1 family being a dual-affinity nitrate transporter: it normally has low 

affinity uptake but can change to the high-affinity mode under low nitrate levels6,7. The 

switch from low- to high-affinity transport is mediated by phosphorylation at Thr101 residue 

of NRT1.1, which enhances its affinity to nitrate8,9, as well as by transcriptional down-

regulation of NRT1.1 and up-regulation of NRT2.1 allowing scavenging of available 

nitrate2,7.

Once taken up by roots nitrate is mainly transported to shoots for further assimilation and in 

leaves it is reduced to nitrite (NO2
−) by the activity of NAD(P)H-dependent cytosolic 

Nitrate Reductases (NR). Nitrite, in turn, is promptly removed from cells or transported to 

chloroplasts where it is reduced by Nitrite Reductase (NiR) into ammonium (NH4
+) for 

further assimilation into organic compounds by the glutamine synthetase/glutamine-2-

oxoglutarate aminotransferase (GS-GOGAT) system1,10,11.

In Arabidopsis, the catalytic activity of NR, which is considered limiting to nitrogen 

assimilatory pathways12,13 is conferred by the genes NIA1 and NIA2. Double mutant nia1 

nia2 plants display poor growth on media with nitrate as the sole nitrogen source, which is 

in part due to lack of nitrogen incorporation into amino acids14. Curiously, gene expression 

of NRT1.1 and NRT2.1 transporters is constitutively upregulated in roots of nia1 nia2 plants, 

suggesting that NR activity or a nitrogen-containing metabolite derived from nitrate 

reduction feedback regulate uptake systems15. However, the identity of this regulatory 

metabolite remains obscure15,16.

In addition to its reduction to NH4
+, nitrite can be reduced to nitric oxide (NO) via non-

enzymatic as well as various enzymatic pathways17,18. High levels of nitrite allow NR to 

reduce this assimilate into NO19,20, although genetic evidence suggests that the main role of 

NR in NO biosynthesis is the production of nitrite21,22. L-arginine, polyamines and 

hydroxylamines are also potential sources for NO synthesis in higher plants, however the 

molecular mechanisms responsible for these activities have not been identified so far17,18,23.

NO is a free radical with a wide range of important signalling functions in all eukaryotes. 

Accordingly, Arabidopsis NO overproducing nox1 (also known as cue1-6) mutants 

accumulate elevated levels of NO and exhibit defects in floral transition, root apical 

meristems, and pathogen-induced programmed cell death24-26. The underlying mechanisms 

of NO action rely on its physicochemical properties that allow reactivity with different kinds 

of biomolecules, thereby altering the redox state of their active groups. NO and its 

derivatives can react with thiols, tyrosine residues, metal centers and reactive oxygen 

species17,27. Particularly, addition of NO to cysteine thiols results in the formation of S-

nitrosothiols (SNO), which have been shown to alter the activity, localization or 

conformation of target proteins27,28.
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NO may also react with glutathione to form S-nitrosoglutathione (GSNO), which is thought 

to be a major cellular reservoir of NO capable of generating protein-SNO. Cellular GSNO 

levels are controlled by the evolutionary conserved, cytosolic enzyme GSNO Reductase 1 

(GSNOR1), which catalyses the NADH-dependent reduction of GSNO to oxidized 

glutathione and ammonium29-31. Arabidopsis plants with impaired GSNOR1 function 

display elevated levels of protein-SNO and exhibit deficiencies in development, immunity, 

and thermotolerance, indicating that GSNOR1 indirectly controls the level of biologically 

active protein-SNO31-36. Taken together, these studies clearly indicate that the generation 

and scavenging of NO is connected to molecular pathways of nitrogen assimilation. 

However, it remains unclear if nitrate or other nitrate-derived metabolites directly affect NO 

signalling, and vice versa, if NO signalling influences nitrogen homeostasis37. Here we 

provide genetic and biochemical evidence for intimate interplay between nitrate assimilation 

and NO signalling. We identified novel NO-mediated feedback pathways that regulate the 

transcription of nitrate transporters and enzymatic activities of NR and GSNOR1 by redox-

based post-translational modification. Our data reveal that nitrate assimilation and NO 

signalling are connected in unexpected ways, allowing plants to fine-tune NO generation 

and scavenging.

Results

NO signalling feedback regulates nitrogen assimilation

Because significant amounts of NO and derived SNO result from the nitrogen assimilation 

pathway, we considered that NO may feedback regulate this pathway. Nitrogen assimilation 

commences by the uptake of nitrate by low- and high-affinity transport systems, in which 

the NRT1.1 and NRT2.1 transporter genes play key roles2,3. We assessed the expression of 

these genes in roots of wild-type (WT) plants as well as the NO and SNO signalling 

mutants, nox124 and gsnor134 (also known as par2-1). While nox1 plants overproduce free 

NO, gsnor1 plants accumulate high levels of GSNO28, a more stable redox form of NO. 

Compared to wild type plants grown under moderate nitrate availability, expression of 

NRT2.1 was strongly suppressed in both nox1 and gsnor1 mutants, whereas expression of 

NRT1.1 remained unchanged (Fig. 1a). Accordingly, exogenous treatment of WT plants with 

GSNO or the alternative NO donor, DEA/NO, also led to inhibition of NRT2.1 expression 

but left NRT1.1 expression unaltered (Fig. 1b).These findings suggest that elevated NO and 

SNO levels induce a switch from high- to low-affinity nitrate transport.

