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Clinical applications of smart wearable sensors
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SUMMARY

Smart wearable sensors are electronic devices worn on the body that collect, pro-
cess, and transmit various physiological data. Compared to traditional devices,
their advantages in terms of portability and comfort havemade them increasingly
important in the medical field. This review takes a unique clinical physician’s
standpoint, diverging from conventional sensor-type-based classifications, and
provides a comprehensive overview of the diverse clinical applications of wear-
able sensors in recent years. In this review, we categorize these applications
according to different diseases, encompassing skin diseases and injuries, cardio-
vascular diseases, abnormal human motion, as well as endocrine and metabolic
disorders. Additionally, we discuss the challenges and perspectives hindering
the development of sensors for clinical use, emphasizing the critical need for
interdisciplinary collaboration between medical and engineering professionals.
Overall, this review would serve as an important reference for the future direc-
tion of sensor devices in clinical use.
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INTRODUCTION

Traditional healthcare systems encounter numerous barriers in chronic disease monitoring, personalized

medicine, disease prevention, and early intervention. With the increasing prevalence of chronic diseases

among the elderly, continuous monitoring and long-term care are necessary. However, hospitals in

resource-limited areas struggle to provide long-term monitoring, which may result in disease progression

and significantly impact the patients’ quality of life.1,2 For instance, in the case of diabetes, inadequate

monitoring and control of blood sugar can eventually lead to chronic complications like atherosclerosis,

diabetic nephropathy, diabetic retinopathy, and peripheral neuropathy.3,4 Additionally, traditional health-

care systems tend to focus on diseases rather than recognizing the unique characteristics of individual pa-

tients. This may result in suboptimal treatment outcomes. Moreover, traditional healthcare systems often

prioritize disease treatment over prevention, causing patients to delay seeking medical services until sig-

nificant symptoms manifest. Consequently, opportunities for early treatment are missed. In contrast, real-

time healthcare systems have gained considerable attention, aiming to offer immediate diagnostic and

therapeutic services to patients.5 Medical devices that facilitate timely diagnosis and disease monitoring

are of great importance.

Smart wearable sensors are electronic devices worn on the body that can collect, process, and transmit

various physiological data. Compared to traditional monitoring devices, these new wearable devices are

continuously improving in portability, comfort, and detection accuracy.6 On the one hand, through wear-

able sensors, healthcare professionals can track patients’ abnormal conditions and receive alerts when

medical attention are required. This facilitates early intervention and prevents disease deterioration.7

On the other hand, wearable sensor devices can provide home-based monitoring solutions for chronic

disease management, enabling patients to track and manage their own health status.8 Wearable sensors

are becoming increasingly important in the field of healthcare as they can improve patient care and

outcomes.

In the era of Internet of Things (IoT) and fifth-generation (5G) wireless technology, data captured by wear-

able devices can be conveniently transmitted to the cloud. This enables healthcare professionals to gain

insights into patients’ health status and formulate diagnostic and treatment plans.9,10 With the ongoing ad-

vancements in data processing technologies like cloud computing, machine learning, and artificial intelli-

gence, the raw sensor data can be transformed into clinically interpretable information and the abnormal
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data can be identified. We believe that the integration of wearable sensor-based diagnosis, monitoring,

and wireless communication may provide possibility to real-time medical services.11,12

This review summarizes the clinical applications of wearable sensor devices in various clinical scenarios,

including skin diseases and injuries, cardiovascular diseases (CVDs), abnormal human motion, endocrine

and metabolic disorders, drug concentration monitoring, and heavy metal toxicity detection. Although

wearable sensors hold significant potential, challenges persist in their clinical implementation. Further

research and collaboration between medical and engineering professionals are crucial to bridging this

gap and deploying more sensor devices in clinical settings to serve patients. This will ultimately drive

the transition of diagnosis and treatment from hospital-based to home-based, alleviating the burden on

healthcare resources and illuminating the future of healthcare systems.
WEARABLE SENSOR APPLICATIONS IN HUMAN BODY SYSTEMS

Detection of skin diseases and injuries

The skin is the largest organ of the human body and serves as the primary interface for wearable sensor

devices. It’s a complex organ comprising the epidermis, dermis, and subcutaneous layers, interconnected

by an intricate network of blood vessels and nerves.13 The epidermis is mainly composed of keratinocytes

and serves as a critical barrier. Its outermost layer acts as protection against mechanical stimulation, pre-

vents cellular water loss, and helps maintain thermal homeostasis. The dermis, located between the

epidermis and subcutaneous layers, is primarily comprised fibroblasts that synthesize and secrete collagen

fibers, providing the skin with mechanical resistance and tensile strength. The dermis also houses

numerous blood vessels that regulate heat loss by constricting or dilating. The subcutaneous layer consists

mainly of connective tissues, adipose cells, and extensive blood vessels. This layer functions as a mechan-

ical cushion that safeguards the skin from external impacts and aids in maintaining a consistent body

temperature.14

Skin disorders can affect one or more layers of the skin, disrupting its essential functions. These conditions

can be broadly classified as inflammatory skin diseases, skin tumors, and wound healing disorders. The

assessment of skin diseases by visual inspection lacks objectivity and has limitations in providing informa-

tion about the affected skin layers. Therefore, there is a need for precise and quantitative methods to

detect and monitor skin diseases and injuries. The applications of wearable sensor devices in the field of

skin detection are discussed in separate sections in the following text.

Inflammatory skin diseases

Inflammatory skin diseases such as atopic dermatitis (AD) and psoriasis have different underlying causes,

including genetic predisposition, immune dysfunction, and environmental factors. These diseases can

affect different skin layers and lead to symptoms like itching, redness, and rash, significantly impacting pa-

tients’ quality of life.15 Wearable sensor devices offer potential assistance in diagnosing and monitoring of

inflammatory skin diseases by providing objective and quantitative data on skin parameters.

Pruritus, or itching, is a typical characteristic of AD and can impose a significant burden on patients with

moderate to severe AD.16 However, quantifying itchiness poses challenges due to its subjective nature.

While direct visual inspection of scratching in video recordings is considered the gold standard, it is

labor-intensive and impractical for clinical use. To address this, Chun et al. developed the advanced acous-

tomechanic (ADAM), a wearable sensor device that accurately detected scratching signals produced by fin-

gers or wrist movements (Figure 1A). The device has been clinically validated in both children and adults,

providing a highly accurate approach for the objective assessment of pruritus.17,18

Accurate measurement of skin hydration is crucial for both dermatological research and clinical practice.

Skin hydration is considered a valuable surrogate marker for skin barrier function and overall skin health.

Madhvapathy et al. have presented a soft, reusable, battery-free, and noninvasive skin hydration sensor

(SHS) that could accurately measure skin water content irrespective of body location or environmental fac-

tors. The researchers utilized SHS to detect differences in skin hydration at lesional sites of patients with AD

or psoriasis and monitored the efficacy of moisturizer treatment.19 In 2022, Shin et al. optimized the SHS to

enhance its sensitivity and accuracy (Figure 1B).20 This innovative approach assists in the diagnosis and

monitoring of treatment for patients with inflammatory skin diseases.
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Figure 1. Wearable sensor detection of skin diseases and injuries

(A) Comparison of results obtained with an advanced acoustomechanic (ADAM) device on the hand and an Apple Watch with the Itch Tracker mobile

application. Reproduced with permission, from Chun et al.,17 Copyright 2021, AAAS.

(B) Image of noninvasive skin hydration sensors and evaluation of the hydration levels in atopic dermatitis and psoriasis. Reproduced with permission, from

Madhvapathy et al. and Shin et al.,19,20 Copyright 2020, AAAS.

(C) Screening of tyrosinase in porcine skin using the wearable bandage and microneedle electrochemical sensors. Reproduced with permission, from Ciui

et al.,25 Copyright 2018, Wiley-VCH.

(D) Photographs of field-effect transistor-based biosensor (bio-FET) arrays that are flexible and conformably attached to the skin on the human neck in both

the flat and stretched states. Reproduced with permission, from Ren et al.,26 Copyright 2022, Elsevier.

(E) Quantitative monitoring of wound healing progress over the course of 30 days using an epidermal electronics system (EES). Reproduced with permission,

from Hattori et al.,29 Copyright 2014, Wiley-VCH.

