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Summary
Most methods for fast detection of identity by descent (IBD) segments report identity by state segments without any quantification of

the uncertainty in the endpoints and lengths of the IBD segments. We present a method for determining the posterior probability dis-

tribution of IBD segment endpoints. Our approach accounts for genotype errors, recent mutations, and gene conversions which disrupt

DNA sequence identity within IBD segments, and it can be applied to large cohorts with whole-genome sequence or SNP array data. We

find that ourmethod’s estimates of uncertainty are well calibrated for homogeneous samples.We quantify endpoint uncertainty for 77.7

billion IBD segments from 408,883 individuals of white British ancestry in the UK Biobank, and we use these IBD segments to find re-

gions showing evidence of recent natural selection. We show that many spurious selection signals are eliminated by the use of unbiased

estimates of IBD segment endpoints and a pedigree-based genetic map. Eleven of the twelve regions with the greatest evidence for recent

selection in our scan have been identified as selected in previous analyses using different approaches. Our computationally efficient

method for quantifying IBD segment endpoint uncertainty is implemented in the open source ibd-ends software package.
Introduction

Pairs of individuals within a population can share one or

more long segments of their genomes identical by descent

due to inheritance from common ancestors. Identity by

descent (IBD) segments are used in many applications,

including estimation of kinship,1–3 recent demography,4–8

mutation rates,9–12 and recombination rates13 and detec-

tion of recent selection.14–16

The three main types of test for recent positive selection

are based on population differentiation, admixture propor-

tions, and haplotype structure. The first type looks for var-

iants that differ markedly in frequency between popula-

tions.17,18 The second type looks for regions in which the

sample ancestry proportions in admixed individuals differ

from those elsewhere in the genome.19,20 One subtype of

this test involves archaic admixture, such as introgression

from Neanderthals into modern humans, and searches for

regions in which the frequency of the archaic haplotype in

a modern population is unusually high.21 The third type

looks for high-frequency haplotypes that are unusually

long.22,23 IBD-based selection scans fall into this cate-

gory.14 IBD scans look for genomic regions that have a

significantly higher than average number of IBD segments.

If the genome were completely neutral, and there are no

biases in detecting IBD segments or estimating their centi-

Morgan (cM) lengths, the expected number of IBD seg-

ments exceeding some cM length threshold would be con-

stant across the genome. In contrast, if certain haplotypes

in a genomic region have a selective advantage, the effec-

tive size of the population is reduced in that region, which

leads to a higher than expected number of IBD segments.
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IBD-based tests can also detect the effects of negative selec-

tion and balancing selection, since any type of selection

will tend to decrease the effective population size within

the genomic region.

An IBD segment for a pair of haplotypes is a segment of

DNA inherited from a single common ancestor, with no

crossovers occurring within the segment in the lineages

of the two haplotypes since the common ancestor.4,6

Within a shared IBD segment, sequence identity can be

disrupted by mutation and gene conversion. In addition,

genotype error can cause two haplotypes to appear to be

discordant at a position. At such positions, two ‘‘identical

by descent’’ haplotypes are in fact not identical. This

non-identity needs to be considered when detecting IBD

segments.

In the human genome, de novo single-nucleotide muta-

tions occur at an average rate of around 1.3 3 10�8 per

base pair per meiosis,12 which is similar to the average

rate of crossing over per base pair per meiosis. Thus, regard-

less of the number of generations since the most recent

common ancestor, an average of approximately one muta-

tion is expected in the lineage of an IBD segment.

For a pair of haplotypes drawn at random from an

outbred population, most of the genome is comprised of

very short segments of IBD, with a very large number of

generations to the most recent common ancestor. Since

each short segment contains an average of approximately

one discordance caused by mutation in addition to discor-

dances caused by gene conversion, a series of closely

spaced discordances is a clear indication that the genomic

interval containing the discordances is comprised of a

sequence of short IBD segments. In contrast, when one
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Figure 1. Uncertainty in IBD Endpoints
(A) Allele discordances between two haplotypes are represented as
crosses. We wish to estimate the endpoints of the IBD segment
that covers the focal position in the middle of the longest identity
by state (IBS) interval.
(B–D) Three of the possibilities for the shared IBD segment that
covers the focal position.
(B) The IBD segment contains the first discordance to the right of
the focal position.
(C) The IBD segment does not extend all the way to the discor-
dances and has short flanking segments of IBS.
(D) Two moderately long IBD segments are adjacent. In this case,
the second IBD segment is not of direct interest because it does not
cover the focal position.
observes a long segment without discordances, it is usually

(depending on the population’s demographic history)

highly probable that this segment is primarily comprised

of a single long IBD segment resulting from recent com-

mon ancestry.

There are three primary paradigms for IBD segment detec-

tion. The first paradigm considers a pair of haplotypes to be

either ‘‘IBD’’ or ‘‘not IBD’’ at each position in the genome.

A hidden Markov model, with pre-determined IBD propor-

tion and rates of transition between the IBD and non-IBD

states, may be used to obtain posterior probabilities of IBD

andnon-IBDat eachposition.24–29 This paradigmdeveloped

out of the analysis of pedigree data and is very natural in that

setting.30 However, for population data with unknown rela-

tionships, the dichotomy into IBD and non-IBD is artificial

and ignores the fact that each pair of haplotypes has a com-

mon ancestor at each position in the genome, although that

ancestor may have lived a long time ago.

The second paradigm considers the length of shared seg-

ments. A segment is identical by descent if it is inherited

from a common ancestor and exceeds a length threshold.

In practice, if identity by state (IBS) sharing extends

beyond some threshold, the segment is reported as iden-

tical by descent.31–33 This paradigm recognizes the poten-

tial existence of IBD segments that are shorter than the

threshold, but does not try to find them. The threshold is

typically chosen to be a length above which the accuracy

of the reported segments is high.31,32

The third paradigm considers two haplotypes to be iden-

tical by descent if their time to most common ancestor

(TMRCA) is less than some specified number of genera-

tions.16,34

In this work we take a different perspective. We recognize

that a pair of haplotypes is, strictly speaking, identical by

descent at every point in the genome. However, for any

given point in the genome, the endpoints of the IBD

segment containing that point are unknown (Figure 1A).

It is possible that one or more discordances at the end of

the segment are actually contained within the long IBD

segment (Figure 1B). It is also possible that IBD ends before

IBS ends, so that the end of the IBS segment is not part of

the long IBD segment, but instead contains one or more

neighboring short IBD segments (Figure 1C). In some cases,

two or more long IBD segments in a region can be mistaken

for a single long IBD segment (Figure 1D).35 Our approach

quantifies this uncertainty. In Results, we show that our

quantification is well calibrated, and we apply our method

to perform an IBD-based selection scan in the UK Biobank.
Material and Methods

Overview of Method
The input data for our method are phased genotypes and candi-

date IBD segments. Highly accurate phased genotypes can be ob-

tained from statistical phasing in large cohorts of accurately geno-

typed individuals.36 The candidate IBD segments may be obtained

using a length-based IBD detectionmethod such as hap-ibd.33 Our
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method estimates the posterior probability distributions of the

endpoints of the candidate IBD segments and outputs quantiles

and samples from these posterior distributions.

