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ABSTRACT
The correlation between oral bacteria and dental implants failure has been reported. However, the effect 
and mechanism of bacteria during dental implants is unclear. In this study, we explored key genes and 
candidate gene clusters in human gingival fibroblasts (HGF) cells in response to Streptococcus oralis biofilm 
through weighted gene co-expression network analysis (WGCNA) and differential genes analysis using 
gene expression matrix, GSE134481, downloaded from the Gene Expression Omnibus (GEO) database. We 
obtained 325 genes in the module significantly associated with S. oralis infection and 113 differentially 
expressed genes (DEGs) in the S. oralis biofilm; 62 DEGs indicated significant correlation with S. oralis injury. 
Multiple immune pathways, such as the tumor necrosis factor (TNF) signaling pathway, were considerably 
enriched. We obtained a candidate genes cluster containing 12 genes – IL6, JUN, FOS, CSF2, HBEGF, EDN1, 
CCL2, MYC, NGF, SOCS3, CXCL1, and CXCL2; we observed 5 candidate hub genes associated with S. oralis 
infection – JUN, IL6, FOS, MYC, and CCL2. The fraction of macrophage M0 cells was significantly increased in 
biofilm treatment compared with control; expression of FOS and MYC was significantly positively correlated 
with macrophage M0 cells. Our findings present a fierce inflammation changes in the transcript level of 
HGF in response to S. oralis.
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Introduction

Dental implants are inserted to replace missing 
teeth and support crowns, bridges, and pros-
theses. With improvements in implant design 
and surgical strategies, the mean survival and 
success rates (>10 years) reached 94.6% and 
89.7%, respectively [1]. The success of osseoin-
tegration contributes to the survival of 
implants. Systemic diseases, therapeutic meth-
ods, and living habits affect biological processes 
such as diabetes, osteoporosis, HIV, radiother-
apy for neck and head cancers, and smoking 
can impact the outcomes of implants [2]. The 
duration of dental implants primarily relies on 
environmental soft tissues, which could form 
a protective seal against colonized bacteria [3]. 
Gingival fibroblasts, one soft tissue, are respon-
sible for re-epithelialization, microbial host 
defense, and the inflammatory response [4]. 
Healthy implants maintain a fully developed 
soft tissue seal [2,5].

Another critical factor related to implant suc-
cess and survival is pre-implant diseases, such as 
implant-associated infection (IAI), usually 
induced by wound contamination and pre- 
implant tissue infection [6]. Wang et.al found 
that suppuration at the site of peri-implant 
mucositis could increase the risk of microbial 
diseases [7]. There is a relationship between 
bacterial colonization on implant surfaces and 
peri-implant disease. Biofilm, formed on the 
implant surface, could trigger inflammatory 
destruction of the peri-implant tissues [5]. Oral 
bacteria, mainly streptococci, colonized 30 min 
after implant insertion [8]. The Streptococcus 
oralis has been widely reported in multiple sys-
temic diseases such as cancers [9], neutropenia 
[10], and cardiovascular diseases [11]. Previous 
studies have found that the colonization of 
S. oralis was considered to anchor other patho-
genic colonizers and enhance their pathogenicity 
[12,13]. Alexandra, et al. compared the effects of 
S. oralis biofilm on two peri-implant soft tis-
sues – human gingival epithelial cells (HGEps) 
and fibroblasts (HGFs) – and found that com-
pared with HGEps, HGFs were likely to respond 
to S. oralis and the abundance of S. oralis was 

beneficial to soft tissues when the mucosa is 
uninjured [14]. However, our understanding of 
the molecular mechanism underlying the 
response of HGFs to S. oralis remains unclear.