(F) Wound dressing for real-time pH monitoring. Reproduced with permission, from Mariani et al,31 Copyright 2021, American Chemical Society.

(G) A conceptual diagram of binary wearable system and prediction of inflamed wound healing stages using AI. Reproduced with permission, from Kalasin

et al.,32 Copyright 2022, American Chemical Society.
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Melanoma

Melanoma originates from melanocytes and is the most common type of skin tumors. It displays aggres-

sive behavior and undergoes malignant transformation throughout the epidermis and superficial dermis

via blood and lymphatic vessels.21 Dermoscopy is a widely used noninvasive technique for the early

detection of melanoma, while heavily relying on dermatologists’ expertise.22 In addition to noninvasive

morphological examinations, researchers are also exploring the detection of melanoma biomarkers.

Immunohistochemistry can be used to stain multiple biomarkers, with lactate dehydrogenase (LDH) in

serum being the most specific biomarker.23 However, these techniques remain complex and time-

consuming.

Recent researches have focused on faster and simpler methods for detecting other melanoma biomarkers,

such as the enzyme tyrosinase (TYR). TYR is a polyphenol oxidase involved in melanin synthesis and its

overexpression and accumulation in skin cells associates with melanoma development.24 Ciui et al. have

introduced novel integrated wearable bandage and microneedle electrochemical sensing platforms for

detecting TYR on both the skin surface and subcutaneously. They validated their approach by using a

porcine skin melanoma model and obtained accurate screening results (Figure 1C).25 In another study,

Ren et al. reported the use of wearable field-effect transistor-based biosensors (bio-FETs) for tyrosinase

sensing in melanoma screening (Figure 1D).26 This sensor device exhibited excellent mechanical flexibility
iScience 26, 107485, September 15, 2023 3
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to conform well to the skin. These studies presented wearable sensors capable of screening for TYR in both

skin and deep tissues, providing a promising, rapid, and convenient tool for future melanoma tissue

screening.

Wound healing

For dermatological surgery, monitoring wound healing is crucial for evaluating treatment effectiveness and

ensuring optimal healing outcomes. Accurate and timely assessment of wound healing is essential for pre-

venting complications like infections, delayed healing, and scarring. However, traditional methods such as

visual inspection and manual measurements can be subjective, time-consuming, and may not capture

changes in the wound over time. Confocal laser scanning microscopy and spectroscopy are quantitative

imaging techniques that can detect microscopic changes of the epidermis and dermis morphology. How-

ever, these methods often require patient’s immobilization during testing.27,28

To address these limitations, sensor devices for woundmonitoring have emerged as a promising approach.

These devices provide objective, real-time, and continuous data on wound healing parameters like tem-

perature, pH, and so on. Hattori et al. introduced an innovative epidermal electronics system (EES) that re-

corded time-dynamic temperature and thermal conductivity of the skin tissue, providing valuable insights

into the healing process (Figure 1E).29 Noninvasive assessment of wound pH is also useful in determining

wound status and evaluating the effectiveness of therapeutic interventions, as a slightly acidic pH promotes

optimal healing by controlling collagen formation, increasing fibroblast activity, and inhibiting bacterial

proliferation.30 Mariani et al. developed a smart dressing that enabled real-time monitoring of wound

pH, which assessed wound status without disturbing the wound bed (Figure 1F).31 Additionally, Kalasin

et al. introduced a wearable system for non-contact monitoring of wounds. This binary system comprised

a flexible artificial intelligence (FLEX-AI) wearable sensor and a smart bandage that communicated via

radio frequency identification (RFID) technology. This contactless healthcare technology utilized AI to

determine the recovery stage of inflammatory skin disease lesions, whether they were in inflammation, pro-

liferation, or remodeling. This provides objective parameters for evaluating treatment effectiveness and

guiding medication plans for dermatologists (Figure 1G).32

Detection of Cardiovascular Diseases

CVDs encompass a range of conditions that affect the heart and blood vessels, contributing to reduced

quality of life and high mortality rates. CVDs account for approximately 17 million deaths annually, which

represent 31% of total global deaths.33 Urgent attention is needed for effective monitoring and manage-

ment of these diseases. Heart rate and rhythm, blood pressure, and blood oxygen saturation are crucial

parameters for CVD diagnosis and monitoring. However, traditional measurement methods lack real-

time monitoring capabilities and can be challenging to operate without professional guidance.

Fortunately, advancements in sensor technology have yielded portable, high-precision, real-time, and

noninvasive devices for monitoring these parameters.

Heart rate and rhythm

Cardiac arrhythmias are abnormalities in the frequency, rhythm, origin site, conduction speed, or excitation

sequence of cardiac impulses. They include atrial fibrillation, ventricular fibrillation, and supraventricular

tachycardia, which can lead to serious consequences such as heart failure or even death. The frequency

of cardiac impulses is known as heart rate (HR), typically ranging between 60 and 100 beats per minute

in healthy adults at rest.34 Electrocardiogram (ECG) electrodes are commonly used to record heart activity

signals, with traditional gel-assisted Ag/AgCl wet electrodes applied to limb and chest areas. However,

such electrodes may not be suitable for long-term wear due to the poor gel adhesion and water evapora-

tion. The Holter monitor can capture ECG changes over 24 h but requires multiple electrodes affixed to the

patient’s chest, resulting in complex wiring, lack of portability, and potential disconnection risks.

Advances in technology have led to the development of skin-adhesive dry electrodes for ECG measure-

ments. Zhang et al. have fabricated a fully organic, self-adhesive, and stretchable dry electrode with excel-

lent skin compliance and high conductivity. It maintained its conductive properties even when stretched

and adhered well to dry and wet skin conditions. Compared to standard Ag/AgCl gel electrodes, it ex-

hibited lower contact impedance when applied to the skin, resulting in significantly reduced noise levels

during static and dynamic detection (Figure 2A).35 Furthermore, electronic textiles, like sewable electrodes

and signal transmission wires made of carbon nanotube threads (CNTT), offered comfort in wearable
4 iScience 26, 107485, September 15, 2023



Figure 2. Wearable sensor detection of CVDs

(A) ECG detection using dry electrodes. Reproduced with permission, from Zhang et al.,35 Copyright 2020, Nature Publishing Group.

(B) Heart rate monitoring with carbon nanotube threads (CNTT) textile. Reproduced with permission, from Taylor et al.,36 Copyright 2021, American

Chemical Society.

(C) Portable ECG monitoring with Zio Patch (iRhythm Technologies, Inc, San Francisco, Calif) and AT-Patch (ATsens, Seongnam, Korea).

(D) Machine learning-enabled textile triboelectric sensor for estimating systolic and diastolic blood pressure. Reproduced with permission, from Fang

et al.,41 Copyright 2021, Wiley-VCH.

(E) Weaving constructed self-powered pressure sensor (WCSPS) for blood pressure measurement. Reproduced with permission, from Meng et al.,42

Copyright 2018, Wiley-VCH.

(F) Wearable ultrasonic device for blood pressure monitoring across central and peripheral arteries. Reproduced with permission, from Wang et al,44

Copyright 2018, Nature Publishing Group.

(G) Optoelectronic system with skin-like properties. Reproduced with permission, from Li et al.,45 Copyright 2020, Oxford Univ Press.

(H) Wireless blood pressure monitoring in PICU patients with soft, skin-interfaced devices. Reproduced with permission, from Liu et al.,46 Copyright 2021,

Wiley-VCH.

(I) SpO2 measurement using organic pulse oximeter with exceptional flexibility. Reproduced with permission, from Yokota et al.,48 Copyright 2016, AAAS.

(J) Wearable pulse oximeter for finger and toe, fabricated by 3D printing technology. Reproduced with permission, from Abdollahi et al.,49 Copyright 2020,

Wiley-VCH.

(K) Comparison of SpO2 measurement using ambient light oximeter (ALO) and commercial oximeter. Reproduced with permission, from Han et al.,50

Copyright 2020, Wiley-VCH.