Once taken up into the root, nitrate is mainly transported to the shoots where it is assimilated 

at the expense of photosynthetic reducing power2. In leaves nitrate is reduced to nitrite by 

the cytosolic enzyme NR. To examine if NO also regulates this rate-limiting step in nitrogen 

assimilation, we measured NR activity in leaves of the genotypes with altered (S)NO 

homeostasis (Fig. 1c). Compared to WT, gsnor1 mutant plants exhibited strongly reduced 

NR activity, while GSNOR1 overexpressing plants (35S::FLAG-GSNOR1, Supplementary 

Fig. 1a and 1b) displayed enhanced NR activity. Surprisingly, however, mutant nox1 plants, 

that only accumulate 30-40% more SNO than WT plants under basal conditions26, did not 

exhibit altered NR activity (Fig. 1c). Together with the fact that expression of the NR gene 

NIA2 was indifferent in all mutants (Supplementary Fig. 1c and 1d), these data suggest that 
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GSNO and free NO differentially affect NR activity. To understand the cumulative 

consequences of (S)NO-modulated nitrate transport and reduction, we also measured nitrate 

contents of mutant leaves and compared them to WT and NR double mutant nia1 nia2 

leaves, the latter of which is known to accumulate high levels of nitrate due to lack of NR 

activity15. Figure 1d shows that nox1 plants accumulated significantly less nitrate than the 

WT, likely caused by partial switching to the low-affinity transport system in these mutants 

(Fig. 1a). However, in gsnor1 plants activation of the low-affinity transport system in 

conjunction with reduced NR activity apparently resulted in relatively normal nitrate levels. 

Instead, a regulatory role for GSNO only became apparent in 35S::FLAG-GSNOR1 plants, 

which accumulated elevated levels of nitrate (Fig. 1d). Taken together, these findings 

indicate that NO and SNO modulate nitrogen assimilation by differentially inhibiting nitrate 

uptake and reduction.

To assess the biological impact of (S)NO on nitrate assimilation, we analysed the vigour of 

(S)NO signalling mutants by measuring growth and biomass accumulation parameters (Fig. 

2a-d). As expected, the inability of nia1 nia2 plants to reduce nitrate led to reduced leaf area 

and a decrease in dry shoot weight compared to WT. Like nia1 nia2, mutant nox1 and 

gsnor1 plants also displayed strongly decreased growth vigour. Conversely, leaf area and 

biomass growth tended to increase, albeit not always statistically significant, in GSNOR1 

overexpressing 35S::FLAG-GSNOR1 plants (Fig. 2a-d). These findings suggest (S)NO-

mediated suppression of nitrate assimilation may have dramatic effects on plant growth. To 

confirm the poor growth vigour phenotypes of (S)NO mutants were due to decreased nitrate 

assimilation, we sought to bypass this pathway by exogenous addition of glutamine (Gln), 

the main end product of nitrate assimilation. Addition of Gln to WT plants did not further 

improve growth compared to nitrate-replete conditions (Supplementary Fig. 2). Importantly, 

however, irrigation of nox1 and gsnor1 mutants in the presence of Gln recovered growth 

vigour of gsnor1, but not that of nox1, to levels comparable to those of WT and 35S::FLAG-

GSNOR1 plants (Fig. 2a-d). Thus, bypassing both nitrate uptake and reduction by feeding 

Gln rescued the gsnor1 phenotype, while suppression of N assimilation may not be the only 

cause for lack of growth vigour in nox1 plants. In contrast to GSNOR that is directly 

involved in NO homeostasis, the metabolic changes in nox1 that lead to an increase in NO 

production are indirect. The nox1 mutant is defective in a phosphoenolpyruvate/phosphate 

translocator that imports phosphoenolpyruvate for the synthesis of aromatic amino acids and 

related compounds through the shikimate pathway39. Consequently, nox1 mutants display an 

overall marked increase in the levels of free amino acids, including L-arginine, a precursor 

of NO (Supplementary Fig. 3 and ref 24). Additionally, this mutant exhibits an imbalance of 

aromatic versus non-aromatic amino acids and a marked reduction in secondary phenolic 

compounds that are dependent on the shikimate pathway for precursors, severely 

compromising the establishment of photoautotrophic growth.39 Thus, alterations of amino 

acid levels as a direct consequence of the nox1 mutation are not expected to be 

complemented by simply adding Gln, as other imbalances are not corrected by this 

treatment. Accordingly, the effect of the nox1 mutation on biomass is much more severe 

than the nia1 nia2 knock out mutation (Fig. 2a-d), indicating that mechanisms unrelated to 

nitrate assimilation underpin the nox1 phenotype. In contrast, our data indicate that mutation 

of GSNOR1 affected plant growth by inhibiting nitrate uptake and assimilation (Fig. 1), and 
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accordingly, this phenotype can be rescued by addition of Gln (Fig. 2a-d). To further 

establish that suppressed nitrate assimilation underpins the poor primary productivity 

phenotype of gsnor1 plants, we assessed global accumulation of amino acids in this mutant 