Before estimating segment endpoints, we apply a minor allele

frequency (MAF) filter to the phased genotypes that excludes var-

iants with frequency less than 0.1%. In Results we show that these

rare variants are not modeled as well as themore common variants

and that including these rare variants negatively impacts the accu-

racy of the endpoint estimates.

We model allele discordance within an IBD segment using a

user-specified error rate. Analysis results are not overly sensitive

to the exact choice of error rate (see Results). Discordances within

a segment are assumed to occur independently except when two

or more closely spaced discordances could have originated from

the same gene conversion event.

We also model IBS extending beyond the end of an IBD segment.

IBS segments canbe comprised ofmultiple IBD segments.We donot

try to directly model each of these IBD segments individually, but

instead model the distribution of IBS segments found in the data.

Short regions of IBS are modeled using the local context, because

the IBS length distribution varies across the genome due to factors

such as mutation rate and selection. Longer segments of IBS are

modeledusingchromosome-widedatabecause there is limited infor-

mation about longer IBS segments from the local context.

We estimate the probability of the observed discordance data as

a function of the IBD endpoints. We then use Bayes’ rule to obtain

the probability distribution of each IBD endpoint. We work from a

focal position within an IBS segment (Figure 1A) and estimate the

probability distributions for the positions of the left and right end-

points of the IBD segment that covers the focal position.

Notation
We wish to estimate the endpoints of the IBD segment covering a

position x0 for a given pair of haplotypes, H1 and H2. All positions

are measured in terms of genetic distance in Morgans, and
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haplotype phase is assumed to be known. In this description we

are only concerned with the estimation of the right endpoint of

the IBD segment covering x0. The estimation of the left endpoint

is similar. Index themarkers to the right of x0 by 1; 2; 3; .; M � 1,

where M � 1 is the last marker on the chromosome. Let the posi-

tions (in Morgans) of these markers be x1; x2; x3;.;xM�1. In addi-

tion, we add a nominal position xM ¼ xM�1 þ 1, which is located 1

Morgan beyond the last marker on the chromosome. This addi-

tional position is used to model IBD that extends beyond the

end of the chromosome. We define haplotypes H1 and H2 to

have discordant alleles at xM .

The IBS data, D is the observed IBS status (identical or discor-

dant) for the alleles on haplotypes H1 and H2 at the markers to

the right of x0. Let D[a,b] denote the IBS status at markers with

indices a%i%b.

Let ε be the average proportion of discordant markers within

IBD segments (the ‘‘error rate’’ mentioned above).We approximate

ð1�εÞ with 1 and thus omit terms of ð1�εÞ in our calculations.
Modeling the IBS Data for the IBD Segment
We model the IBS data, D, from the focal point x0 rightward as

being generated by two processes. The first, up to the IBD

endpoint R, requires that alleles should be identical except at a

small number of discordances due to mutation, gene conversion,

or genotype error. If discordances in the IBD segment are inde-

pendent and the right endpoint is in the interval ðxi; xiþ1Þ, the
probability of the data in the part of the IBD segment to the right

of the focal point (i.e., PðD½1; i�Þ) is eni , where ni is the number of

discordances between the first marker after the focal point and

the ith marker (inclusive) and factors of ð1�εÞ are approximated

by 1.

We use Bayes rule to obtain the posterior distribution of R, the

position of the right endpoint ðR > x0Þ. For each inter-marker in-

terval ðxi; xiþ1Þ, i ¼ 0; 1;.;M � 1, the probability that the right

endpoint is contained in the open interval ðxi; xiþ1Þ satisfies:

PðR˛ ðxi; xiþ1ÞjDÞfPðDjR˛ ðxi; xiþ1ÞÞPðR˛ ðxi; xiþ1ÞÞ
¼ eni PðD½iþ1;M�jR˛ ðxi; xiþ1ÞÞPðR˛ ðxi; xiþ1ÞÞ (Equation 1)

where ‘‘f’’ denotes proportionality. Normalizing the probabilities

in Equation 1 to sum to 1 over the i gives the posterior probability

that the endpoint occurs in each interval ðxi;xiþ1Þ.
The probability PðR˛ðxi; xiþ1ÞÞ is a prior probability for the posi-

tion of the right endpoint, given the position L0 of the left

endpoint (see Iterative Updating of Endpoints and Focal Point

below). We model the population as having constant effective

size 10,000 to obtain these probabilities. Details are given in Ap-

pendix A.

The remaining component in Equation 1 is the probability

PðD½iþ1; M� jR˛ðxi; xiþ1ÞÞ, which is the probability of the IBS

data to the right of the right IBD endpoint. We model this by

considering the points of discordance as being the points of

renewal in a renewal process. That is, we obtain probabilities of

the length of each segment that contains all of the non-discordant

positions up to and including the next discordance, with each

such segment being treated as being independent. The probabili-

ties of each of these segments is obtained empirically from the

observed data. Details are given in Appendix B.

Appendix C describes how to obtain the posterior cumulative

distribution function for the endpoint from the interval probabil-

ities given in Equation 1.
The American
Iterative Updating of Endpoints and Focal Point
In the preceding section, we assumed that the left endpoint L0 was

known, but it also needs to be estimated, and we do this estima-

tion iteratively. We start by using the left endpoint of the input

candidate IBD segment as the value of L0. After estimating the pos-

terior distribution of the right endpoint, we use this distribution to

obtain a new ‘‘right endpoint’’ R0 that is set equal to the 5th percen-

tile of this distribution. Percentiles are referenced by distance from

the focal point x0. Thus, small percentiles are located closer to the

focal point than larger percentiles. This choice of percentile is con-

servative (it reduces the estimated length of the IBD segment for

the purpose of these calculations) and thus is likely to speed the

convergence of the iterative approach. After estimating the right

endpoint distribution, we estimate the left endpoint using the

newly calculated value of R0 and obtain a new value of L0 as the

5th percentile of the left endpoint distribution. Then if L0 � x0 is

significantly altered (>10% change in length) from the previous

value, we use the new value of L0 to re-estimate the right endpoint

distribution and obtain a new value of R0. If R0 is significantly

altered from the previous value, we use the new value of R0 to

re-estimate the left endpoint, and so on. Whenever we change

the value of L0 or R0, we update the focal point x0 which is located

half-way between L0 and R0 in base coordinates. We perform a

maximum of 10 updates of each endpoint. In order to prevent

the focal point from moving outside the input candidate IBD

segment, we constrain L0 and R0 to stay within the input candi-

date IBD segment.
Estimation of Error Rate
After running the endpoint estimation algorithm, our ibd-ends

software estimates the error parameter ε by measuring the rate of

discordant alleles within inferred IBD segments. The procedure

is as follows. For each IBD segment that has been analyzed with

the endpoint estimation algorithm, take the interval bounded

by the posterior 5th percentile of the left and right endpoint distri-

butions. We use the 5th percentiles so that that we are unlikely to

include alleles beyond the end of the IBD segment. If the length of

this interval is<2 cM, ignore the segment.Within the genomic re-

gion bounded by these endpoints, examine the alleles on the two

IBD haplotypes. Count the number of mismatches and the total

number of positions examined. Across all segments, report the to-

tal number of mismatches, divided by the sum of the number of

positions examined in each segment. If the estimated error rate

does not differ significantly from the error rate used in the analysis

(e.g., less than a 3-fold difference), it is not necessary to re-run the

analysis with the new value (see Results). For a large study, a pilot

analysis on a small chromosome can be used to determine the er-

ror rate that should be used in the full analysis.
Modified Error Rate to Account for Gene Conversion
Gene conversions copy material from one haplotype to the other

during meiosis and can thus result in discordant alleles between

IBD haplotypes. The typical length of a gene conversion tract is

around 300 base pairs.37 Changes will occur only at positions at

which the individual in whom the gene conversion occurred

was heterozygous. Thus, many gene conversions have no effect

on allele discordance, but some gene conversions can result in

more than one allele discordance occurring in proximity. Since

these discordances are not independent events, we do not include

an error term ε for each one, since that would be overly harsh and

tend to result in premature truncation of the IBD segment.
Journal of Human Genetics 107, 895–910, November 5, 2020 897