(L) Organic pulse oximeter (OPO) sensor measurements at wrist and neck. Reproduced with permission, from Lee et al.,51 Copyright 2018, AAAS.
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electronic products due to their softness, light weight, and breathability. They could withstand repeated

stretching and machine-washing without compromising signal quality (Figure 2B).36 Besides sensors that

are still in the experimental phase, wearable patch devices such as the Zio Patch from iRhythm Technolo-

gies and AT-Patch from ATsens, have received FDA clearance and are commercially accessible (Figure 2C).

Zio Patch has advanced algorithms for accurate arrhythmia detection and can store up to two weeks of

data. AT-Patch shows high performance in gathering ECG signals from the heart, and its short-length elec-

trode within the patch effectively reduces noise caused by body movement.37,38

Blood pressure

Hypertension is characterized by elevated blood pressure, typically measured in systolic and diastolic

values. Uncontrolled blood pressure can result in severe medical complications including congestive heart

failure, myocardial infarction, cerebrovascular accidents, retinopathy, and renal dysfunction.39 Continuous
iScience 26, 107485, September 15, 2023 5
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monitoring of blood pressure is essential because traditional cuff-based measurements only provide a

snapshot of pressure. Thanks to technological advancements, there is a growing availability of sensor de-

vices for continuous blood pressure monitoring, which are beneficial for the prevention and management

of hypertension.

The arterial pulse wave is a crucial biological signal used for monitoring and diagnosing arterial stiffness

and hypertension-related CVDs. It provides valuable information on arterial elasticity, peripheral resis-

tance, and left ventricular contractility.40 By utilizing machine learning algorithms, a textile triboelectric

sensor device could provide continuous and accurate measurements of systolic and diastolic blood pres-

sure (Figure 2D). The device’s accuracy has been validated against a commercial blood pressure cuff. The

textile triboelectric sensor enabled the creation of a wireless biomonitoring system, offering a practical so-

lution for continuous and personalized characterization of the cardiovascular system in the era of IoT.41

Additionally, Meng et al. reported a flexible weaving constructed self-powered pressure sensor (WCSPS)

for noninvasive measurement of the pulse wave and blood pressure. The WCSPS demonstrated a differ-

ence in recorded blood pressure values of approximately 0.87–3.65% compared to a commercial cuff-

based device (Figure 2E).42

Central blood pressure (CBP) waveforms are more informative to CVDs than peripheral blood pressure (PBP)

waveforms, as the central arteries directly supply blood to vital organs such as the heart, brain, and kidneys.43

Wang et al. developed a flexible ultrasonic device (240 mm thickness) that could noninvasively and continuously

monitor blood pressure waveforms from deeply embedded arterial and venous sites, including the carotid ar-

tery, brachial artery, radial artery, and dorsalis pedis artery (Figure 2F).44 To monitor arterial pressure, Li et al.

introduced a high-performance, skin-like optoelectronic system integrated with ultra-thin flexible circuits,

providing a more convenient method for blood pressure measurement (Figure 2G).45 For newborns, Claire

et al. reported the development of soft, skin-interfaced, and wireless devices for accurate and continuous

blood pressuremonitoring in pediatric intensive care unit (PICU) patients. This noninvasive, wireless alternative

could greatly improve the quality of patient care (Figure 2H).46

Blood oxygen saturation

Oxygen saturation is a crucial indicator of human physiological status, and it is determined by the propor-

tion of oxyhemoglobin (HbO2) among the total hemoglobin in the blood. In healthy adults, normal arterial

oxygen saturation (SaO2) levels typically range from 96% to 98%. For sensor devices such as pulse oxi-

meters, peripheral oxygen saturation (SpO2) is measured in a noninvasive and continuous manner as an

estimation of SaO2.
47

In clinical applications, commercial pulse oximeters traditionally use rigid materials, which negatively

impact the size of the sensor. Yokota et al. created an ultra-flexible reflective pulse oximeter which

discreetly attached to a finger and measures blood oxygen concentration. The device included digital dis-

plays with seven-segment characters and color indicators applied directly to the skin for data visualization

(Figure 2I).48 To overcome poor fit and mechanical mismatch for continuous monitoring, Abdollahi et al.

combined 3D printing of polydimethylsiloxane (PDMS) with flexible electronics to create a patient-specific

pulse oximeter, known as P3-wearable (Figure 2J). This small-sized device (approximately 8 cm) composed

of soft materials provided continuous, real-time feedback on a tablet. Other than used on fingers and toes,

this approach has the potential to be locating sensors on other parts of the body.49

Traditional pulse oximetry sensors consume significant power, making them unsuitable as stand-alone

continuous monitoring systems. To address this limitation, Han et al. developed an ambient light oximeter

(ALO) that utilized various types of ambient light to measure photoplethysmography signals and SpO2,

eliminating the need for LEDs and reducing power consumption (Figure 2K).50 Additionally, Lee et al.

created an ultralow power consumption, reflective patch-style pulse oximetry sensor known as organic

pulse oximeters (OPOs). These devices require only a few tens of microwatts of power, indicating great po-

tential for power efficiency. OPOs are an attractive option for stand-alone wearable devices capable of

continuous all-day monitoring (Figure 2L).51
Detection of abnormal human motion

Human motion disorders can be caused by various factors such as musculoskeletal injuries, neurological

disorders, and cerebrovascular accidents. The abnormal motion patterns can occur at different body
6 iScience 26, 107485, September 15, 2023
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regions, including the neck, shoulders, fingers, and limbs. On-site wearable sensors offer a reliable means

of detecting these abnormal patterns. The use of the sensor devices provides an energy-efficient and cost-

effective solution for motion tracking, opening up the possibility for early diagnosis, disease progression

monitoring, and improvement of rehabilitation outcomes.

Motion tracking of neck, shoulders, and fingers

The head and neck play an important role in human posture andmotion. Cervical spine problems including

forward head posture and chronic neck pain are prevalent in the modern world.52,53 From a clinical stand-

point, evaluating the range of motion in the head and neck can provide valuable insights into cervical spine

problems. Sensor-based monitoring of the neck motion can facilitate neck posture adjustment and conse-

quently prevent cervical spine disorders. In 2022, a neck motion detector demonstrated promising appli-

cations in neck monitoring, control, and rehabilitation. This detector consisted of a self-sufficient triboelec-

tric sensor group integrated onto a neck collar, along with a convolutional neural network-based deep

learning block. The sensors generated voltage signals that varied in amplitude and direction, effectively

representing different motion states during neck movements. The deep learning model accurately recog-

nized eleven classes of neck motion with an average accuracy of over 90% (Figure 3A).54

Shoulder disorders are also highly prevalent and a significant source of morbidity. Physical workplace

strains like overhead work, heavy lifting, forceful exertion, as well as working in awkward postures are es-

tablished risk factors for shoulder disorders including frozen shoulder (adhesive capsulitis), rotator cuff,

and so on.55 For individuals with frozen shoulder or rotator cuff disease, physical exercise therapy has

been found efficacious in enhancing the range of motion, function, and reducing pain.56,57 However, shoul-

der activity after the early postoperative phase is linked with a heightened risk of rotator cuff retears among

patients receiving surgical repair.58 In 2020, a flexible resistive sensor network was reported to provide

robust shoulder tracking. Through principal component analysis and neural network algorithms, the device

mapped the obtained data onto shoulder posture and achieved optimal accuracy requirements. The

sensor could also be easily embedded into fabrics or wearable devices without hindering the user’s move-

ment (Figure 3B).59

In addition to neck and shoulder, accurate and objective monitoring is also crucial for finger rehabilitation.

In 2020, a novel measuring system successfully integrated electronic skin with a deep neural network to

capture distant dynamic motions. The skin sensor could decode five finger movements in real time when

placed on the wrist (Figure 3C).60

Motion tracking of the upper limb (UL) and lower limb (LL)

Neurological disorders have become the leading cause of disability worldwide, with Parkinson’s disease

(PD) being the fastest-growing disorder among them. PD is a neurodegenerative disorder that affects

the nigrostriatal system, resulting in distinct motor symptoms including tremor, bradykinesia, and rigid-

ity.61 The diagnosis of PD currently relies on clinical evaluation, including the Unified Parkinson’s Disease

Rating Scale (UPDRS), which heavily depends on the clinician’s experience and expertise. Nowadays, wear-

able sensor devices are increasingly recognized for their potential to improve the accuracy and objectivity

of PD diagnosis via movement monitoring.62 Stroke is also a leading cause of long-term disability.63 For

numerous stroke survivors and their families, the disease leads to a life which encompasses physical

disability, cognitive dysfunction, exhaustion, and psychological issues including depression and anxiety.64

The rehabilitation process for stroke patients entails tailored exercises, which are frequently constrained by

healthcare resource availability. Wearable technology has shown potential in providing objective assess-

ment and monitoring of patients in both clinical and non-clinical settings, enabling a detailed evaluation

of impairments and personalized rehabilitation therapies. Several technological aids have been developed

to monitor post-stroke impairments of both upper limb (UL)65 and lower limb (LL)66 movements.