(Supplementary Fig. 3). Particularly the accumulation of glutamine (Gln), glutamate (Glu), 

asparagine (Asn), and aspartate (Asp) are informative for nitrogen homeostasis, because 

they represent the primary transported amino acids derived from ammonium11. Several 

observations made in gsnor1 mutants support the notion that (S)NO-mediated suppression of 

nitrate assimilation affects primary productivity. Firstly, low nitrogen conditions stimulate 

the formation of Gln and Glu because of their comparatively lower nitrogen-to-carbon ratios 

(2N:5C for Gln and 1N:5C for Glu). Importantly, even in presence of high nitrate, gsnor1 

plants accumulated more Gln and Glu compared to the WT (Fig. 2e, 2f), indicating these 

mutants were suffering from nitrogen shortage. Secondly, compared to Gln and Glu, the 

amino acid Asn is rich in nitrogen (2N:4C ratio) and its production is therefore avoided 

under low nitrogen availability. Despite the presence of 25 mM nitrate, mutant gsnor1 plants 

contained decreased levels of Asn compared to WT (Fig. 2e, 2f), further indicating these 

mutants experience a shortage in nitrogen. Finally, in both WT and gsnor1 plants exogenous 

addition of 5 mM Gln led to an expected rise in endogenous Gln and also increased Asn 

content, while the levels of Glu, and Asp remained largely unchanged compared to the low 

nitrate regime (Fig. 2e-g, Supplementary Fig. 3). Taken together, these data indicate that 

(S)NO are important regulators of nitrate assimilation and thus, plant growth and 

development.

Nitrogen metabolism regulates GSNOR1 activity

Given the impact of GSNOR1 on nitrate assimilation, we considered that GSNOR1 activity 

may be feedback regulated by nitrate. To examine this possibility, we grew WT plants under 

high nitrate availabilities that caused good growth vigour (25 and 40 mM), as well as lower 

nitrate availabilities (1 mM and 2.5 mM) that resulted in poor biomass accumulation 

(Supplementary Fig. 2). Because the irrigated nutrient solution was not compensated with 

any other N source, nitrate concentrations lower than 2.5 mM appeared undesirably 

detrimental for plant growth and development. Therefore we selected 2.5 mM and 25 mM 

nitrate concentrations for further experimentation. Additionally, as the nitrate concentration 

of nutrient solutions was composed of half KNO3 and half NH4NO3, we checked the 

possibility that the effects observed could partially be attributed to NH4
+. However, when 

the concentration of NH4
+ in the nutrient solution was reduced by ten times (from 12.5 mM 

to 1.25 mM), parameters of biomass growth of WT plants were comparable (Supplementary 

Fig. 4), indicating that the effect of ammonium in determining plant growth vigour was 

negligible under our conditions. Interestingly, increasing nitrate availability from 2.5 mM to 

25 mM reduced mean GSNOR1 activity by ~35% ± 8% while significantly enhancing NR 

activity (Fig. 3a, 3b). Additional increase in nitrate availability to 40 mM did not suppress 

GSNOR activity any further, while intermediate nitrate levels (12.5 mM) reduced GSNOR 

activity by ~10% (Supplementary Fig. 5). These data suggest nitrate levels may regulate 

GSNOR1 activity. However, mutant nia1 nia2 plants that are void of NR activity (Figs. 1c, 

3b) and accumulate elevated levels of endogenous nitrate15 (Fig. 1d), did not exhibit 

reduced but rather slightly elevated GSNOR1 activity (Fig. 3a). Thus, instead of nitrate, a 

Frungillo et al. Page 5

Nat Commun. Author manuscript; available in PMC 2015 May 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



metabolite downstream of NR-catalysed nitrate reduction may be responsible for inhibition 

of GSNOR1 activity.

Nitrite is the first reductive metabolite downstream of nitrate and in elevated concentrations 

can be converted into NO21,22,40. Therefore, we measured NO emission in plants grown 

under low and high nitrate availability. High concentrations of nitrate promoted NO 

emission in wild-type plants (Fig. 3c and Supplementary Fig. 6). Despite having elevated 

endogenous nitrate levels, nia1 nia2 plants did not show elevated NO emission when grown 

under higher nitrate, indicating that high nitrate availability leads to NR-mediated generation 

of NO.

Because nitrate-induced, NR-mediated NO production was associated with reduced 

enzymatic activity of GSNOR1 (Fig. 3a-c) but not gene expression (Fig. 3d), we considered 

a more direct role for NO in regulating the GSNOR1 enzyme. We examined this in 

genotypes with impaired and enhanced (S)NO signalling. Importantly, NO-overproducing 

nox1 mutants displayed significantly reduced GSNOR1 activity (Fig. 3e). Conversely, nia1 

nia2 double mutants that cannot synthesize NO through the NR pathway, exhibited 

increased GSNOR1 activity to similar levels as 35S::FLAG-GSNOR1 plants. Collectively, 

these data suggest that the nitrogen assimilatory pathway inhibits GSNOR1 by a post-

transcriptional, NO-dependent mechanism.