Instead, when more than one discordance occurs within 1 kb, we

apply the error rate ε for the first discordance, and a less severe

gene conversion error rate of ε0 for each successive discordance

within 1 kb of the first discordance (by default, e ¼ 0:0005 and

e0 ¼ 0:1).
Analysis Pipeline
Our software, ibd-ends, requires the input of candidate segments

for which endpoints will be evaluated. In this work, we use hap-

ibd33 to find the candidate segments. For many applications,

one wishes to assess endpoint uncertainty for all IBD segments

that exceed a length threshold. In that case, the key consideration

is to avoid false negatives when detecting candidate IBD segments.

If a potential IBD segment is not included in the input data to ibd-

ends, it will not be included in the results. False positives (candi-

dates for which the true IBD segment is actually shorter than the

threshold) are less serious—they increase compute time but will

be shown to be unlikely to be true long IBD segments when the

segment endpoints are estimated. Thus, one should try to cast a

wide net when identifying candidate IBD segments.

When analyzing sequence data, the high density of variants and

the presence of genotype error can cause a high rate of discor-

dances between IBD haplotypes. The hap-ibd method permits

some discordances in a segment. It does so by finding seed IBS seg-

ments that exceed a certain length, and then extending these seg-

ments if there is another IBS segment that exceeds a minimum

extension length and that is separated from the seed segment by

a short non-IBS gap. One way to apply hap-ibd to sequence data

is to reduce the seed and extension lengths, which effectively in-

creases the permitted density of discordances, but this can signif-

icantly increase computation time. Here we take a different

approach. We reduce the marker density of the sequence data

for the hap-ibd analysis (but not for the ibd-ends analysis). We

choose a minimumMAF for hap-ibd that reduces the marker den-

sity to approximately that of a 600k SNP array, and we apply this

threshold using hap-ibd’s ‘‘min-mac’’ parameter. We retain the

highest MAF variants because these are the most informative for

detecting the candidate segments. This approach greatly reduces

the density of variants, and thus reduces the number of IBD seg-

ments that would otherwise go undetected due to genotype error.

Except as otherwise noted, genotype data were phased using

Beagle 5.1,38 input IBD segments for ibd-ends were obtained using

hap-ibd,33 and default parameters were used for all programs.
Simulation Overview
We generated three sets of simulated data to investigate three con-

ditions under which estimation of endpoints could be chal-

lenging: gaps in marker coverage, non-constant population size,

and heterogeneous samples.

We added genotype error to the simulated data for each marker

at a rate equal to the minimum of 0.02% and one-half the MAF for

the marker. This error rate produces a discordance rate of 0.04% in

markers with MAF > 0.04%, which matches the discordance rate

seen in the TOPMed data39 and is six times higher than the

0.0067% discordance rate seen in the UK Biobank data.40 We

also wanted to confirm that the method produces accurate results

with higher error rates, so we added error to one dataset at a rate

equal to the minimum of 0.1% and one-half the MAF for the

marker.

True IBD segments of length Rc cM were obtained from the

ancestral recombination graph. For a pair of haplotypes, we note
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their most recent common ancestor (MRCA) at grid-point posi-

tions located every c=10 cM along the simulated chromosome. If

the same MRCA is found at R7 grid-point positions, with gaps

comprising another MRCA (potentially due to gene conversion)

occurring only at isolated (i.e., not adjacent) grid-point positions,

we consider the pair to be identical by descent across the region.

We then check all MRCAs at positions located near the first and

last of the grid-points having the common MRCA to determine

the exact endpoint of the IBD segment. We discard any such seg-

ments with length <c cM.
Simulation of Constant Size Population with Variable

Marker Density
We generated 60 Mb of data for 2,000 individuals from a popula-

tion with constant size of 10,000 diploid individuals. The recom-

bination rate is 13 10�8 per base pair permeiosis. During themost

recent 5,000 generations, gene conversion initiations occurred at a

rate of 2 3 10�8 and gene conversion tracts had a mean length of

300 base pairs. We used SLiM v.3.3 to simulate the past 5,000 gen-

erations41 and msprime to add mutations and simulate the more

distant past.42,43 The mutation rate varied along the simulated re-

gion, with a new mutation rate each 100 kb that was uniformly

distributed between 0 and 3 3 10�8 per bp per meiosis. In addi-

tion, we made a 3 Mb gap by removing genetic markers between

positions 20 and 23 Mb, to represent a centromeric region. We

added genotype error at a rate of 0.02% as described above. We

used the simulated ancestral recombination graph to determine

the true endpoints of IBD segments of length >1 cM for all pairs

of individuals within a subset of 500 individuals so that we could

evaluate the accuracy of the inferred IBD segment endpoints.

We used the true (simulated) haplotype phase, including any al-

leles changed by the addition of genotype error, for all analyses of

these data. When detecting candidate IBD segments with hap-ibd,

we used a minor allele count threshold of 1,700 (minor allele fre-

quency of 0.425; see Analysis Pipeline), resulting in 10,760

markers after excluding markers in the 3 Mb gap region, which

corresponds to a mean density of one marker per 5.4 kb in the re-

maining 57 Mb. All markers with MAF > 0.1% (241,010 markers)

were used in the ibd-ends analysis.
Simulation of UK-like Population with Non-constant Size
We generated 60 Mb of data for 50,000 individuals from a UK-like

population. These simulated data have been described previ-

ously.33 The demographic model has a population size of 24,000

in the distant past, a reduction to 3,000 occurring 5,000 genera-

tions ago, growth at rate 1.4% per generation starting 300 genera-

tions ago, and growth at rate 25% beginning 10 generations ago.

The mutation rate is 1.3 3 10�8 per base pair per meiosis, while

the recombination rate is 1 3 10�8 per base pair per meiosis. Dur-

ing themost recent 5,000 generations, gene conversion initiations

occurred at a rate of 2 3 10�8 and gene conversion tracts had a

mean length of 300 base pairs. We used SLiM v.3.3 to simulate

the most recent 5,000 generations41 and msprime to add muta-

tions and simulate the more distant past.42,43 We generated two

copies of the data: one with 0.02% added genotype error and

one with 0.1% added genotype error as described above. We also

created a SNP-array version of the data with 0.02% genotype error

and 10,000 randomly selected markers with minor allele fre-

quency >5% (1 marker per 6 kb on average, corresponding to

approximately 500k markers genome-wide). We used the simu-

lated ancestral recombination graph to determine the true
ber 5, 2020



Figure 2. Method Performance with Uneven Marker Density
Sequence data on 2,000 individuals were simulated under a constant effective population size. Markers located between 20 and 23 Mb
were removed, and marker density varies every 100 kb (see Material and Methods). The true haplotype phase is used in the analysis.
(A) Quantile-quantile plot assessing the calibration of the estimated endpoint uncertainty. The actual quantile (y axis) corresponding to
a given nominal quantile (x axis) is the proportion of segments for which the reported nominal quantile of the right endpoint is greater
than the true right endpoint (points on the plot). The y ¼ x line is shown for comparison. Results for the left endpoints are similar but are
not shown.
(B) The y axis is the IBD rate, which is the percentage of pairs of haplotypes for which the position on the chromosome is covered by an
estimated IBD segment with length >2 cM for the haplotype pair. Estimated IBD segment endpoints are the posterior medians. The IBD
rate is calculated at 10 kb intervals.
endpoints of IBD segments of length>1 cM for all pairs of individ-

uals within a subset of 1,000 individuals so that we could evaluate

the accuracy of the inferred IBD segment endpoints.