In UL rehabilitation, ad hoc contraptions incorporating inertial measurement units and accelerometers

are frequently utilized to enhance the range of motion and movement performance. There is also an

emerging trend toward incorporating sensors within wearable garments or appliances.65 In 2018, a

garment equipped with posture-monitoring sensors was developed for upper extremity rehabilitation

training. Patients undertook four guided training tasks on a tablet, receiving feedback from the Zishi sys-

tem’s inertial sensors located in the scapula and thoracic spine region. The participants exhibited strong

motivation to engage in training via the Zishi system, which received favorable ratings for usability
iScience 26, 107485, September 15, 2023 7



Figure 3. Wearable sensor detection of abnormal human motion

(A) Picture of the neck motion sensor. Schematic diagram of bending/twisting directions and the channels of the sensor. Channel 1 and 4 generate voltage

signals that reflect the neck bending to the left and right at various angles (q). Ratio of output voltage of the 4 channels during 10 types of neck motions.

Reproduced with permission, from An et al.,54 Copyright 2022, American Chemical Society.

(B) Shoulder motion tracking systems, including the orthesis blocking the elbow (purple), flexible resistive sensors (yellow), OptiTrack markers (green), and

the inertial measurement units embedded in fabric (red). Detection of shoulder motions by each flexible resistive sensor. Reproduced with permission, from

Samper-Escudero et al.,59 Copyright 2020, Mary Ann Liebert, Inc.

(C) Image of the finger motion sensor attached to the skin. Illustration depicting the measurement of the epicentral motions of fingers. Photo of actual finger

motion generation. Design of the proposed sensory system. Reproduced with permission, from Kim et al.,60 Copyright 2020, Nature Publishing Group.

(D) Back view of the sensor-embedded garment and the adjustable design. A subject is instructed of performing a training task. Reproduced with

permission, from Wang et al.,67 Copyright 2018, IEEE.

(E) Configuration of the motion-capturing and energy-harvesting hybridized lower-limb (MC-EH-HL) system mainly consisting of two components: ratchet-

based triboelectric nanogenerator (R-TENG) and sliding block-rail piezoelectric generator (S-PEG). Output voltages of the hip- and knee-located R-TENGs

on the left leg of the user under distinct lower-limb motions. The detected knee angles during motions, with three gait features including reduced strength,

highly abnormal, and slightly abnormal. Voltage of the R-TENG on the knee during stepping to detect typical parkinsonian gait patterns such as normal gait,

loss of stride, and freezing of gait period. Reproduced with permission, from Gao et al.,69 Copyright 2021, Wiley-VCH.
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(Figure 3D).67 Furthermore, a systematic review also highlighted the potential of wearable technology for

UL rehabilitation in motivating stroke survivors to engage in more exercises independently. This can

further lead to improved recovery outcomes in the absence of a therapist.68 On the other hand, a mo-

tion-capturing and energy-harvesting hybridized lower-limb (MC-EH-HL) system with 3D printing has

been developed in 2021. This system incorporated a sliding block-rail piezoelectric generator (S-PEG)

for low-frequency energy harvesting and a ratchet-based triboelectric nanogenerator (R-TENG) for LL

motion sensing. The R-TENGs located at the hip and knee on user’s left leg outputs voltages under

LL motions, and the knee angles could be detected with three imitated gait features, including reduced

strength, highly abnormal, and slightly abnormal. Additionally, the voltage output of the knee-mounted

R-TENG during stepping could serve as an indicator of typical Parkinsonian gait patterns, including

normal gait, loss of stride, and freezing of gait (Figure 3E).69

Detection of endocrine and metabolic abnormalities

Endocrine disorders refer to diseases caused by insufficient or excessive secretion of hormones, or hor-

mone resistance in target tissues, including diabetes, hypothyroidism, hypopituitarism, and so on. Endo-

crine disorders can further affect human metabolic processes and lead to a series of complications.70,71
8 iScience 26, 107485, September 15, 2023
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Metabolic diseases are often resulted from the abnormal accumulation or degradation of metabolisms.

Nowadays, endocrine and metabolic diseases are prevalent and impose a significant burden on public

health, and the long-term monitoring of these diseases is necessary.

Blood is typically considered the gold standard for the diagnosis and monitoring of endocrine and meta-

bolic conditions, but invasive blood collection has limitations for daily monitoring. Nowadays, noninvasive

sensors through monitoring sweat, urine, tears, and saliva, have emerged as promising alternatives.72

These sensing methods are painless, infection-free, and easy-to-use, among which sweat sensors are

the most common and advantageous.

Metabolism of organic matter

There is a strong correlation between the concentration of glucose in sweat and blood.73 Researchers have

developed an all-printed temporary tattoo-based sensor that combined reverse iontophoretic extraction

of interstitial glucose with an enzyme-based amperometric biosensor to detect glucose levels in sweat. This

sensor, worn conveniently on the skin, could withstand repeated mechanical deformation. It provided ac-

curate detection results and showed a strong correlation with commercial glucose meters, holding great

promise for noninvasive diabetes management (Figure 4A).74 Sweat-based glucose sensors could also

be used to estimate blood glucose changes before and after exercise to prevent hypoglycemic shock

caused by intense exercise.75 Additionally, microfluidic contact lens sensors have been developed for

the detection of glucose,76 pH, protein, and nitrite levels through tears (Figure 4B).77

In our body, ammonia can be produced during protein metabolism. The ammonia accumulation in blood

can serve as a biomarker to monitor the metabolic changes during the transition from aerobic to anaerobic

exercise, and abnormally high blood ammonia levels may be associated with hepatic cirrhosis, diabetes,

and chronic kidney disease.78,79 In sweat, most of the ammonia (NH3) molecules separated from the blood

will get protonated into ammonium ions (NH4
+) due to the relatively low pH value. This protonation of

ammonia increases the concentration of NH4
+ in sweat, which simplifies the detection methods of sen-

sors.80 In 2013, a tattoo-based potentiometric sensor was designed to monitor ammonium levels in sweat,

providing promising prospects for exercise performance monitoring and metabolic disorder detection

(Figure 4C).81 In addition, a thread-based multiplexed sensor patch that could be directly woven or

sewn onto clothing managed to keep in close contact with the skin and performed a real-time measure-

ment of important biomarkers in sweat, including NH4
+, sodium ions (Na+), lactate, and pH. Extensive

in vitro validation and human testing studies have demonstrated the potential of this sensor for health

monitoring and diagnosis through sweat analysis.82

Tyrosinaemia type 1 (TYR1) is a rare genetic disorder with abnormal accumulation of tyrosine in the body,

leading to liver, kidney, and nervous system damage. Recently, screening for TYR1 in infants has been rec-

ommended as part of England’s newborn screening program.83 Gout, a common metabolic disease char-

acterized by a high level of uric acid (UA) in blood, can lead to painful inflammatory arthritis and a high

burden of comorbidities, including hypertension, diabetes, hyperlipidemia, myocardial infarction, stroke,

and chronic kidney disease.84 In 2020, Yiran Yang et al. developed a highly sensitive laser-engraved gra-

phene-based chemical sensor by utilizing differential pulse voltammetry (DPV), which showed rapid and

accurate on-site detection of low concentrations of UA and tyrosine in human sweat (Figure 4D).85

Electrolyte metabolism

In clinical scenarios, the abnormal metabolism of water and sodium are common among electrolyte imbal-

ance. Adrenal insufficiency, an endocrine disorder, can cause decreased aldosterone secretion and

reduced reabsorption of sodium, which may finally contribute to hypovolemic hyponatremia and even hy-

povolemic shock in severe cases.86 Central diabetes insipidus often leads to inadequate production and

release of antidiuretic hormone, which results in excessive excretion of low-solute urine. In severe cases,

this can cause hypernatremia and dysfunction of the central nervous system.87 Excessive physical activity

and sweating can also lead to water and electrolyte loss. In 2014, a tattoo-based potentiometric sodium

sensor was developed. This sensor, when coupled with a miniature wireless transceiver, enabled real-

time monitoring of sodium levels in perspiration. The data collected by the tattoo sensor could be wire-

lessly transmitted to a laptop for analysis.88 In 2015, an adhesive band-aid-like sensor patch was reported.