NO-induced S-nitrosylation inhibits GSNOR1

To further investigate if GSNOR1 is inhibited directly by NO or by other nitrogen 

assimilates, we measured its in vitro activity in pharmacological assays. Addition of the 

redox-active NO donors diethylamine NONOate (DEA/NO) and Cys-NO to WT leaf 

extracts resulted in dose-dependent inhibition of GSNOR1 with 15-30% decrease in activity 

already at only 50 μM of NO donors and over 60% at 250 μM (Fig. 4a). In contrast, the 

redox-active molecules glutathione (GSH) and L-Cysteine (L-Cys) that do not donate NO, 

had relatively little effect on GSNOR1 activity. Similarly, incubation with physiologically 

relevant concentrations of nitrogen assimilates (nitrate, nitrite, and ammonium) did not 

affect GSNOR1 activity with exception of high concentrations of the NO-related signal 

molecule peroxynitrite (ONOO−), which is formed by reaction of NO and O2
− (Fig. 4b)41. 

Furthermore, when WT plants were fumigated for 12 hours with 60 ppm of NO gas, 

GSNOR activity in leaves was nearly 40% lower when compared to those exposed to 

normal air (44.6 ± 2.6 versus 71.7 ± 5.4 nmol NADH min−1 mg−1 prot) (Fig. 4c). Taken 

together, these data demonstrate a direct inhibitory effect of NO on GSNOR activity.

NO has been well documented to regulate protein function by S-nitrosylation24,42. 

Therefore, we employed the biotin switch technique to examine if GNSOR1 is subjected to 

S-nitrosylation. This technique relies on specific reduction of SNO groups by ascorbate 

followed by their labelling with biotin43. Extracts of plants expressing 35S::FLAG-GSNOR1 

(Supplementary Figs. 1 and 7) where treated with or without the NO donor Cys-NO and 

subjected to the biotin switch technique. Fig. 4d shows that Cys-NO induced strong S-

nitrosylation of FLAG-GSNOR1 protein that was completely dependent on addition of 

ascorbate during biotin switching, indicating that GSNOR1 can be S-nitrosylated in vitro.
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Next, we assessed if GSNOR1 is also S-nitrosylated in vivo by examining SNO 

modifications in NO overproducing nox1 plants that exhibit reduced GSNOR1 activity (Fig. 

3e). To that end we crossed 35S::FLAG-GSNOR1 expressing plants with nox1 mutants and 

applied the biotin switch technique on the resulting homozygous progeny in which FLAG-

GSNOR1 protein accumulated to comparable levels as the parent line (Supplementary Fig. 

7). Whereas most FLAG-GSNOR1 protein was largely unmodified in wild-type plants, it 

was significantly S-nitrosylated in nox1 mutants (Fig. 4e). Taken together, these data 

indicate that nitrate-derived NO prevents scavenging of its major storage form by inhibitory 

S-nitrosylation of GSNOR1.

Discussion

As immobile organisms, plants have evolved to cope with environmental fluctuations by 

fine tuning metabolic pathways. Nitrogen metabolism is of particular importance as its 

intermediates influence plant development and responses to stress. Our study shows that 

NO, one of the end products of nitrogen metabolism, feedback regulates flux through nitrate 

assimilation pathways and controls its bioavailability by modulating its own consumption as 

depicted in Figure 5.

Previously it has been suggested that a metabolite resulting from nitrate reduction may 

feedback regulate nitrate uptake systems, but the identity of this metabolite remained 

unknown15,16,23. Genetic manipulation of NO signalling in our experiments illustrated that 

NO controls flux through nitrogen assimilatory pathway by modulating the expression of 

nitrate transporters and activity of NR (Fig. 1). Mutants that accumulate NO or GSNO 

displayed a classical switch in gene expression from high- to low-affinity transport, which is 

typically associated with decreased uptake of exogenous nitrate4. Moreover, genetically 

elevated levels of GSNO inhibited activity of NR, while reduced levels promoted its 

activity. We show that the cumulative effects of perturbed NO signalling on nitrate uptake 

and reduction determined leaf nitrate content (Fig. 1), homeostasis of primary transport 

amino acids (Fig. 2 e-g and Supplementary Fig. 3) and affected plant growth vigour (Fig. 

2a-d). This NO-dependent mechanism may ensure the adjustment of plant growth according 

to nitrate availability.

In higher plants, NO is probably generated through a variety of mechanisms, including nitric 

oxide synthase-like activities, polyamine biosynthetic pathways, and mitochondrial or 

peroxisomal pathways20,23. Notably, however, significant amounts of NO are also thought 

to be generated through a NR-dependent process, which may be particularly important in 

root architecture44, floral transition45, responses to abiotic stresses46,47, and immune 

responses22,48. Thus, by suppressing nitrate uptake and reduction, NO may not only regulate 

nitrogen assimilation fluxes, it probably also feedback regulates its own generation.

Remarkably, NR activity was coupled to the level of functional GSNOR1 (Figs. 1c and 3e). 

As GSNO often regulates enzyme activity through S-nitrosylation, it is tempting to speculate 

NR is also subject to this post-translational modification. Indeed, NR is known to be 

regulated by other post-translational mechanisms, including phosphorylation and 

degradation. NIA2 was shown to interact with mitogen-activated protein kinase 6 (MPK6), 
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resulting in site-specific phosphorylation that promoted NR activity44. Furthermore, 

phosphorylation of a distinct residue was shown to recruit inhibitory 14-3-3 proteins and 

may also promote NR proteolysis-49-51. While we observed impaired NR activity in gsnor1 

plants that are deficient in functional GSNOR1, no effect was seen in NO overproducing 

nox1 plants (Fig. 1). Because NO donor stereochemistry and structure as well as allosteric 

effectors have a large influence on SNO reactivity52, these data imply that NO and GSNO 

do not always modify the same target proteins. Indeed, NO radicals are thought to S-

nitrosylate proteins directly through a radical-mediated pathway or indirectly via higher 

oxides of NO, whereas GSNO trans-nitrosylates cysteine residues53.