When applying hap-ibd to the UK-like sequence data to provide

candidate IBD segments for ibd-ends, we applied aminor allele fre-

quency threshold of 0.45 (see Analysis Pipeline), resulting in

11,524 markers across the 60 Mb with a mean density of one

marker per 5.2 kb. All markers withMAF> 0.1% (198,566markers)

were used in the ibd-ends analysis of these candidate IBD

segments.

We also ran hap-ibd on the UK-like sequence data with the hap-

ibd parameters that are suggested for sequence data (min-seed ¼
1.0, min-extend ¼ 0.2, and a minor allele frequency filter of

10%)33 for comparison with the ibd-ends analysis.
Simulation of a Heterogeneous Population
We simulated 10 Mb of data for 500 individuals of African-like

ancestry and 500 individuals of European-like ancestry. The demo-

graphic history is the two-populationmodel of Tennessen et al.,44,45

implemented in stdpopsim.46 The combined sample represents an

ancestrally heterogeneous population, which violates the assump-

tion that all pairs of individuals in the sample have the same distri-

bution of IBS segment lengths. The recombination rate and muta-

tion rate are both 1 3 10�8 per base pair per meiosis. We did not

include gene conversion in the simulation. We simulated the data

with msprime,42 and we added genotype error at a rate of 0.02%

as described above. We used the simulated ancestral recombination

graph to determine the true endpoints of IBD segments of length

>0.5 cM for all pairs of individuals so that we could evaluate the ac-

curacy of the inferred IBD segment endpoints.

When applying hap-ibd to these data, we applied a MAF

threshold of 0.35 (see Analysis Pipeline), resulting in 2,215

markers across the 10 Mb with a mean density of one marker

per 4.5 kb. Although we used default settings for hap-ibd in other

analyses (except as noted), in this analysis we set the hap-ibd min-

seed and min-output parameters to 1 cM since there are very few

IBD segments of length >2 cM in these data. All markers with

MAF > 0.1% were used in the ibd-ends analyses (48,074 markers).
The American
UK Biobank Data
We phased QC-filtered UK Biobank data (487,373 individuals) us-

ing Beagle 5.1,38 and then used hap-ibd with default settings to

find candidate IBD segments among 408,883 white British indi-

viduals identified by the UK Biobank.40 We ran ibd-ends with

default settings on the candidate IBD segments from the white

British individuals to estimate the uncertainty in the endpoints

of these IBD segments. We used Bherer et al.’s European genetic

map which is based on family data from Iceland and other Euro-

pean populations.47 Variants located outside the bounds of the

map are excluded from the ibd-ends analyses because extrapolated

cM positions for markers outside the map can differ significantly

from their true cM positions, leading to substantial under- or

over-estimation of IBD segment lengths.
Results

Simulated Data with Variable Marker Density

Figure 2 shows the results of ibd-ends analysis on the simu-

lated sequence data with constant population size, variable

marker density, and a 3Mb gap inmarker coverage (seeMa-

terial andMethods for details). Even with the large gap and

uneven marker density, the endpoints uncertainty is well

calibrated (Figure 2A), and coverage of IBD segments across

the simulated region is even except for dips in coverage

across the gap and at the chromosome ends (Figure 2B).

61% of sampled endpoints are located within 5 kb of the

true endpoint, as are 72% of posterior median endpoints.

The ibd-ends analyses of these data used the default error

rate of 0.0005. The error rate estimated by ibd-ends was

0.00039.

UK-like Simulated Data

Figure 3 shows calibration and distribution of uncertainty

for the simulated UK-like data with a 0.02% genotype error

rate. The estimated uncertainty is well calibrated (upper
Journal of Human Genetics 107, 895–910, November 5, 2020 899



Figure 3. Method Performance on UK-like Simulated Sequence and SNP Array Data
The data comprise 50,000 individuals simulated from a UK-like demographic history (see Material and Methods), with a genotype error
rate of 0.02%. True IBD segment endpoints were determined for 1,000 individuals, and these individuals were used to generate the results
in this figure. The top row shows quantile-quantile plots that assess the calibration of the estimated endpoint uncertainty. The y ¼ x line
is shown for comparison. The actual quantile (y axis) corresponding to a given nominal quantile (x axis) is the proportion of segments
for which the reported nominal quantile of the right endpoint is greater than the true right endpoint. The bottom row shows histograms
of the right endpoint sampled from the estimated posterior distribution minus the posterior median right endpoint. The histograms
represent the distribution of uncertainty, averaged over segments. Histogram bin widths are 5 kb. Results for the left endpoints are
similar but are not shown. The left column is for analysis using the true haplotype phase. Themiddle column is for analysis using haplo-
type phase inferred using Beagle 5.1. The right column is for data thinned to match a SNP array with 500,000 markers genome-wide
(10,000 markers in the simulated 60 Mb interval), and with haplotype phase inferred using Beagle 5.1.
row of Figure 3), even when using inferred haplotype

phase and when using data thinned to represent a 500k

SNP array. Calibration is a little better with the inferred-

phase SNP array data rather than with the inferred-phase

sequence data, which may be because phasing of common

variants is more accurate than that of rare variants. As ex-

pected, average endpoint uncertainty, as measured by the

difference between the endpoint sampled from the uncer-

tainty distribution and the median endpoint, is much

higher when analyzing SNP array data rather than full

sequence data (lower row of Figure 3, right versus left

and middle columns). Results are also well calibrated

with smaller sample sizes (200 or 1,000 individuals;

Figure S1). We performed further analyses to evaluate

endpoint estimation accuracy with a higher genotype error

rate (Figure S2) and with different MAF thresholds

(Figure S3). The results are well calibrated with the higher

genotype error rate (0.1%) when using true haplotype

phase. When using inferred haplotype phase, the higher

genotype error rate results in phase errors that reduce accu-

racy. The results are not particularly sensitive to the choice

of MAF, but some miscalibration is observed when very
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rare variants are included (0.01% MAF), and uncertainty

increases when a high MAF threshold is used.