This patch adhered closely to human skin, and the paper microfluidics integrated within it absorbed sweat
iScience 26, 107485, September 15, 2023 9



Figure 4. Wearable sensor detection of endocrine and metabolic abnormalities

(A) Photograph of an iontophoretic tattoo-based glucose sensor device applied to a human subject. Chronoamperometric response of the glucose sensor to

increasing glucose concentrations from 0 mM to 100 mM in buffer in 10 mM increments. Reproduced with permission, from Bandodkar et al.,74 Copyright 2014,

American Chemical Society.

(B) Contact lens sensor with the laser-inscribed microfluidic system. Image of the frontside, backside, and on-eye view of the contact lens sensor. The

schematic structure of the sensing area. Representative photograph of the readout method. Reproduced with permission, fromMoreddu et al.,77 Copyright

2020, Royal Society of Chemistry.

(C) Tattoo-based ammonium sensor placed on the shoulder. Ammonium concentration-dependent potentiometric time trace. Reproduced with permission,

from Guinovart et al.,81 Copyright 2013, Royal Society of Chemistry.

(D) Image of a laser-engraved sensor for the monitoring of tyrosine and uric acid (UA). Differential pulse voltammetry detecting the level of UA and tyrosine

by measuring oxidation peak heights. Reproduced with permission, from Yang et al.,85 Copyright 2020, Nature Publishing Group.

(E) Illustration of multi-ion potentiometric sensors on textiles, along with representative time trace plots for potassium and sodium. Reproduced with

permission, from Parrilla et al.,91 Copyright 2016, Wiley-VCH.

(F) Cortisol release from fingertip sweat pores to hydrogel in the natural sweat. Photograph of the wearable sensor patch for on-body cortisol detection.

Cyclic voltammetry and the measured peak currents of the cortisol sensor when undergoing repeated bending and stretching. Reproduced with permission,

from Tang et al.,111 Copyright 2021, Wiley-VCH.

(G) Image of a subject performing cycling exercise with a sweatband containing a drug-sensing platform. Calibration curve for the sensor in sweat samples.

At 30 min after caffeine intake, sweat caffeine levels were measured during the cycling experiment. Reproduced with permission, from Tai et al.,113 Copyright

2018, Wiley-VCH.

(H) Wearable sweatband for levodopa sensing. Cyclic voltammetry of levodopa dissolved in phosphate buffered saline (PBS) for different concentration

ranges. Typical amperometric response of the levodopa dissolved in PBS. The calibration curve of the current. Reproduced with permission, from Tai

et al.,114 Copyright 2019, American Chemical Society.

(I) Image of an alcohol iontophoretic-sensing tattoo device applied to a human subject. Reproduced with permission, from Kim et al.,115 Copyright 2016,

American Chemical Society.
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through a porous adhesive, allowing real-time monitoring of various ionic solutes, including Cl�, K+, Mg2+,

NH4
+, and Zn2+.89

Potassium ions (K+) play a vital role in biological systems, maintaining cellular metabolism, resting membrane

potential, and regulating the osmotic pressure and acid-base balance.90 In 2016,Marc Parrilla et al. designed a

wearable multi-ion potentiometric sensor based on textiles to monitor the level of sodium and potassium in

sweat. This printed textile sensor array, combining stretchable components like polyurethane, Ecoflex, and

ink, demonstrated high tensile strength and resistance to cracking (Figure 4E).91 In addition, Juliane R. Sempio-

natto et al. have constructed the first fully integrated eyeglasses-based wireless electrolyte and metabolite
10 iScience 26, 107485, September 15, 2023
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sensing platform. By integrating a potentiometric K+-selective electrode and an amperometric lactate

biosensor on two nose pads of the glasses and connecting them to a wireless electronic backbone on glasses’

arms, the sensor enabled real-time monitoring of sweat lactate and potassium levels.92

The level of calcium (Ca2+) can serve as a monitoring index for diseases including hyperparathyroidism,93

chronic kidney failure,94 and vitamin D deficiency.95 A wearable electrochemical device has been reported

for continuous monitoring of Ca2+ and pH in body fluids including sweat, urine, and tears for diagnosis of

diseases like primary hyperparathyroidism and kidney stones.96

pH values offer insights into electrolyte variations in sweat, enabling the monitoring of metabolic alkalosis

or metabolic acidosis. In 2013, a tattoo-based potentiometric ion-selective sensor was developed for moni-

toring a wide range of pH changes of skin without carry-over effects.97 In general, the performance and ap-

plications of the wearable pH sensors largely depend on the properties of the pH-sensitive materials,

including polyaniline, hydrogen ionophores, and metal oxides. Each material type possesses distinct char-

acteristics in terms of sensitivity, response speed, and biocompatibility.98–102

Hormones

Cortisol is a vital steroid hormone that regulates metabolism, immune system, and stress response.103

Abnormal cortisol levels can occur in various diseases, including Cushing’s syndrome (excessive cortisol

secretion),104 Addison’s disease (inadequate cortisol secretion),105 and in response to stress, depression,

and anxiety. For continuous monitoring of cortisol in sweat, the changes of time, pH, and temperature of

sweat can affect the conformation of aptamer and its binding ability, making it difficult for stable detec-

tion.106,107 To address this challenge, Prasad and his colleagues developed an antibody-functionalized

sensor in 2017. They used nanoporous substrates to fabricate a sensing array and immobilized the cap-

ture probe in room temperature ionic liquids, which enabled stable detection of interleukin-6 and

cortisol in human sweat.108 Additionally, in 2018, Onur Parlak et al. achieved stable and selective molec-

ular recognition of cortisol in sweat by integrating an organic electrochemical transistor and a synthetic

and biomimetic polymeric membrane based on molecular imprinting polymers (MIPs).109 In 2020, a wire-

less cortisol sensor combining laser-induced graphene and immunosensing was reported. This sensor

exhibited high sensitivity, selectivity, and efficiency due to the large surface area and rapid electron

transfer characteristics of laser-induced graphene.110 Later in 2021, Tang et al. described a touch-based

noninvasive MIP electrochemical sensor for rapid, simple, and reliable detection of cortisol in fingertip

sweat (Figure 4F).111
Detection of drugs, ethanol, and heavy metals

Drug monitoring plays a crucial role in doping control and precision medicine, as it helps doctors under-

stand the intricate pharmacokinetics of drugs and adjust medication dosages for optimal effects.112 In