Weighted gene co-expression network analysis 
(WGCNA) was commonly employed to detect 
complex associations between genes and pheno-
types. Unlike strategies that rely on differentially 
expressed genes (DEGs) analysis, WGCNA 
focuses on gene co-expression and correlation 
networks, which was widely used for biomarkers 
and therapeutic targets. Genes can be grouped 
into a co-expression module based on their simi-
lar expression profiles [15]. WGCNA was 
reported to distinguish key pathways and genes 
in the dynamic progression of HCC [16]. 
WGCNA was also performed to identify the 
surrogate prognostic biomarkers for allergic 
asthma in nasal epithelial brushing samples 
[17]. LncRNA-mRNA network was analyzed 
after MEK1/2 inhibition based on WGCNA in 
pancreatic ductal adenocarcinoma [18]. Cancer 
stem cell characteristics in liver hepatocellular 
carcinoma were examined via WGCNA of tran-
scriptome stemness index [19]. Hoang et al. 
combined the DEGs analysis, WGCNA of 
expression matrix, and DNA methylation and 
found that alcohol could suppress KDM6B 
expression, which disorders the differentiation 
of odontogenic/osteogenic [20].

In this study, we constructed a weighted gene 
co-expression network and obtained gene clus-
ters that were significantly associated with 
S. oralis treatment in HGFs. In combination 
with DEGs analysis, we obtained 62 candidate 
genes related to S. oralis induced responses. We 
performed functional enrichment analysis to 
explore their potential roles in pathways and 
functional processes related to S. oralis infec-
tion. The protein–protein interactions were 
constructed to depict the interaction networks 
of candidate genes. We explored the S. oralis- 
related critical genes cluster and hub genes 
based on interactions of PPI analysis. The 
immune infiltration and the correlation 
between crucial genes and immune cells were 
analyzed.
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Materials and methods

1 Data collection and preprocess

To identify genes in human gingival fibroblasts 
cells in response to S. oralis infection, we searched 
the largest publicly available database, Gene 
Expression Omnibus (GEO). We selected the 
gene expression dataset GSE134481 [14], contain-
ing 24 samples for analysis. We annotated the 
expression data based on its sequencing platforms: 
GPL13497, Agilent-026652 whole human genome 
microarray. The resulting data were normalized 
using the quantile method via limma package for 
further analysis, and low expression genes were 
discarded.

2 WGCNA network construction and module 
identification

WGCNA was applied to construct the co- 
expression network of genes and collect significant 
modules highly associated with S. oralis treatment. 
Detailly, the detection was performed to identify 
and discard genes with missing value; cluster tree 
was constructed to test the outliers; network topol-
ogy analysis was performed to choose the soft- 
thresholding power and the adjacencies were cal-
culated and transformed into Topological Overlap 
Matrix (TOM); the corresponding dissimilarity 
was calculated and hierarchical clustering tree of 
genes was produced. Modules with very similar 
expression patterns were identified through The 
Dynamic Tree Cut and merged. Genes' relation-
ship to trait and important modules were quanti-
fied through Gene Significance (GS) and Module 
membership (MM). Genes in the most significant 
module associated with clinical traits were identi-
fied for further analysis. The eigengene network 
was visualized with the ‘TOMplot’ function of 
WGCNA with heatmap.

3 Collection of DEGs of significant modules

To obtain differentially expressed genes linked to 
S. oralis infection, DEGs analysis was carried out 
with the expression matrix collected from GEO. In 
detail, we constructed contrary treatments matrix 
of samples and performed DEGs with limma pack-
age based on normalized expression data; we 

defined DEGs with parameters |log2FC| > 1 and 
adjusted P-value < 0.05; The distribution of DEGs 
was depicted via volcano plot. Candidate DEGs 
associated with S. oralis treatment were obtained 
via overlapping DEGs and genes in significant 
modules and used for further analysis.

4 Functional enrichment analysis

Genes identified from the WGCNA’s most signifi-
cant modules, with differential expression, related 
to clinical features (S. oralis infection) were 
employed for functional analysis. The Database 
for Annotation, Visualization, and Integrated 
Discovery (DAVID) provides a comprehensive 
set of functional annotation tools to understand 
the biological meaning. DAVID database was used 
to identify enriched biological terms for Gene 
Ontology (GO) analysis. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis 
was performed through the DAVID database to 
analyze the enriched pathway. We depicted the 
GO enriched analysis with a circle plot; the 
KEGG enriched analysis was visualized with 
Cytoscape (https://cytoscape.org/).