In a recent analysis, hap-ibd and GERMLINE gave the

highest accuracy among competing IBD segment detection

methods on sequence data,33 so we compared the preci-

sion of estimated IBD segment endpoints between hap-

ibd and ibd-ends for data with true haplotype phase

(Figure S4). Using recommended parameters for sequence

data for hap-ibd (min-output ¼ 2.0, min-seed ¼ 1.0, min-

extend ¼ 0.2, and a minimum minor allele frequency of

10%),33 22% of estimated endpoints were more than 50

kb from the true value when the genotype error rate was

0.02% and 43% were more than 50 kb from the true value

when the genotype error rate was 0.1%; the corresponding

percentages with ibd-ends were 10% and 12%. Further,

hap-ibd missed many segments when the error rate was

high. Only 58% of the IBD segments with true simulated

length >3 cM were found by hap-ibd with the recommen-

ded parameters when the genotype error rate was 0.1%.

Increasing the minor allele frequency to a high value, as

we did when running hap-ibd to provide candidate seg-

ments to ibd-ends, reduces loss of IBD segments. With
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Figure 4. Rate of IBD Segments along the Autosomes in UK Biobank White British Data
The x axis shows position along each chromosome. Chromosomes alternate in color. Notable genes and regions (LCT, MHC, OAS, and
TRPM1) located within the four highest peak regions are labeled. The y axis is the IBD rate, which is the percentage of pairs of haplotypes
for which the position on the chromosome is covered by an IBD segment with length >2 cM for the haplotype pair. IBD segment end-
points are posterior medians. The IBD rate is calculated at 10 kb intervals. The black dashed lines show the thresholds of 0.025% and
0.021% used for the results in Tables 1 and 2, respectively.
hap-ibd with a high minor allele frequency threshold

(45%), 88% of the segments with true length >3 cM were

found when the genotype error rate was 0.1%. However,

using hap-ibd with a high minor allele frequency filter

without estimating the segment endpoints with ibd-ends

significantly reduces precision (Figure S4).

We found that using an analysis error rate that is up to

three times higher or lower than the estimated error rate

gave well-calibrated results (Figure S5). When using an

analysis error rate that is outside this range, the estimated

error rates produced by ibd-ends are within the range of er-

ror rates that will provide good results in a subsequent

analysis. For example, analysis of 1,000 UK-like simulated

samples using an analysis error rate of 5 3 10�5 (ten times

lower than optimal) led to an estimated error rate of 4.2 3

10�4, while using an analysis error rate of 5 3 10�3 (ten

times higher than optimal) led to an estimated error rate

of 6.2 3 10�4, with both estimated error rates being close

to the optimal rate for these data of around 5 3 10�4. If

the estimated error rate differs from the analysis error

rate by more than 3-fold, we recommend repeating the

analysis using the estimated rate. Pilot results on a small

chromosome can be used to determine whether the anal-

ysis error rate needs to be changed from the default value.

Whenwe initially ran the analysis of the SNP-array data us-

ing the default error rate of 0.0005, we obtained an esti-

mated error rate of 0.00016, which is 4-fold lower, so we

re-ran the analysis with this new rate, and the results

shown in Figure 3 reflect this second analysis.

Compute times for ibd-ends analyses with default set-

tings were 1.3 h for the full UK-like data with 50,000 indi-

viduals (17 million IBD segments) and 0.5 h for 1,000 indi-

viduals (7,000 IBD segments) using a 24-core compute

node with 24 Intel Xeon Silver 4214 2.2 GHz processors

and 382 GB of memory.

Heterogeneous Simulated Data

In the heterogeneous simulation, half of the simulated in-

dividuals are from a population with an African demo-
The American
graphic history, while the other half are from a population

with a European demographic history (see Material and

Methods). Analyzing these data together violates the

assumption that all pairs of individuals have the same dis-

tribution of IBS segment lengths, but the results are not

excessively mis-calibrated (Figure S6A). For example, 18%

of the true endpoints are closer to the center of the IBD

segment than the nominal 10th percentile. When

analyzing the African individuals separately (Figure S6B)

or the European individuals separately (Figure S6C), the re-

sults are well calibrated.

UK Biobank Data

We determined the endpoint uncertainty distributions of

77.7 billion candidate autosomal IBD segments of length

2 cM or larger that hap-ibd detected in the 408,883 white

British UK Biobank individuals. In the downstream ana-

lyses, we use the posterior medians to define the IBD

segment endpoints. Analysis was parallelized by chromo-

some. Total wall clock computing time across all chromo-

somes was 7.5 h for hap-ibd and 144 h for ibd-ends using

a 24-core Intel Xeon Silver 4214 2.2 GHz compute node.

The estimated error rates from each chromosome varied

from 0.00027 to 0.00034 when using the default analysis

error rate of 0.0005.

There were 54.7 billion ibd-ends IBD segments with

length >2 cM. Every 10 kb along each chromosome, we

computed the number of IBD segments with length >2

cM covering the position (Figure 4). The IBD rate is the

number of IBD segments covering a position divided by

the number of haplotype pairs. Each individual contrib-

utes two haplotypes, and all haplotype pairs are considered

except those pairs within the same individual. A high rate

of IBD at a position is a signal of possible recent strong nat-

ural selection.14–16

The median IBD rate is 0.0132%. The standard deviation

of IBD rate varies by chromosome from 0.0020 to 0.019;

the chromosome with the highest standard deviation is

chromosome 2 because of the large spike in IBD rate
Journal of Human Genetics 107, 895–910, November 5, 2020 901



Table 1. Regions of Highest IBD Rate in UK Biobank White British Analysis

Chromosome Peak position (Mb) Region (Mb)a Max IBD % Notesb

2 135.78 135.05–138.42 (2q21-22) 0.1702 LCT (136.55–136.59) is known to be subject to recent
positive selection48

3 47.60 45.18–53.19 (3p21) 0.0264 chemokine receptor genes including CCR9 (45.93–45.94)
and CXCR6 (45.98–45.99); this region shows adaptive
introgression from Neanderthals49

3 123.44 122.36–124.69 (3q21) 0.0251 ADCY5 (123.00–123.17) is under long-term balancing
selection50

4 38.84 38.25–40.18 (4p14) 0.0270 Toll-like receptor genes including TLR1, TLR6, and TLR10
(38.77–38.86); this locus is known to be under positive
selection51

5 33.89 32.66–34.57 (5p13) 0.0262 SLC45A2 (33.94–33.98, previously known as MATP) is a
pigmentation gene that has undergone recent positive
selection in Europe52

6 24.87 24.01–28.96 0.0267 MHC locus containingHLA genes (28.48–33.45) is known to
be subject to strong selection53

33.96 32.70–36.27 (6p21-22) 0.0298

6 106.33 105.97–107.31 (6q21) 0.0271 PRDM1 (106.53–106.56); this locus shows a signal of recent
selection54

12 53.59 52.62–54.60 (12q13) 0.0260 Type II Keratins (KRT1-8; 52.63–53.32); this locus has
experienced adaptive introgression from Neanderthals55

12 113.46 111.64–114.11 (12q24) 0.0316 OAS locus (OAS1-3) (113.34–113.45); this locus has
experienced adaptive introgression from Neanderthals56

15 31.59 30.76–32.58 (15q13) 0.0542 TRPM1 (31.29–31.45), a pigmentation gene under selection
in non-Africans57

17 44.75 42.17–45.88 (17q21) 0.0274 17q21.31MAPT inversion (43.44–44.85);c H2 form has been
positively selected in Europe58

22 22.56 21.68–22.99 (22q11) 0.0267 UBE2L3 (21.90–21.98) is associated with multiple auto-
immune diseases59

Regions in which the maximum IBD percentage is at least 0.025% are shown. Positions are in GRCh37 coordinates.
aRegion in which the IBD rate is at least 80% of the value at the peak.
bSee the main text for further notes and references. Genes listed within this column are contained with the region given in the third column.
cPositions from Zody et al.60 lifted over from build 36 (chromosome 17: 40.80–42.20 Mb) to build 37.
around LCT (MIM: 603202) (see Figure 4), and the median

is smed ¼ 0:0027. There are 12 regions with an IBD rate

higher than 0.025% (Table 1), which is more than 43

smed higher than the median IBD rate. Eleven of the twelve

regions are known to be undergoing significant levels of se-

lection, indicating the success of this approach in finding

real signals of selection. Four of the regions have been

shown to have adaptive introgression from Neanderthals

(OAS locus, CCR9/CXCR6 [MIM: 604738, 605163], TLR1/

6/10 [MIM: 601194, 605403, 606270], Type II Keratins).