Feeding experiments not only confirmed the previously described ability of nitrate to 

promote NR activity54, they also demonstrated that elevated nitrate levels suppress 

GSNOR1 activity (Fig. 3). GSNOR1 plays an important role in controlling the cellular 

levels of GSNO, which is thought to be the main NO reservoir in cells. Accordingly, 

mutation of GSNOR1 leads to elevated levels of protein-SNO31, indicating that GSNO 

functions as a potent cellular NO donor. As high NR activity promoted generation of NO 

(Fig. 3b, 3c), inhibition of GSNOR1 may be necessary to amplify SNO signals. Indeed, 

storing NO as GSNO dramatically prolongs its half-life38, perhaps enabling plants to utilize 

NO more efficiently while curbing loss due to emission. Taken together, our data illustrate 

that nitrate availability promotes formation of a more stable pool of NO, which in turn 

feedback regulates nitrate assimilation, allowing plants to finely tune nitrogen homeostasis. 

They also indicate that nitrogen-based nutrient availability may influence a variety of NO-

mediated signalling events. This is supported by recent reports showing that the form of 

nitrogen assimilation determines NO-mediated immune responses55,56. Arabidopsis nia1 

nia2 mutants are susceptible to the bacterial pathogen Pseudomonas syringae, even after 

amino acid recovery by feeding with Gln56. Furthermore, treatment of wild-type tobacco 

plants with ammonium bypassed NR-mediated generation of NO and consequently 

compromised immune responses55. By contrast, application of nitrate or nitrite promoted 

both NO formation and immune-induced hypersensitive cell death, a process that restricts 

pathogen growth and is known to be stimulated by SNO26,55,56.

It should be noted that although nitrate-induced NO emission was strongly reduced in 

absence of functional NR, residual NR-independent NO emission is still observed in nia1 

nia2 (Fig. 3c, Supplementary Fig. 6). Taken together with the fact that NR-independent NO 

overproduction in nox1 mutants decreased nitrate content in part by suppressing nitrate 

transport (Fig. 1), these data indicate that NR-independent NO emission may also contribute 

to nitrate homeostasis (Fig. 5).

We showed that in vitro application of intermediates of nitrate assimilation did not affect 

GSNOR1 activity, whereas application of NO donors specifically blocked its activity even at 

low dosage (Fig. 4a,b). Accordingly, genetic manipulation of NO levels in nox1 and nia1 

nia2 plants (Fig. 3e) and direct fumigation of NO gas on WT plants (Fig. 4c) also impacted 

GSNOR1 activity in planta. Remarkably, the inhibitory effect of NO was associated with S-

nitrosylation of GSNOR1 both in vitro and in vivo (Fig. 4d, e), indicating that this NO 

scavenging enzyme is itself subject to direct regulation by NO. So how does S-nitrosylation 

inhibit the activity of GSNOR1? Elucidation of the crystal structure of tomato GSNOR1 
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indicated the presence of a number of important cysteine residues that might serve as sites 

for S-nitrosylation57. Two clusters of cysteine residues coordinate binding of two zinc atoms 

with catalytic and structural roles. The catalytic zinc atom may be necessary for 

coordination of the substrate and coenzyme NAD+. Thus, S-nitrosylation of any cysteine 

residue within the catalytic cluster would prevent coordination of zinc and disrupt the 

substrate or NAD+ binding pockets. Alternatively, S-nitrosylation of cysteines within the 

structural cluster may prevent GSNOR1 from folding appropriately. The exact site of S-

nitrosylation of GSNOR1 and associated inhibitory mechanism remain to be determined. 

Regardless of these details, our data show NO directly regulates GSNOR1 through post-

translational modification and suggest a novel mechanism by which NO controls its own 

bioavailability (Fig. 5).

Taken together with our biochemical and genetic evidence that nitrate assimilation is 

feedback repressed by NO, we conclude that NO is at the centre of fine-tuning nitrogen 

homeostasis in plants. These findings raise important considerations for the impacts of 

nitrogen-based fertilizers on redox-mediated traits in agricultural crops. Nitrogen is a major 

nutrient required for plant growth and development and for this reason insufficient N in soil 

severely restricts the use of potential agricultural lands. To circumvent this limitation, 

application of nitrate-based fertilizers has been the most widely used method to increase 

crop yields. However, the unutilized nitrate in agricultural fields is one of the main sources 

of environmental N pollution, as well economic losses58. Therefore, understanding the 

physiological basis involved in the adjustment of plant growth in response to nitrate 

availability is essential for the development of crop plants either adapted to N-limiting 

conditions or with high efficiency in nitrogen assimilation 59. The present identification of 

NO as a key element for adjustment in plant growth according to nitrate availability 

generates an important basis for future research programs to attain higher yields and 

promote a reduction in fertilizer-based environmental pollution.