5 PPI network construction

To illustrate the functional interactions among 
proteins, genes gained from the WGCNA and 
DEGs analysis were utilized to construct the PPI 
network. The PPI network was built using an 
online tool STRING (https://string-db.org/) and 
visualized via Cytoscape software (https://cytos 
cape.org/). We predicted genes cluster with 
MCODE, a plugin of Cytoscape; the interactions 
among proteins were calculated and ranked with 
‘Degree’ method to explore critical genes asso-
ciated with S. oralis biofilm challenge.

6 Immune infiltration analysis

To explore the correlation between immune cell 
distributions and S. oralis biofilm, the immune 
infiltration analysis was conducted using an online 
tool CIBERSORTx (https://cibersortx.stanford. 
edu/). The fractions of 22 immune cells were 
detected to estimate the abundance of different 
immune cell types. The samples were divided 
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into two groups: control and biofilm group 
according to the clinical information provided by 
submitters. The distributions of immune cells were 
visualized with a heatmap and violin charts. 
Correlation analysis between crucial genes and 
immune cells was calculated via the Pearson 
method and visualized with scatter plots.

7 Statistical analysis

The statistical significance of correlations was 
defined with student asymptotic p-value calculated 
with WGCNA package. Statistical significance of 
immune cells between two groups was determined 
with ANOVA p-value calculated with R package.

Results

1 Modules and genes related to S. oralis 
biofilm

Modules or clusters, formed with a set of genes 
with correlated expression pattern, play a critical 
role in regulating tissues or organs. To identify 
potential gene clusters involved in human gingival 
fibroblast cells in response to S. oralis biofilm, we 
conducted WGCNA with suitable soft- 
thresholding power using normalized expression 
matrix obtained from GSE134481. Hierarchical 
cluster analysis indicated samples were well clus-
tered and no outliers or strong clusters were 
observed. We analyzed network topology to 
choose the soft-thresholding power. The result 
showed that soft threshold 14 is the lowest 
power, with a scale-free topology fit index of 0.80 
and a relatively high average connectivity (Figure 
1a,1b). We chose a medium sensitivity level: 30 as 
the minimum module size and 2 as the deepSplit 
value. We chose a height cut of 0.25 (indicating 
the threshold of correlation is 0.75) to merge the 
modules; a total of 26 gene co-expression modules 
were detected: module ‘black’ with 2697 genes, 
‘blue’ with 2663 genes, ‘cyan’ with 1611 genes, 
‘darkgreen’ with 337 genes, ‘darkgrey’ with 325 
genes, ‘darkmagenta’ with 155 genes, ‘darkolive-
green’ with 186 genes, ‘darkred’ with 337 genes, 
‘green’ with 714 genes, ‘greenyellow’ with 569 
genes, ‘grey’ with 170 genes, ‘lightcyan’ with 447 
genes, ‘orangered4� with 60 genes, ‘paleturquoise’ 

with 215 genes, ‘plum1� with 112 genes, ‘purple’ 
with 862 genes, ‘red’ with 1072 genes, ‘saddle-
brown’ with 241 genes, ‘salmon’ with 1098 genes, 
‘sienna3� with 152 genes, ‘skyblue3� with 136 
genes, ‘steelblue’ with 232 genes, ‘turquoise’ with 
1144 genes, ‘violet’ with 188 genes, ‘yellow’ with 
756 genes, and ‘yellowgreen’ with 148 genes 
(Figure 1c,1d). The module ‘grey’ contained 170 
genes, suggesting that WGCNA performed well 
under these parameters.