Five of the regions of selection play a role in immunity

(MHC locus, OAS locus, CCR9/CXCR6, TLR1/6/10,

PRDM1 [MIM: 603423]). Other regions are involved in

nutrition (LCT), skin and hair traits (SLC45A2 [MIM:

606202], Type II Keratins, and TRPM1 [MIM: 603576]),

and fertility (MAPT [MIM: 157140] inversion). In all cases,

the genes discussed below are completely within the re-

gion for which the IBD rate is within 80% of the corre-

sponding peak rate (column 3 of Table 1).

The highest selection signal, with an IBD rate of 0.17%,

comes from a chromosome 2 region containing LCT

which has a variant selected for lactose tolerance in Euro-

peans.48 The selected variant is thought to have arisen, or
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at least begun to increase in frequency, around the time of

the advent of cattle farming in Europe, around 7,500

years ago,61 and selection has been so strong that the

selected variant allele frequency is now around 75% in in-

dividuals of British descent.62 Since IBD is affected by

recent selection, it is not surprising that this signal is

most prominent.

In contrast, the immunity-related HLA genes in the ma-

jor histocompatibility complex (MHC) on chromosome 6

have been under selection over a much longer time

period,53,63 and this region has a much lower peak IBD

rate (0.030%) than the LCT region. Various sub-regions

within the MHC appear to have been subject to adaptive

introgression from Neanderthals and Denisovans, but it

is difficult to be certain because long-term balancing selec-

tion across the region can produce signals that look like

adaptive introgression.64

The second-highest signal, with an IBD rate of 0.054%,

comes from a chromosome 15q13 region containing

TRPM1, a pigmentation gene that has been shown to

have been subject to selection in non-Africans.57,65

The high IBD rate region on chromosome 12q24

(0.032% IBD rate) encompasses the OAS locus (OAS1-3
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Table 2. Secondary Regions from UK Biobank Selection Scan

Chromosome

Peak
Position
(Mb)

Region
(Mb)a

Max
IBD % Notesb

1 76.61 74.86–77.27
(1p31.1)

0.0218 ST6GALNAC3
(MIM: 610133)
(76.54–77.10)
is subject to
virus-driven
selective pressure81

1 152.93 151.75–153.65
(1q21.3)

0.0214 epidermal
differentiation
complex locus
(151.96–153.60);82

the locus with the
greatest differentiation
between humans and
chimpanzees;83 recent
positive selection
in humans80

4 184.59 184.30–185.39
(4q35.1)

0.0217 –

5 2.72 2.32–2.98
(5p15.33)

0.0221 –

16 18.08 17.36–18.58
(16p12.3)

0.0244 –

17 36.05 35.18–36.51
(17q12)

0.0239 HNF1B (MIM: 189907)
(36.05–36.10, previously
known as TCF2) is
associated with
diabetes84,85

Regions with maximum IBD rate between 0.021% and 0.025% are shown.
Positions (in Mb) are in GRCh37 coordinates.
aRegion in which the IBD rate is at least 80% of the value at the peak.
bGenes listed within this column are contained with the region given in the
third column.
[MIM: 164350, 603350, 603351]) which is involved in im-

munity.66 This locus has a Neanderthal haplotype present

at high frequency in non-Africans that has been subject to

positive selection.56

The high IBD rate region on chromosome 17q21

(0.027% IBD rate) encompasses the 17q21.31 MAPT

inversion, for which the H2 form has undergone positive

selection in Europe and is associated with increased

fertility and higher recombination rates in females in Ice-

land.58

The high IBD rate region on chromosome 4p14 (0.027%

IBD rate) contains several toll-like receptor genes (TLR1,

TLR6, and TLR10) that are involved in immunity, and

this region has experienced adaptive introgression from

Neanderthals.55 As well as the adaptive introgression,

this region shows other signals of selection, including

geographic differentiation within the UK51 and signs of

recent positive selection among non-Africans.67

The high IBD rate region on chromosome 6q21 (0.027%

IBD rate) contains the PRDM1 and ATG5 (MIM: 604261)

genes. This pair of genes is associated with autoimmune

diseases and cancer68–70 and shows a signal of recent selec-

tion in HapMap data.54

The high IBD rate region on chromosome 3p21 (0.026%

IBD rate) is a region of adaptive introgression from Nean-
The American
derthals.49,55 It contains chemokine receptor genes,

including CCR9 and CXCR6, that are involved in immu-

nity.71,72 This region is also associated with COVID-19 dis-

ease severity.73,74

The high IBD rate region on chromosome 5p13 (0.026%

IBD rate) contains SLC45A2 (formerly known as MATP), a

pigmentation gene that has undergone recent positive se-

lection in Europe.52,75

The high IBD rate region on chromosome 12q13

(0.026% IBD rate) contains the Type II Keratin genes,

which code filament proteins that provide a major struc-

tural role in epithelial cells.76 This region has experienced

adaptive introgression from Neanderthals.55

The high IBD rate region on chromosome 3q21 (0.025%

IBD rate) contains ADCY5 (MIM: 600293). This gene is

associated with birth weight77 and type II diabetes78 and

is under long-term balancing selection.50

The remaining locus on chromosome 22q11 (0.027% IBD

rate) has not previously been highlighted as being under se-

lection, to the best of our knowledge. This locus includes

UBE2L3 (MIM: 603721) which is associated with multiple

auto-immune diseases.59 These associations make this locus

a strong candidate for natural selection.79

We also investigated the next six regions with highest

IBD rates (Table 2; IBD rate between 0.021% and

0.025%). One of these regions is the epidermal differen-

tiation complex locus on chromosome 1q21.3 (0.021%

IBD rate), which is known to have undergone recent pos-

itive selection.80

The variability of IBD rate across the genome is much

lower for ibd-ends than for hap-ibd (Figure S7). The stan-

dard deviation of the ibd-ends IBD rate is 0.0064%,

whereas the standard deviation for hap-ibd is more than

three times higher at 0.022%. Ibd-ends is a much better

tool for investigating regions of potential selection than

length-based methods because length-based methods can

report artifactually high rates of IBD in some regions,

such as regions containing large gaps in marker coverage.