2018, Li-Chia Tai et al. reported a wearable platform equipped with an electrochemical DPV sensing mod-

ule for real-time monitoring of the methylxanthine drug caffeine in sweat (Figure 4G).113 Levodopa, a stan-

dard medication for patients with PD, requires careful monitoring and dosage optimization to alleviate

adverse physical and emotional fluctuations. Based on the correlation between the concentration of levo-

dopa in sweat and plasma, in 2019, Li-Chia Tai et al. designed a wearable sweatband on a nanodendritic

platform that quantitatively monitored the kinetics of levodopa metabolism in the body, showing prom-

ising prospect for the routine PD management (Figure 4H).114 In addition, the concentration of sweat

ethanol is also highly correlated with that in blood. In 2016, Kim et al. developed a skin-worn alcohol moni-

toring platform based on an iontophoretic-biosensing tattoo system. By applying the alcohol oxidase

enzyme and the Prussian Blue electrode sensing, the sensor enabled amperometric detection of ethanol

in pilocarpine-induced sweat (Figure 4I).115

Sweating is also an important way for the detoxification of heavy metals, including arsenic, cadmium, lead,

and mercury.116 In 2015, a wearable electrochemical sensor was developed by Joseph Wang and his col-

leagues for the detection of trace metals. A bismuth/Nafion film electrode and stripping voltammetry

were utilized to enable real-timemonitoring of zinc levels in human sweat, which achieved outstanding per-

formance.117 In 2016, Gao et al. fabricated a flexible and wearable microsensor array through the electro-

chemical square wave anodic stripping voltammetry (SWASV) method. They also developed a calibration

and compensation method for the oxidation peaks of the detected metals by using a skin temperature

sensor, enabling simultaneous detection of copper, zinc, lead, cadmium, and mercury ions in human
iScience 26, 107485, September 15, 2023 11
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sweat.118 In 2022, a microfluidic nanosensor was developed for detecting copper in sweat. The sensor was

easily applied to the skin and actively induced sweating for detection and quantification of copper secre-

tion in sweat.119
CHALLENGES AND PERSPECTIVES

Wearable sensors that meet the clinical requirements are gaining popularity among the public. This review

focuses on their applications in various medical scenarios (Table 1). Compared to traditional medical de-

vices, wearable sensors possess several advantages that can aid in early diagnosis, health monitoring, and

treatment adjustments for patients. Furthermore, the widespread adoption of 5G technology and IoT en-

ables higher device density and faster data transmission rates, which benefits the application of wearable

sensors. However, the use of wearable sensors in medical practice and daily life still presents challenges.

Future wearable sensors need to consider further optimization in the following aspects (Figure 5).

Comfort and safety of materials: Many wearable sensors are designed to adhere closely to the skin or

tissue surface for long periods to collect biological information. The softness and breathability of sensor

materials are crucial for the experience of patients in diseased states. Some sensors may contain adhe-

sive materials or sensor components that have sensitizing chemical constituents, which can cause

allergic contact dermatitis. For example, acrylate derivatives have been identified as the primary

allergen in many cases of allergic contact dermatitis induced by continuous glucose monitoring.120

Therefore, the use of acrylate derivatives in sensor devices should be limited to ensure comfort and

safety during sensor usage.

Portability and good battery life of the device: There is a high demand for portability in sensors used

for bedside monitoring, continuous monitoring, and motion disorder tracking. In hospitals, critically ill

or postoperative patients often face restricted mobility. The use of large-scale stationary diagnostic

equipment is unable to meet their immediate testing requirements, while portable sensors facilitate

bedside testing for these patients. For individuals with chronic diseases like diabetes, bulky sensors

can hinder patient compliance and result in incomplete monitoring data. Additionally, continuous

monitoring places higher demands on the battery life of the device, necessitating further optimization

of battery structure and performance. When sensors are used for motion monitoring in patients with

abnormal posture or gait, excessively heavy instruments can cause posture changes, affecting the ac-

curacy of disease diagnosis. Therefore, the portability and battery life are crucial in clinical applications.

Accuracy and stability of detection: Physical examinations and laboratory tests serve as important

foundations for clinical disease diagnosis and monitoring. The accuracy of these results is vital for mak-

ing treatment decisions and achieving favorable disease outcomes. However, biochemical sensors

based on biomarkers may experience inaccuracies due to biomarker contamination or degradation.

For instance, saliva can be contaminated by food residue, the evaporation of sweat can alter substance

concentrations, and the current protocols for collecting tear samples can cause eye irritation and reflex

tears, affecting sensor test results.121 Therefore, the development of robust sensing platforms is essen-

tial to ensure sensor device functionality in harsh environments. Additionally, when monitoring physio-

logical and motion signals, sensors should closely adhere to the human body, especially at joint and

other sites, to guarantee stable detection signals. Sensors should also consider the interference caused

by motion artifacts and improve the signal-to-noise ratio of the device.122,123

Identification and analytical performance of data: In the era of IoT and 5G networks, intelligent sensor

devices capable of acquiring vast amounts of patient health data are becoming increasingly popular.

Data processing technologies, such as cloud computing, machine learning, and artificial intelligence,

offer immense potential for transforming raw data into clinical-grade information and identifying

abnormal data patterns. However, current signal processing andmachine learning methods still require

further optimization. Additionally, the identification and analysis of data also require the involvement of

healthcare professionals in order to establish unified standards for disease diagnosis.

Security of patient health data: Inadequate system security of wearable sensors can expose them to

data interception and manipulation by hackers, leading to patient data breaches and privacy exposure.

To ensure comprehensive information security, data transmission channels and data storage in wear-

able sensor systems must be encrypted. Furthermore, access to health data generated by patients

should be strictly limited through reliable authentication and encryption technologies.
12 iScience 26, 107485, September 15, 2023



Table 1. Summary of recently developed wearable systems for medical applications

Diseases and

Abnormalities Location

Sensing

type

Target

analytes

Sensor

architectures Features

Medical

applications References/Figures

Skin diseases

and injuries

Dorsal hand Acousto-

mechanic

Acousto-

mechanic

signatures

of scratching

BLE, electronics,

a rechargeable

battery, and a

millimeter-scale,

three-axis

accelerometer

Small, soft,

stretchable,

and wireless

Objective

quantification

of pruritus

Chun et al.17/Figure 1A

Skin surface Thermal Skin hydration Silicone shell,

f-PCB, SiO2,

fabric, and

silicone gel

Soft, thin, wireless,

and battery-free

Monitoring and

diagnosis of

inflammatory

skin diseases

Madhvapathy et al.19/

Figure 1B

Skin surface Thermal Skin hydration Silicone

encapsulation,

Li-polymer

battery, f-PCB,

fabric-reinforced

silicone bottom

layer, and

adhesive layer

Wireless, soft and

measuring more

sensitively and

accurately

Monitoring and

diagnosis of

inflammatory

skin diseases

Shin et al.20/Figure 1B

Skin surface Electrochemical Tyrosinase A bandage

electrochemical

sensor, a catechol-

containing agarose

gel, and the three-

electrode system

Compact, wireless,

easy-to-use, low cost,

and noninvasive

Melanoma screening Ciui et al.25/Figure 1C

Within skin moles Electrochemical Tyrosinase Polymeric hollow

microneedles packed

with catechol-coated

carbon-paste, and

the portable

electronic board

Minimally invasive Melanoma screening Ciui et al.25/Figure 1C

Skin surface bio-FETs Tyrosinase Self-assembling

nanostructured

tetrapeptide

WVFY on n-type

metal oxide

transistors

Robust flexible and

biocompatible

Melanoma screening Ren et al.26/Figure 1D

(Continued on next page)
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Table 1. Continued

Diseases and

Abnormalities Location

Sensing

type

Target

analytes

Sensor

architectures Features

Medical

applications References/Figures

Near the wounds Thermal Temperature

and thermal

conductivity

Metal traces

with fractal

geometries

in an interconnected

collection of

ultrathin FS

traces in an open

mesh configuration

Stretchable, conformal,

biocompatible, easily

disinfected, and

reusable

Quantitative, clinical

monitoring of cutaneous

wound healing

Hattori et al.29/Figure 1E

Wounds Electrochemical pH Two-terminal pH

sensor made of a

semiconducting

polymer and iridium

oxide particles, and

an absorbent layer

Real-time Wound healing monitoring Mariani et al.31/Figure 1F

Wounds Electrochemical pH An FLEX-AI wearable

sensor interacting

with a smart wound

dressing-integrated

bandage via radio

frequency identification

technology

Contactless Contactless chronic

skin monitoring and

predicting tissue

regeneration using AI

Kalasin et al.32/Figure 1G

Cardiovascular

diseases

Inner wrists and

left dorsal hand

Bioelectric ECG WPU, PEDOT:PSS,

and D-sorbitol

Highly conductive,

self-adhesive,

mechanically flexible

/stretchable,

and biocompatible

Detecting cardiac

arrhythmias

Zhang et al.35/Figure 2A

Chest Textile

electronic

ECG CNTT and stretchable

textiles

Washable, sewable,

all-carbon

Continuous ECG

monitoring

Taylor et al.36/Figure 2B

Wrist Textile

triboelectric

Pulse wave Outer textile layer,

CNTs, FEP, Al,

and PDMS

Machine-learning-

assisted, low-cost,

lightweight, and

mechanically durable

Ambulatory blood

pressure monitoring

Fang et al.41/Figure 2D

Fingertip, wrist,

ear, and ankle

Mechanoelectric Pulse wave PET, ITO, PTFE, and

PDMS

Flexible weaving

constructed, self-

powered

Continuous measurement

of cuffless blood pressure

Meng et al.42/Figure 2E

Neck, arm, wrist,

and foot

Ultrasonic Blood-pressure

waveforms

Polyimide, Cu Electrode,

Cu/Zn electrode,

piezo pillar, filling epoxy

Ultrathin, stretchable,

and non-invasive

Monitoring of the

central blood pressure

Wang et al.44/Figure 2F

(Continued on next page)
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Table 1. Continued