To determine the highest level of association 
significance, the correlation between the mod-
ules and the clinical traits was analyzed. We 
observed that the ‘darkgrey’ module, containing 
325 genes, indicated most significant correla-
tion with S. oralis biofilm (Figure 2a). We 
depicted the correlation of the darkgrey module 
membership and gene significance and 
observed significant correlation (cor = 0.9 and 
p = 1.6e-118) (Figure 2b). The cluster and cor-
relation of all genes were depicted with heat-
map (Figure 2c).

2 Functional enrichment of genes related to 
S. oralis biofilm

Based on DEGs analysis, we secured 113 differ-
entially expressed genes (45 down-regulated 
genes and 68 up-regulated genes) and depicted 
with a volcano plot; crucial DEGs with adjusted 
P-value < 0.001 and |logFC| > 2 were labeled 
(Figure 3a). To obtain candidate genes with cor-
relation of S. oralis biofilm and different expres-
sion, we integrated and overlapped DEGs and 
genes in module ‘darkgrey’ and collected 62 
DEGs associated with S. oralis infection (Figure 
3b) for further analysis. GO enriched analysis 
signaled that 62 candidate genes could be sig-
nificantly (P < 0.05) enriched in 113 GO terms, 
including 94 terms in Biological Process (BP), 3 
terms in Cellular Component (CC), and 16 
terms in Molecular Function (MF). The detailed 
information was provided in Supplementary 
Table 1; the top three terms of each category 
were visualized with a circle plot (Figure 3c). 
We observed 23 significantly enriched (P< 0.05) 
KEGG terms; the results were transformed into 
network format and visualized with Cytoscape 
(Figure 3d).
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3 Protein–protein networks of consensus 
genes

Proteins participate in regulation of molecular 
processes via forming molecular machines with 
PPIs, instead of acting alone. To obtain ‘molecular 
machines’ of HGFs under S. oralis biofilm, the 
overlapping genes from the most prominent mod-
ules of WGCNA and DEGs were applied to con-
struct the PPI network. The interaction among 
proteins was visualized using Cytoscape (Figure 
4a). We collected genes with interactions (edges 
in the plot) and explored gene clusters with 
MCODE of Cytoscape. The gene cluster, contain-
ing 12 genes: IL6, JUN, FOS, CSF2, HBEGF, EDN1, 
CCL2, MYC, NGF, SOCS3, CXCL1, and CXCL2, 
with the highest score, was visualized with 
Cytoscape (Figure 4b). We obtained five hub  

genes – JUN, IL6, FOS, MYC, and CCL2 – with 
Cytoscape using ‘Degree’ method.

4 Immune cells associated with S. oralis 
biofilm

Inflammation, caused by bacteria, plays a major 
role in leading to dental implants failure. We ana-
lyzed proportion of immune cells with expression 
matrix; fractions of 22 immune cell types were 
depicted using a heatmap (Figure 5a). Different 
immune cells showed different distribution levels 
in two groups (Figure 5a). No significant differ-
ence was detected in fractions of T cells CD4 
native, T cells CD4 memory resting and plasma 
cells in S. oralis biofilm compared with control 
(Figure 5b). The fraction of macrophage M0 cell 

Figure 1. Network construction and module detection of GSE134481. (a) and (b) Show the network topology analysis for various 
soft-thresholding powers. The scale-free fit index (y-axis, a) and the mean connectivity (degree, y-axis, b) as a function of the soft- 
thresholding power (x-axis). (c) The cluster of modules eigengenes and the threshold (red line) of modules need to be merged; (d) 
Clustering dendrogram of genes with dissimilarity based on the topological overlap, together with assigned module colors.
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was significantly increased in biofilm treatment 
compared with control (Figure 5b). The correla-
tion analysis between crucial genes and immune 
cells showed that FOS and MYC were significantly 
positively correlated with macrophage M0 cells 
(Figure 6).