Methods

Plant materials, growth conditions and treatments

Arabidopsis thaliana Columbia-0 wild-type (WT), and the mutants nia1 nia214, gsnor1 

(par2-1)34 and nox1 (cue1-6)24, as well as the transgenic lines 35S::FLAG-GSNOR1 in WT 

and nox1 backgrounds were grown in soil in a controlled environmental chamber at 20-22 

°C, 65% RH and a photoperiod of 16/8 hours light/dark. The form and content of N in the 

soil was not determined and the plants were irrigated with water as needed. Where indicated 

nitrate availability was controlled by growing plants in perlite:vermiculite (1:1) under a 

12/12 hours light/dark period. Plants were irrigated with Murashige-Skoog (MS)60 nutrient 

solution three times a week. In these treatments the composition of inorganic N was altered 

from the original one in a way that nitrate supply was composed of half KNO3 and half 

NH4NO3. Four-week-old plants were used for the experiments.

For analysis of gene expression in roots, seeds were surface sterilized with 10% bleach for 5 

min, washed 3 times with sterile water, and sown aseptically in petri dishes containing half-

strength MS medium (in which the N source is composed of 9.4 mM KNO3 and 10.3 mM 

NH4NO3). Petri dishes were maintained vertically in a photoperiod of 16/8 hours light/dark 
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at 20-22 °C. After 15 days seedlings were gently lifted from petri dishes using forceps and 

analysed immediately or incubated in 10 mL of sterile deionized water containing 1 mM 

KNO3 supplemented with or without GSNO or DEA/NO at room temperature for 3 hours. 

Roots were then separated from the shoot with the aid of a scalpel and RNA extraction was 

carried out as described below.

Construction of transgenic 35S::FLAG-GSNOR1 plants

The full-length GSNOR1 gene was multiplied from cDNA and TOPO cloned into the 

Gateway compatible pENTR/SD/D-TOPO vector according to the manufacturer’s 

instructions (Invitrogen, Carlsbad, CA). The resulting pENTR/GSNOR1 clone was 

linearized with the restriction enzyme MluI to prevent subsequent transformation of the 

entry vector into E. coli. Using LR clonase (Invitrogen), the GSNOR1 sequence flanked by 

the entry vector’s attL recombination sites were recombined into the plant transformation 

vector pEarleyGate 20261, which contains an N-terminal FLAG epitope tag driven by a 

cauliflower mosaic virus 35S promoter. The resulting pEarleyGate 202/35S::FLAG-

GSNOR1 vector was transformed into Agrobacterium tumefaciens strain GV3101(pMP90), 

which was subsequently used to transform WT plants by floral dipping62. Transgenic plants 

were selected on soil by repeated spraying with glufosinate ammonium. A homozygous 

transgenic line with appropriate transgene expression was isolated by immunoblotting for 

FLAG and crossed into nox1 mutants.

Plant NO fumigation

WT plants grown in perlite:vermiculite (1:1), irrigated with MS nutrient solution containing 

12.5 mM nitrate and maintained in a growth chamber with a 12h photoperiod were 

fumigated with NO gas63. Briefly, plants were transferred to an acrylic fumigation chamber 

for 12 h. Exposure to NO (60 ppm) was performed by bubbling of NO gas with a continuous 

flow of 90 mL min−1 (200 ppm diluted in N2) plus 210 mL min−1 of commercial air. In the 

control assays, a total flow of 300 mL min−1 of air was applied. Subsequently, fumigated 

leaves were collected and prepared for measurement of GSNOR activity.

Measurement of GSNO Reductase activity

GSNO reductase activity in leaf extracts was measured spectrophotometrically as the rate of 

NADH oxidation in the presence of GSNO31. Briefly, total leaf protein was extracted in 20 

mM HEPES buffer (pH 8.0), 0.5 mM EDTA and proteinase inhibitors (50 μg mL−1 TPCK; 

50 μg mL−1 TLCK; 0.5 mM PMSF). Protein concentrations were measured with a Bio-Rad 

Protein Assay Kit II (Bio-Rad, Hercules, CA) according to the manufacturer’s instructions 

and adjusted to either 62.5 μg (for nia1 nia2, which have very low protein content) or 125 μg 

(for all remaining genotypes). Protein extracts were incubated in 1 mL of reaction buffer 

containing 20 mM HEPES buffer (pH 8.0), 350 μM NADH and 350 μM GSNO. GSNO 

Reductase activity was determined by subtracting NADH oxidation in the absence of GSNO 

from that in the presence of GSNO. All samples were protected from light during the assay 

and tested for linearity. Where indicated protein extracts were pre-incubated for 20 min with 

intermediates of nitrogen metabolism or NO signalling molecules at the stated 

concentrations prior to addition of the reaction buffer.
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Measurement of nitrate reductase activity

Nitrate reductase activity was measured as the rate of NO2
− production64. Briefly, total leaf 

protein was extracted in 20 mM HEPES (pH 8.0), 0.5 mM EDTA, 10 μM FAD, 5 μM 

Na2MoO4, 6 mM MgCl2 and proteinase inhibitors (50 μg mL−1 TPCK; 50 μg mL−1 TLCK; 

0.5 mM PMSF). A total of 50 μg protein was incubated in 300 μL of extraction buffer 

supplemented with 10 mM KNO3 and 1 mM NADH. Nitrite production was determined by 

adding equal volumes of 1% sulphanilamide and 0.02% N-(1-naphthyl) ethylenediamine 

dihydrochloride in 1.5 N HCl, and absorbance measured at 540 nm on a spectrophotometer. 