For example, IBD segment detection with four length-

based IBD detection methods produce a 40- to 3,000-fold

higher IBD rate at the chromosome 1 centromere in UK

Biobank data compared to the background rate.33

Misspecification of the genetic map can also lead to

spurious regions of high IBD rate in IBD selection scans,

because overestimation of genetic length will result in a

larger number of IBD segments that pass the length

threshold. To investigate the impact of map choice on

the IBD selection analysis, we analyzed a subset of

50,000 white British individuals with three maps. We

observed considerable differences in the regions of highest

IBD rate when using different maps (Figure S8). With the

HapMap linkage-disequilibrium (LD)-based map,86 there

are 20 regions with IBD rate >0.05% (compared to 2 with

Bherer et al.’s family-based map),47 with 3 of these occur-

ring at centromeres. Furthermore, the IBD rate has higher

variability when using the HapMap map, with a standard

deviation of 0.018% (compared to 0.0064% with Bherer
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et al.’s map in this 50,000-individual subset). LD-based

maps are known to be biased in regions of selection, with

genetic distances underestimated in these regions,87 which

would lead to an apparent decrease in IBD rate in these re-

gions. Thus, increases in apparent IBD rate with the LD-

based HapMap map compared to Bherer et al.’s pedigree-

based map must be due to other effects, such as unmod-

elled features of the HapMap data. The IBDrecomb map

is designed to obtain uniform IBD rate across the

genome.13 Thus regions of likely selection such as LCT

do not have high IBD rates when using this map. The anal-

ysis with IBDrecomb still has some regions of high IBD rate

(21 regions with IBD rate > 0.05%), which are concen-

trated at chromosome ends (where inflation of map dis-

tances is known to occur13) and at centromeric gaps. These

regions are likely to be artifacts.

The MHC region has a much higher selection signal

from analysis with the HapMap map than with Bherer

et al.’s map. The genetic lengths of the MHC are 3.29

cM for the HapMap map, 2.20 cM for Bherer et al.’s

map, and 1.44 cM for the IBDrecomb map. Three previ-

ous IBD-based selection analyses have used the

HapMap map,14–16 and two of these analyses also had

very strong MHC signals.14,16
Discussion

We presented a method for calculating the posterior prob-

ability distributions of IBD segment endpoints. We showed

that the method can be applied to large datasets, such as

the UK Biobank SNP array data on 408,883 white British

individuals and simulated sequence data on 50,000 indi-

viduals. In the UK Biobank data, we analyzed 77.7 billion

candidate IBD segments and found 54.7 billion IBD seg-

ments for which the length based on posterior median

endpoints is greater than 2 cM.

In addition to quantifying endpoint uncertainty, amajor

advantage of our method is that it handles genotype errors

and other discordances within IBD segments in a princi-

pled way, in contrast to many other methods for IBD

segment detection which use ad hoc approaches. Our

method does not directly account for haplotype phase un-

certainty, but statistical phasing of non-rare variants in

large array-typed cohorts is now extremely accurate,36

and technologies for generating highly accurate, phase-

resolved sequence data are becoming available.88

Unlike most existing methods for IBD segment estima-

tion, ibd-ends is designed for sequence data. We found

that a length-based IBD detectionmethod could not simul-

taneously detect IBD segments with high power and pre-

cisely determine endpoints, but the ibd-ends method de-

tects nearly all segments exceeding a specified length and

accurately determines the endpoints, even in the presence

of relatively high rates of genotype error.

IBD segments defined by the sampled endpoints or pos-

terior quantiles such as the median can be used in down-
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stream analyses. This can enable the inclusion of more

data in analyses. For example, when estimating genome-

wide mutation rates from IBD segments, it is important

to be confident that one does not count mutations that

actually lie outside the IBD segment. In the past, this has

been achieved by trimming 0.5 cM from the putative IBD

endpoints,10,12 but trimming using a small quantile of

the uncertainty distribution would be expected to result

in less trim (and hence more data), while maintaining ac-

curacy. Alternatively, methods could be developed that

directly account for endpoint uncertainty without

trimming.

Another analysis that could incorporate estimated IBD

segment end point uncertainty is IBD-based estimation

of recombination maps. Endpoints of IBD segments are

points of past recombination which are used to estimate

the map. Misspecification of IBD endpoints adds noise

and bias to the resulting map. Thus, the higher precision

of posterior median endpoints relative to endpoints from

other IBD detection methods could improve estimation

of recombination rate. One could also improve recombina-

tion map estimation by incorporating endpoint uncer-

tainty into an iterative procedure that uses the current esti-

mated recombination map to refine the estimates of IBD

segment endpoints.

IBD segment endpoint uncertainty could also be used to

improve IBD-based estimation of recent demographic his-

tory. For this application, it is not the actual IBD endpoints

that matter, but rather the distribution of IBD segment

lengths, which one could estimate by sampling endpoints

from the posterior distribution. A threshold of 2 or 3 cM on

IBD segment length is usually applied with current

methods since lengths of shorter segments have higher

relative uncertainty.4–8 With sampled endpoints, it may

be possible to use a lower length threshold and thus esti-

mate demographic history further into the past.

We found that the IBD segments obtained from sampled

endpoints provide excellent input data for an IBD-based

selection scan. Eleven of the twelve top regions in our

UK Biobank analysis are regions of known selection, and

the remaining region is a good candidate for selection.

Two particular features of our IBD-based selection analysis

contribute to its success. The first is accurate estimation of

IBD segment lengths, even in the presence of gaps in

marker coverage, which eliminates many spurious signals.

In contrast, length-based IBD detection methods tend to

have regions with inflated IBD rates,33 which would cause

spurious signals if used in a selection scan. The second is

the choice of genetic map. We found that for IBD-based se-

lection scans, pedigree-based maps based on actual obser-

vations of recombination produce more accurate results

than maps based on LD or on IBD sharing, because effects

of selection and other unmodelled features in local

genomic regions can bias LD-based and IBD-based maps,

and this bias results in spurious signals of selection.

The modeling underlying our method assumes a ho-

mogeneous population with the same distribution of
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IBS segment lengths for all pairs of individuals. Analysis

of a simulated combined African and European ancestry

sample indicates that violation of this assumption intro-

duces a little mis-calibration in the posterior endpoint

probabilities. One solution for future work would be to

adjust for ancestry of the samples, or for local ancestry

in the case of admixed samples.
Appendix A: Prior for IBD Length Distribution

In this appendix we derive a formula for the prior prob-

abilities PðR˛ðxi; xiþ1ÞÞ in Equation 1. Let Y ¼ R � L0 be

the length (measured in Morgans) from the left

endpoint, L0, of the segment to the right endpoint R.

Here we assume that the left endpoint is known, but in

practice we iteratively update its estimated value as

described in the main text. We write FðyÞ ¼ PðY%yÞ for

the prior probability distribution on Y. We model the

population size as constant diploid size N, with N ¼
10,000, which reflects the approximate average historical

size of out-of-Africa populations.

Summing over possible values for G, the number of gen-

erations to the common ancestor of the IBD segment, we

obtain

FðyÞ¼ PðY% yÞ ¼
XN
g¼1

PðY% yjG ¼ gÞPðG¼ gÞ

¼
XN
g¼1

�
1� e�2gy

��
1� 1

2N

�g�1
1

2N

¼ 1� �
2Ne2y � 2N þ 1

��1

In these calculations, we use the fact that the IBD

segment length conditional on the number of generations

g to the common ancestor is exponentially distributed

with rate parameter 2g,7 and the fact that the number of

generations to the most recent common ancestor in a pop-

ulation of constant size n is geometrically distributed.4 The

final expression for FðyÞ in the calculation is obtained by

applying the formula for a geometric series.