Discussion

Some scientists have hypothesized that certain 
groups are prone to implant failure (including 
dental implant failure) [21,22]. Thus, this suggests, 
in part, that there might be critical features such as 
the co-work of genes, metabolites, or molecular 
elements that interfere with the osseointegration 
process. However, our research focused on this 
subject is still limited [23–25]. We obtained 26 co- 
expressed gene modules and collected 325 genes in 

the ‘darkgrey’ module with most significant rela-
tion to S. oralis (cor = 0.9 and p = 1.6e-118) 
(Figure 1c,1d , and 2b). We overlapped 325 
S. oralis-associated genes acquired from WGCNA 
and 113 DEGs and obtained 62 candidate DEGs 
related to S. oralis infection (Figure 3b).

TNF, a leading mediator of apoptosis, inflam-
mation, and immunity, has been reported in 
numerous diseases, like sepsis, diabetes, osteo-
porosis, and rheumatoid arthritis. Campos et al. 
analyzed the relationship between the TNF-a 
(G-308A) gene polymorphism and early dental 
implant failure, which they did not observe due 
to limited samples [26]. Petković et al. found 
that the TNF-α along with other cytokines and 
chemokines could be used as markers for peri- 
implant tissue condition [27]. In our research, 
though we did not observe TNF-a, we found the 

Figure 2. Gene significance and module membership of GSE134481. The association of modules and traits were constructed (a); 
each row refers to a module eigengene, column to a trait. The relationship between MM and GS was depicted (b); c shows the 
visualization of the network.
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significant enrichment of tumor necrosis factor 
(TNF) signaling pathway, which contained 11 of 
62 candidate genes. Belibasakis et al. found the 
high similarity of gene expression of HGF in 
response to the various bacterial composition of 
subgingival biofilms [28]. We observed that the 
enrichment of candidate genes referred to multi-
ple pathways related to infection other bacteria 

like Salmonella infection and Legionellosis 
(Figure 3d). Similar to Ingendoh-Tsakmakidis, 
we noted the enrichment of genes on other 
immunity-related pathways such as cytokine- 
cytokine receptor interaction, NOD-like receptor 
signaling pathway, toll-like receptor signaling 
pathway, and wnt signaling pathway [14]. 
Several associated GO terms like a cellular 

Figure 3. Function of DEGs in significant modules. (a) Shows volcano plot of DEGs; yellow points refer to up-related genes, blue 
points to down-regulated genes. (b) Displays the Venn plot of genes in significant modules and DEGs. (c) Depicts the circle plot of 
GO terms (top three terms of each category) of overlapped genes; (d) represents the network of KEGG enrichment analysis, red 
diamonds refer to the ID of KEGG terms, circles to genes (yellow refers to up-regulation, blue to down-regulation).
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response to lipopolysaccharide, interleukin-1 
(IL-1), wounding, cytokine, immune, inflamma-
tory, growth factor activity, and MAPK cascade 
(Supplementary Table 1). Consistent with the 
previous study [14], exposed to S. oralis infec-
tion, HGFs indicated significant response asso-
ciated with inflammation in transcript level.

To explore critical genes during the response, 
we performed gene clusters and hub genes pre-
diction based on PPIs. We obtained one gene 
cluster with 12 genes – IL6, JUN, FOS, CSF2, 
HBEGF, EDN1, CCL2, MYC, NGF, SOCS3, 
CXCL1, and CXCL2 – including 9 genes involved 
in TNF signaling pathway which indicates crucial 
role of TNF signaling in initial response of HGFs 
to S. oralis infection (Figure 4b). Ingendoh- 
Tsakmakidis observed the downregulation of 
CXCL1, CXCL8, and CCL2 after treatment with 
A. actinomycetemcomitans biofilm [29]. The 
HBEGF-EGFR signaling pathway was reported 
in the osteoblastic process [30]. Hub gene analy-
sis revealed five hub genes including JUN, IL6, 
FOS, MYC, and CCL2 (Figure 4c). The up- 

regulation of IL6 was reported in multiple peri- 
implantitis groups, compared to healthy controls 
and was considered as a biomarker [31,32]. The 
stimulation of CCL2, another pro-inflammatory 
cytokine, was also widely reported in implant 
patients, especially with rough materials [33]. 
FOS, relevant to cell proliferation, differentiation, 
transformation, and apoptotic cell death, has 
been proven to be required in tooth eruption. 
Combined with function analysis, we found that 
the molecular regulation of HGFs in the confron-
tation of S. oralis challenge mainly focused on 
pro-inflammatory processes.