Diseases and

Abnormalities Location

Sensing

type

Target

analytes

Sensor

architectures Features

Medical

applications References/Figures

Wrist Optoelectronic PPG Ultra-thin optoelectronics,

watch-chain interconnects,

and biocompatible

package

Skin-like, ultra-thin,

and flexible

Cuff-less continuous

blood pressure

monitoring

Li et al.45/Figure 2G

Chest and limb Optoelectronic PPG A-20 and OO-30

polyorganosiloxane

elastomers, OOO-35

polyorganosiloxane

gel, and AMPS/AA

hydrogel

Wireless, continuous,

and noninvasive

Blood pressure

monitoring for

pediatric critical

care

Liu et al.46/Figure 2H

Fingertip Optoelectronic PPG PLEDs and OPDs Ultrathin, ultraflexible,

skin-like

Measurement of

pulse oximetry

Yokota et al.48/Figure 2i

Hand and foot Optoelectronic/

Mechanoelectric

PPG/Pressure

signals

3D printing of PDMS

elastomer and f-PCB

Patient-specific Measurement of

pulse oximetry

Abdollahi et al.49/Figure 2J

Finger Optoelectronic PPG OPDs and spectral

filters

Powered by ambient

light

Measurement of

pulse oximetry

Han et al.50/Figure 2K

Finger, wrist, neck,

and nose

Optoelectronic PPG Flexible OLEDs and

OPDs

Ultralow-power and

reflective patch-type

Continuous pulse

oximetry monitoring

Lee et al.51/Figure 2L

Abnormal human

motion

Neck Triboelectric Neck movement Four flexible and

stretchable silicon

rubber based

triboelectric

sensors integrated

on a neck collar

Highly accurate Neck monitoring,

rehabilitation,

and control

An et al.54/Figure 3A

Shoulder Physical Shoulder motion A flexible resistive

sensor network

embedding in fabrics

Accurate, lightweight

and affordable

Shoulder motion

tracking

Samper-Escudero et al.59/

Figure 3B

Wrist Mechanical Minute

deformation

of the wrist

A skin-like sensor with

laser-controlled

cracking and

serpentine patterning

Ultrasensitive, stable

regardless of its

position on the wrist

Five fingers’

motion detection

Kim et al.60/Figure 3C

Scapula and the

thoracic spine

region

Physical Compensatory

movement

of the trunk

and shoulder

complex

Sensors integrating

an accelerometer,

gyroscope and a

magnetometer and

embedding in an

elastic Velcro strip

Aesthetic and well-

fitting

Posture monitoring,

upper extremity

rehabilitation training

of stroke patients

Wang et al.67/Figure 3D

(Continued on next page)
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Table 1. Continued

Diseases and

Abnormalities Location

Sensing

type

Target

analytes

Sensor

architectures Features

Medical

applications References/Figures

Hip and Knee Triboelectric Lower-limb motion A sliding block-rail

piezoelectric generator

and a ratchet-based

triboelectric nanogenerator

Economic and energy-

efficient

Lower limb rehabilitation

and sports training

Gao et al.69/Figure 3E

Endocrine and

metabolic

abnormalities

Skin surface Electrochemistry Interstitial

glucose

An Ag/AgCl electrode as a

counter/reference electrode,

a printable Prussian-Blue

transducer, an additional

Ag/AgCl reverse iontophoretic

electrode, and chitosan

immobilizing the enzyme on

the transducer surface

Accurate and specific Diabetes management Bandodkar et al.74/Figure 4A

Cornea Electrochemistry Hydrogen ions,

proteins, glucose,

nitrites and

l-ascorbic acid

Colorimetric sensors are

deposited on paper, and

then embedded as a paper

microfluidic sensor within a

laser-inscribed acrylate

contact lens

Potential of medical

diagnosis or disease

screening

Ocular infections, uveitis,

diabetes, keratopathy

monitoring, and oxidative

stress assessment

Moreddu et al.77/Figure 4B

Skin surface Electrochemistry Sweat ammonium

levels

A screen-printed tattoo

paper with an ammonium-

selective polymeric

membrane and solid-state

reference electrode

Stable when stretching

or bending

Sport performance

monitoring and

metabolic disorders

detection

Guinovart et al.81/Figure 4C

Skin surface Electrochemistry Uric acid and

tyrosine

in sweat

A highly sensitive laser-

engraved graphene-based

chemical sensor and a laser-

engraved multi-inlet

microfluidic module

Scalable and flexible for

the wearer’s comfort

Gout and metabolic

disorders detection

Yang et al.85/Figure 4D

Skin surface Electrochemistry Sodium and

potassium

in sweat

PU, Ecoflex and stretch-

enduring inks, along with

a serpentine design

Textile-based,

stretchable,

real-time, and

non-invasive

Simultaneous multi-ion

sweat analysis

Parrilla et al.91/Figure 4E

Fingertip Electrochemistry Sweat cortisol

levels

A touch-based non-invasive

molecularly imprinted

polymer electrochemical

sensor, a highly permeable

sweat-wicking porous

hydrogel

Rapid, simple,

reliable, and

accessible

Quantitative stress

management

Tang et al.111/Figure 4F
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Table 1. Continued

Diseases and

Abnormalities Location

Sensing

type

Target

analytes

Sensor

architectures Features

Medical

applications References/Figures

Others Skin surface Electrochemistry Sweat caffeine

levels

An electrochemical

differential pulse

voltammetry sensing

module

Noninvasive and

continuous-monitoring

Point-of-care drug

monitoring and

management

Tai et al.113/Figure 4G

Skin surface Electrochemistry Sweat levodopa

levels

A functionalized

levodopa sensing

electrode as working

electrode, an Ag/AgCl

top layer as reference

electrode, and an Au

top layer as counter

electrode

Real-time Administering of

levodopa and

management of

Parkinson’s disease

Tai et al.114/Figure 4H

Skin surface Electrochemistry Alcohol in

induced sweat

A skin-worn alcohol

sensor, a flexible

electronics board

controlling the

iontophoresis/

amperometry

operation to induce

sweat

Noninvasive, highly

selective and sensitive

Alcohol monitoring Im et al.115/Figure 4I

ECG, electrocardiograms; PPG, photoplethysmography; BLE, Bluetooth Low Energy; f-PCB, flexible printed circuit board; bio-FETs, field-effect transistor-based biosensors; WVFY, tryptophan–valine–phenyl-

alanine–tyrosine; FS, filamentary serpentine; FLEX-AI, flexible artificial intelligence-guiding; WPU, waterborne polyurethane; PEDOT:PSS, poly(ethylenedioxythiophene):poly(styrenesulfonate); CNTT, neat

carbon nanotube threads; CNTs, carbon nanotubes; FEP, fluorinated ethylene propylene; PDMS, poly(dimethylsiloxane); PET, polyethylene terephthalate; ITO, indium–tin oxide; PTFE, polytetrafluoroethy-

lene; AMPS/AA, 2-acrylamido-2-methylpropane sulfonic acid/acrylic acid; PLEDs, polymer light-emitting diodes; OPDs, organic photodetectors; PU, polyurethane.
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Figure 5. Clinical needs and challenges faced by wearable sensors in medical applications

(Some image materials are from OfficePLUS.).
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Conclusion

In recent years, the application of wearable sensors in various diseases has been continuously expanding.