The obtained values were compared with those of a standard curve constructed using KNO2 

and normalized by protein content. All samples were protected from light during the assay.

Determination of nitrate content

Nitrate content was determined by nitration of salicylic acid65. Briefly, leaves were ground 

in liquid nitrogen and resuspended in 20 mM HEPES (pH8.0). After centrifugation at 10,000 

g for 10 min at 4 °C, aliquots of 5 μL of supernatant were mixed with 45 μL of 5% (v/v) 

salicylic acid in sulfuric acid for 20 min. The solution was neutralized by slowly adding 950 

μL of NaOH (2 N). Absorbance was determined at 410 nm and the values obtained were 

compared with those of a standard curve constructed using KNO3 and normalized by protein 

content.

Measurement of NO emission

NO emission by leaves was determined by fluorometric analysis using 4,5-diamino-

fluorescein-2 (DAF-2)66. Briefly, leaf samples of WT and nia1 nia2 plants were incubated 

in the dark with 10 μM DAF-2 dissolved in 10 mM phosphate buffer, pH 8.0. After 1h 

incubation fluorescence emission at 515 nm under an excitation at 495 nm was recorded 

using an F-4500 spectrofluorometer (Hitachi Ltd., Tokyo, Japan). As negative control, 

leaves were incubated in the presence of 200 μM of the NO scavenger 2-(4-

carboxyphenyl)-4 4 5 5-tetramethyl imidazoline-1-oxyl-3-oxide (cPTIO) and the residual 

fluorescence subtracted.

Analysis of amino acid content

Leaf free amino acids were determined by reversed-phase HPLC56 after derivatization with 

o-phthaldialdehyde (OPA)67. Leaves were ground in liquid nitrogen and resuspended in 

methanol/chloroform/water (12:5:3, v/v). After incubation at room temperature for 24 h, the 

homogenate was centrifuged at 1,500 g for 30 min and the resulting supernatant mixed with 

chloroform/water (4:1:1.5, v/v/v). After decanting for 24 h the aqueous phase was separated 

and subjected to derivatization by mixing with 50 mM OPA, 1% 2-mercaptoethanol in 400 

mM borate buffer pH 9.5 (1:3, v/v) for 2 min. The OPA derivatives content were determined 

by reverse-phase HPLC (Shimadzu Corporation, Kyoto, Japan) using a Waters Spherisorb 

ODS2 C-18 column (4.6 μm, 4.6 × 250 mm) eluted at 0.8 mL min−1 by a linear gradient 

formed by solutions A (65% methanol) and B (50 mM sodium acetate, 50 mM disodium 

phosphate, 1.5 mL acetic acid, 20 mL tetrahydrofuran, 20 mL methanol in 1 L water, pH 

7.2). The gradient increased the proportion of solution A from 20 to 60% between 0 and 25 

min, 60 to 75% from 25 to 30 min, and 75 to 100% from 30 to 50 min. The column effluent 
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was monitored by a Shimadzu fluorescence detector (model RF-10AXL) operating at 

excitation of 250 nm and emission of 480 nm. Amino acids were identified by their 

respective retention times and values compared with those of an amino acid standard 

solution (AA-S-18, Sigma Aldrich, plus 250 mM asparagine, glutamine and gamma-

aminobutyric acid) and normalized by fresh weight of leaf tissue.

Gene expression analysis

For real-time PCR analysis, total RNA was extracted with Trizol (Invitrogen) and ethanol 

precipitation, and subsequently treated with Amplification Grade DNAse I (Invitrogen, 

Carlsbad, CA). The cDNA was synthesized using Im-Prom II reverse transcriptase 

(Promega, Fitchburg, WI), as recommended by the manufacturer. Gene expression analysis 

was carried out using Platinum SYBR ® Green qPCR Supermix-UDG (Invitrogen, 

Carlsbad, CA) in a Real-Time PCR System 7500 (Applied Biosystem, Foster City, CA). 

Gene expression was calculated with the 2−ΔΔCt method68 with Actin2 as internal standard69. 

All gene-specific primers used in this study are shown in the Supplementary Table 1.

In vitro and in vivo S-nitrosylation assays

Leaf extracts from 35S::FLAG-GSNOR1 in WT or nox1 plants were mock-treated or S-

nitrosylated in vitro with 500 μM of Cys-NO for 20 min in the dark. Excess Cys-NO was 

removed using Zeba desalting columns (Thermo Fisher Scientific) and proteins subjected to 

the biotin-switch technique as described previously43. Biotinylated proteins were pulled 

down with streptavidin agarose CL-6B (Thermo Fisher Scientific) and FLAG-GSNOR1 

protein detected by western blotting with an anti-Flag M2 clone antibody (1:2,000 or 

1:2,500, Sigma Aldrich, cat. no. F3165) (Supplementary Figure 8).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Nitrate uptake and reduction in plants with altered NO signalling
(a) Expression of the nitrate transporter marker genes NRT1.1 and NRT2.1 in roots of WT, 

nox1 and par2-1 plants was determined by qRT-PCR and normalized to expression of 

ACT2. Error bars represent SD (n = 3). (b) Effect of GSNO on nitrate-induced expression of 