We analyzed the inflammation status of HGFs 
treated by S. oralis and normal cultures. Majority 
of immune cells showed no obvious difference in 
HGFs under S. oralis treatments, which can be 
observed from the bad cluster of two groups 
based on proportion of immune cells and boxplots 
of specific immune cells (Figure 5a,5b). Similarly, 
no optic difference of features such as cell mor-
phology of HGFs were obtained after 2 h biofilm 
challenge of S. oralis in previous research [14]. We 

Figure 4. Protein–protein interactions and functional analysis of S. oralis-related genes. (a) Shows the PPI of related genes; each 
node represents a gene, edge to interaction. (b) Shows the gene cluster of genes predicted by MCODE. (c) Depicts the predicted hub 
genes.
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Figure 5. Immune cell distribution between two groups. (a) The distribution of immune cells among samples was depicted with 
a heatmap. (b) The fraction of immune cells in the two groups was visualized using violin plots.
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noticed significant accumulation of macrophages 
M0 in HGFs under S. oralis challenges. 
Correlation analysis revealed that FOS and MYC 
expression was positively related to the proportion 
of macrophage M0 (Figure 6). The interactions 
between macrophages and dental or orthopedic 
metallic implants were widely reported [34,35]. 
Monocytes/macrophages were one of the first cell 
types that interact with dental and orthopedic 
metallic implants [35]. Previous study observed 
opposite results in another primary colonizer of 
oral cavity, Streptococcus sanguinis; they found 
that THP-1 macrophage cells were killed by 
Streptococcus sanguinis infection and the signifi-
cant increase of IL1B and TNF-a in macrophage 
cells [36]. We compared the proportion of 
immune cells in another type of soft tissue, 
human gingival epithelial cells (HGEp), and did 
not observe the significant change after S. oralis 
infection, which indicates that the variety of two 
cell types under S. oralis infection. Considering 

limited samples, future work needs to be done to 
explore the association and function of accumula-
tion of macrophages M0 under S. oralis challenges.

Besides genes with different expression, genes (like 
NFKBIA, XIAP, ERC1, MAP3K14, TNFSF13B, and 
BIRC3) located in WGCNA without significant change 
were enriched in multiple inflammation-related path-
ways such as NF-kappa B signaling pathway. He et.al 
identified that lipopolysaccharide (LPS) could stimulate 
the expression of interleukin-8 (IL-8) via NF-kappa B in 
human dental pulp stem cells (hDPSCs) [37]. Baus- 
Domínguez et al. reported the differential expression 
of TNFSF13B in immune and inflammatory disorders 
[38]. The TGF-beta signaling pathway is engaged in the 
whole process of tooth morphogenesis [39]. Takemura 
et al. found that the loading of titanium plates could 
trigger the apoptotic process of cells [40]. These illus-
trates the dramatic inflammation processes of HGFs 
caused by S. oralis in the initial phase when we could 
not observe significant change using conventional 
method.

Figure 6. Correlation analysis between macrophage M0 cells and crucial genes. The correlation between macrophage M0 cells and 
crucial genes were visualized with scatter plots.
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Conclusion

We identified 62 candidate genes under S. oralis infection 
in HGF through WGCNA and differentially expressed 
genes analysis. These genes are enriched in pathways 
related to immunity, inflammation, and infection; five 
hub genes – JUN, IL6, FOS, MYC, and CCL2 – and 
a cluster of 12 genes contribute critically in the response 
of HGFs to S. oralis. We observed dramatic inflammatory 
reaction of transcript level of HGF under S. oralis infec-
tion, which indicates the essentiality to secure the integral-
ity of implant-mucosa interface.
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