The prior distribution for the right endpoint is:

PðR% xÞ¼ PðY% x�L0Þ ¼ Fðx� L0Þ for L0 < x % xM

and the probability in Equation 1 that R falls in a certain

interval can be calculated as: PðR˛ðxi; xiþ1ÞÞ ¼ Fðxiþ1 �
L0Þ� Fðxi � L0Þ:
In Appendix C, we will require the inverse of F, which is

F�1ðpÞ ¼ 1
2 log

�
pþ2Nð1�pÞ
2Nð1�pÞ

�
.

Appendix B: Modeling the IBS Data beyond the IBD

Segment

In this appendix we describe how to calculate the condi-

tional probability PðD½iþ1;M�jR˛ðxi; xiþ1ÞÞ in Equation 1.

This is the probability of the IBS data to the right of the

right IBD endpoint, including a nominal discordant posi-
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tion indexed byM that is 1 Morgan beyond the last marker

on the chromosome.

Let miðjÞ ðjR1Þ be the ordered indices of the discordant

markers to the right of xi. The final value of this sequence

is index M. We approximate the IBS process to the right of

the IBD endpoint as a renewal process with a renewal every

time there is a discordant marker. Then the probability of

the IBS data to the right of xi given that the IBD endpoint

occurred in the interval ðxi; xiþ1Þ is:

PðD½iþ1;M�jR˛ ðxi; xiþ1ÞÞ
zPðD½iþ1;mið1Þ�Þ

Y
j> 1

PðD½miðj�1Þþ 1;miðjÞ�Þ

Each interval of IBS data in the preceding equation has

the form D½a; b�, where a and b are marker indices, and

has the property that the alleles on the two haplotypes

H1 and H2 are identical at all positions i satisfying

a%i < b, but are discordant at position b. Our approach

to estimating the probabilities of these IBS interval data

is to estimate the probability pa,b that two randomly cho-

sen haplotypes have identical alleles over the interval

[a,b] (i.e., for all marker indicies i with a%i%b). Then

we set PðD½a; b�Þ ¼ pa;ðb�1Þ � pa;b: In the case where

a ¼ b (due to two consecutive discordances), we define

pa;ðb�1Þ ¼ 1, so that PðD½b; b�Þ ¼ 1� pb;b which is the prob-

ability of discordance at marker b. We estimate pa,b
empirically from the data.

Our method for estimating pa,b depends on the length of

the interval [a,b]. For short intervals, we use data in the in-

terval so that the estimated probability incorporates the

local genomic context, such as high or lowmarker density,

high or low heterozygosity, and high or low levels of LD.

For long intervals, we will use chromosome-wide data. As

the interval length becomes longer, pa,b will tend to

decrease because the probability of observing a long IBS in-

terval for a random pair of haplotypes is small. Small prob-

abilities aremore difficult to estimate than long ones, so we

need to bring in data from the rest of the genome. Further-

more, long intervals represent long IBS (alleles at all

markers in the interval are identical except for the final

marker), and long IBS is likely to be the result of a long

IBD segment. Excluding the effects of selection, the distri-

bution of IBD lengths should be uniform across the

genome, so estimating the frequency of such long IBS seg-

ments from data across the genome is appropriate.

For short intervals, we estimate pa,b by the proportion

of pairs of haplotypes that have identical by state alleles

for markers in the interval [a,b]. We consider an interval

[a,b] to be a short interval if the estimated bpa;b satisfiesbpa;bR0:001 when it is estimated from the haplotypes in

the interval. We use 10,000 randomly sampled haplo-

types (or all haplotypes if the sample size is 5,000 or

fewer individuals) to estimate the short interval IBS

probabilities.

For longer intervals, we estimate pa,b using the global

distribution of sampled one-sided IBS lengths. A one-sided
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IBS length is the distance in Morgans from a random start-

ing position to the first non-IBS marker in the direction

toward the center of the chromosome for a random pair

of haplotypes. We estimate pa,b by the proportion of

sampled one-sided IBS lengths that are greater than

ðxb � xaÞ. When estimating the global IBS length, we

randomly select 1,000 positions and randomly sample

2,000 one-sided IBS lengths for each position. We then

exclude the sampled lengths at positions for which the

IBS length are significantly longer than average. We do

this by calculating the 90th percentile of the 2,000

segment lengths for each position. If the 90th percentile

at a position is more than 3 times the median 90th percen-

tile from all 1,000 positions, we discard the position. This

filtering protects against selecting positions near gaps in

marker coverage.
Appendix C: Obtaining the Posterior Cumulative

Distribution Function for the Endpoint

In this appendix we describe how to calculate the cumula-

tive distribution function of the posterior distribution for

the right endpoint of the IBD segment, as well as how to

sample from this posterior distribution.

We assume that the data D are not informative about

the location of the endpoint within the inter-marker

interval given that the endpoint occurs within the inter-

val, i.e., we assume that Pðxi < R % xjxi < R < xiþ1;DÞ ¼
Pðxi < R % x jxi < R < xiþ1Þ for xi < x < xiþ1, since

there are no data within the interval. Write pi ¼
PðR%xijDÞ, which can be estimated using Equation 1

with the procedures described above. As in Appendix A,

we write Y ¼ R� L0 for the length of the segment (in

Morgans), and FðyÞ ¼ PðY%yÞ for the prior on IBD

lengths. For x satisfying xi < x < xiþ1:

Note that pi ¼ PðR%xijDÞ is conditional on the data,

whereas Fðxi �L0Þ ¼ PðY%xi �L0Þ ¼ PðR%xiÞ is a prior

probability and is not conditional on the data.

Then to find the pth quantile, we want to find xðpÞ such
that PðR < xðpÞ

��DÞ ¼ p. Solving the above equation for

x ¼ xðpÞ, we obtain
PðR% xjDÞ¼PðR% xijDÞ þ Pðxi < R%

¼ PðR% xijDÞ þ Pðxi < R%

¼ PðR% xijDÞ þ Pðxi < R%

¼ PðR% xijDÞ þ Pðxi < R

Pðxi < R %

¼ pi þ Pðxi � L0 < Y % x

Pðxi � L0 < Y % xiþ

¼ pi þ Fðx� L0Þ � Fðxi � L

Fðxiþ1 � L0Þ � Fðxi �

906 The American Journal of Human Genetics 107, 895–910, Novem
x pð Þ ¼ L0 þ F�1

�
F xiþ1 � L0ð Þ � F xi � L0ð Þð Þ p� pi

piþ1 � pi

þ F xi � L0ð Þ
�
:

The formula for F�1ðpÞ can be found in Appendix A.

In order to obtain a sampled value from the posterior

probability of the endpoint, we first generate a realization

u from the Uniform(0,1) distribution, and we then obtain

xðuÞ using the above formula with u in place of p, which is

then a realization from the desired distribution. This is an

example of using the inverse transform principle to sample

from a distribution.89
Data and Code Availability

The ibd-ends software is freely available under the open

source Apache License 2.0 (see Web Resources).

The UK Biobank IBD rates shown in Figure 4 are avail-

able from Mendeley Data https://doi.org/10.17632/

m4nxyv6rw8.1
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.09.010.
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