NRT genes in roots. WT seedlings grown in half-strength MS medium (9.4 mM KNO3 and 

10.3 mM NH4NO3) were incubated for 3 hours in water with 1 mM nitrate (KNO3), in the 

absence or presence of GSNO or DEA/NO. NRT expression was determined by qRT-PCR 

and normalized to expression of ACT2. Error bars represent SD (n = 3). (c) NR activity and 

(d) nitrate (NO3
−) content determined in leaf extracts of WT plants and genotypes with 

enhanced (nox1 and par2-1) or impaired (nia1nia2 and 35S::FLAG-GSNOR1) NO 

homeostasis, after six hours of light. Data points represent means ± SD of three independent 

experiments. Asterisks indicate statistical differences from the WT (Student’s t test, P < 

0.05).
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Figure 2. Growth vigour and amino acid content of genotypes with impaired and enhanced 
(S)NO signalling
(a) Phenotype, (b) leaf area, (c) shoot fresh weight and (d) shoot dry weight of four-week-

old plants grown on perlite:vermiculite (1:1) under 12h/12h light/dark and irrigated three 

times a week with a MS nutrient solution containing 25 mM nitrate (half KNO3 and half 

NH4NO3) (black bars) or with 2.5 mM nitrate and 5 mM glutamine. Scale bar, 1 cm. Data 

points represent means ± SD (n = 15 plants). (e-g) Contents of primary transported amino 

acids in WT and gsnor1 leaves. Asn, asparagine; Asp, aspartate; Gln, glutamine; Glu, 

glutamate. Data represent means ± SD of three independent analyses. Asterisks indicate 

statistically significant difference from WT (P < 0.05, Student’s t test).
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Figure 3. Nitrate-derived NO suppresses activity of GSNOR1
(a) GSNO Reductase (GSNOR) activity, (b) Nitrate Reductase (NR) activity, (c) NO 

emission and (d) GSNOR1 gene expression measured in leaf extracts of WT and nia1nia2 

plants grown under low or high nitrate availability. Plants were grown in perlite:vermiculite 

(1:1) under a 12/12 hours light/dark period and irrigated three times a week with MS 

nutrient solution containing 2.5 mM or 25 mM nitrate (half KNO3 and half NH4NO3). All 

measurements were taken six hours post light exposure. Relative expression of GSNOR1 in 

(d) was determined by qRT-PCR and normalized to expression of ACT2. (e) GSNOR 

activity in genotypes with impaired and enhanced NO signalling. Plants were grown in soil 

with a photoperiod of 16/8 hours light/dark and irrigated with water as needed. Data points 

represent means ± SD of three independent experiments. Asterisks indicate significant 

differences from the WT (Student’s t test, P < 0.05).
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Figure 4. NO inhibits GSNOR1 by S-nitrosylation
(a) Dose-response of GSNOR activity in WT leaf extracts supplemented with the S-

nitrosylating agents DEA/NO and Cys-NO or the redox-active molecules GSH and L-Cys. 

(b) GSNOR activity in WT leaf extracts supplemented with indicated intermediates of the 

nitrogen assimilation pathway. (c) GSNOR activity in leaf extracts of WT plants fumigated 

with NO gas (60 ppm) or with normal air for 12h. (d) Cys-NO induced S-nitrosylation of 

GSNOR1 in vitro. Leaf extracts from 35S::FLAG-GSNOR1 plants in WT background were 

exposed to Cys-NO and subjected to the biotin switch technique. Total GSNOR1 protein 

ensures equal protein loading. The position of a 50 kDa marker is indicated. (e) In vivo S-

nitrosylation of GSNOR1 using a 35S::FLAG-GSNOR1 construction in WT and nox1 

background. SNO-GSNOR1 was analysed and detected as in (d) The position of a 55 kDa 

marker is indicated. Data points from (a) to (c) represent means ± SD of at least three 

independent experiments. Asterisks indicate significant differences from the controls 

(Student’s t test, P < 0.05).
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Figure 5. Schematic model for the control of nitrogen assimilation in plants through nitric oxide 
signalling
Nitrate (NO3

−) is taken up by nitrate transporters (NRT) in roots and reduced in leaves to 

nitrite (NO2
−) by nitrate reductase (NR). Besides the transport to chloroplasts where it is 

reduced to ammonium (NH4
+) and incorporated into amino acids (AA), nitrite can be 

reduced to nitric oxide (NO) by any favourable reducing power. NO is also thought to be 

generated from other sources, such as L-arginine. NO reacts with reduced glutathione (GSH) 

producing S-nitrosoglutathione (GSNO), the major cellular reservoir of NO. The levels of 

GSNO are controlled by the enzyme GSNO reductase (GSNOR), which catalyses the 

reduction of GSNO to oxidized glutathione (GSSG) and ammonium (NH3). GSNO inhibits 

nitrate uptake and reduction and NO S-nitrosylates and inhibits GSNOR preventing GSNO 

degradation. In this way NO, one of the end products of nitrogen metabolism, feedback 

regulates flux through nitrate assimilation pathways and controls its bioavailability by 

modulating its own consumption.
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