Firstly, from the perspective of patient care, the widespread use of wearable sensors will facilitate the realiza-

tion of remote healthcare and personalized medicine. In the context of uneven allocation of medical re-

sources, the popularization of wearable sensors will benefit the diagnosis and continuous monitoring of pa-

tients in remote areas, promoting the implementation of healthcare measurements. Furthermore, current

healthcaremainly relies onmedical solutions based on population averages, sometimes neglecting individual

patient differences. In the future, it is anticipated that individuals will be able to obtain customized databases

of personal health records through various wearable sensors, which can provide more reliable diagnoses,

convenient continuous monitoring, and timely prevention of diseases. Besides, from the perspective of med-

ical advancement, wearable sensors can collect user information that may become an integral part of medical

big data, facilitating real-world medical research and providing valuable information for disease diagnosis

and treatment. In the future, with advancements in material technology, signal processing, machine learning,

IoT, 5G networks, and continuous collaboration among engineering, medical, and data professionals, wear-

able sensors hold vast prospects for application in the field of healthcare. The reliance on wearable sensors for

remote healthcare and personalized medicine is expected to become a reality.
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and Wang, J. (2014). Epidermal tattoo
potentiometric sodium sensors with wireless
signal transduction for continuous non-
invasive sweat monitoring. Biosens.
Bioelectron. 54, 603–609. https://doi.org/
10.1016/j.bios.2013.11.039.

89. Rose, D.P., Ratterman, M.E., Griffin, D.K.,
Hou, L., Kelley-Loughnane, N., Naik, R.R.,
Hagen, J.A., Papautsky, I., and Heikenfeld,
J.C. (2015). Adhesive RFID Sensor Patch for
Monitoring of Sweat Electrolytes. IEEE
Trans. Biomed. Eng. 62, 1457–1465. https://
doi.org/10.1109/TBME.2014.2369991.

90. Palmer, B.F., and Clegg, D.J. (2016).
Physiology and pathophysiology of
potassium homeostasis. Adv. Physiol. Educ.
40, 480–490. https://doi.org/10.1152/advan.
00121.2016.

91. Parrilla, M., Cánovas, R., Jeerapan, I.,
Andrade, F.J., and Wang, J. (2016). A
Textile-Based Stretchable Multi-Ion
Potentiometric Sensor. Adv. Healthc. Mater.
5, 996–1001. https://doi.org/10.1002/adhm.
201600092.

92. Sempionatto, J.R., Nakagawa, T., Pavinatto,
A., Mensah, S.T., Imani, S., Mercier, P., and
Wang, J. (2017). Eyeglasses based wireless
electrolyte and metabolite sensor platform.
Lab Chip 17, 1834–1842. https://doi.org/10.
1039/C7LC00192D.

93. Bilezikian, J.P., Bandeira, L., Khan, A., and
Cusano, N.E. (2018). Hyperparathyroidism.
Lancet 391, 168–178. https://doi.org/10.
1016/S0140-6736(17)31430-7.

94. Massry, S.G., and Fadda, G.Z. (1993).
Chronic Renal Failure is a State of Cellular
Calcium Toxicity. Am. J. Kidney Dis. 21,
81–86. https://doi.org/10.1016/S0272-
6386(12)80727-X.

95. Fleet, J.C. (2017). The role of vitamin D in the
endocrinology controlling calcium
homeostasis. Mol. Cell. Endocrinol. 453,
36–45. https://doi.org/10.1016/j.mce.2017.
04.008.

96. Nyein, H.Y.Y., Gao, W., Shahpar, Z.,
Emaminejad, S., Challa, S., Chen, K., Fahad,
H.M., Tai, L.-C., Ota, H., Davis, R.W., and
Javey, A. (2016). A Wearable
Electrochemical Platform for Noninvasive
Simultaneous Monitoring of Ca 2+ and pH.
ACS Nano 10, 7216–7224. https://doi.org/
10.1021/acsnano.6b04005.

97. Bandodkar, A.J., Hung, V.W.S., Jia, W.,
Valdés-Ramı́rez, G., Windmiller, J.R.,
Martinez, A.G., Ramı́rez, J., Chan, G.,
Kerman, K., and Wang, J. (2013). Tattoo-
based potentiometric ion-selective sensors
for epidermal pH monitoring. Analyst 138,
123–128. https://doi.org/10.1039/
C2AN36422K.

98. Tang, Y., Zhong, L., Wang, W., He, Y., Han,
T., Xu, L., Mo, X., Liu, Z., Ma, Y., Bao, Y., et al.
(2022). Recent Advances in Wearable
Potentiometric pH Sensors. Membranes 12,
504. https://doi.org/10.3390/
membranes12050504.
iScience 26, 107485, September 15, 2023 21

https://doi.org/10.2196/jmir.5891
https://doi.org/10.2196/jmir.5891
https://doi.org/10.1109/JTEHM.2018.2853549
https://doi.org/10.1109/JTEHM.2018.2853549
https://doi.org/10.2196/15981
https://doi.org/10.1002/advs.202101834
https://doi.org/10.1002/advs.202101834
https://doi.org/10.1530/EJE-16-0493
https://doi.org/10.1530/EJE-16-0493
https://doi.org/10.1007/s11136-023-03360-x
https://doi.org/10.1007/s11136-023-03360-x
https://doi.org/10.1039/C7CS00730B
https://doi.org/10.1089/dia.2011.0262
https://doi.org/10.1089/dia.2011.0262
https://doi.org/10.1021/ac504300n
https://doi.org/10.1021/ac504300n
https://doi.org/10.1002/adfm.201805754
https://doi.org/10.1002/adfm.201805754
https://doi.org/10.1021/acsnano.8b00829
https://doi.org/10.1021/acsnano.8b00829
https://doi.org/10.1039/D0LC00438C
https://doi.org/10.1016/j.jhep.2022.07.014
https://doi.org/10.1016/j.jhep.2022.07.014
https://doi.org/10.1016/j.jhep.2022.09.018
https://doi.org/10.1016/j.jhep.2022.09.018
https://doi.org/10.1016/j.metabol.2012.07.007
https://doi.org/10.1016/j.metabol.2012.07.007
https://doi.org/10.1039/c3an01672b
https://doi.org/10.1038/s41528-020-00081-w
https://doi.org/10.1038/s41528-020-00081-w
https://doi.org/10.1136/bmj.p275
https://doi.org/10.1136/bmj.p275
https://doi.org/10.1038/s41584-021-00725-9
https://doi.org/10.1038/s41584-021-00725-9
https://doi.org/10.1038/s41587-019-0321-x
https://doi.org/10.1038/s41587-019-0321-x
https://doi.org/10.1007/BF01707669
https://doi.org/10.1007/BF01707669
https://doi.org/10.1111/joim.13261
https://doi.org/10.1111/joim.13261
https://doi.org/10.1016/j.bios.2013.11.039
https://doi.org/10.1016/j.bios.2013.11.039
https://doi.org/10.1109/TBME.2014.2369991
https://doi.org/10.1109/TBME.2014.2369991
https://doi.org/10.1152/advan.00121.2016
https://doi.org/10.1152/advan.00121.2016
https://doi.org/10.1002/adhm.201600092
https://doi.org/10.1002/adhm.201600092
https://doi.org/10.1039/C7LC00192D
https://doi.org/10.1039/C7LC00192D
https://doi.org/10.1016/S0140-6736(17)31430-7
https://doi.org/10.1016/S0140-6736(17)31430-7
https://doi.org/10.1016/S0272-6386(12)80727-X
https://doi.org/10.1016/S0272-6386(12)80727-X
https://doi.org/10.1016/j.mce.2017.04.008
https://doi.org/10.1016/j.mce.2017.04.008
https://doi.org/10.1021/acsnano.6b04005
https://doi.org/10.1021/acsnano.6b04005
https://doi.org/10.1039/C2AN36422K
https://doi.org/10.1039/C2AN36422K
https://doi.org/10.3390/membranes12050504
https://doi.org/10.3390/membranes12050504


ll
OPEN ACCESS

iScience
Review
99. Tang, Y., Gan, S., Zhong, L., Sun, Z., Xu, L.,
Liao, C., Lin, K., Cui, X., He, D., Ma, Y., et al.
(2022). Lattice Proton Intercalation to
Regulate WO 3 -Based Solid-Contact
Wearable pH Sensor for Sweat Analysis.
Adv. Funct. Mater. 32, 2107653. https://doi.
org/10.1002/adfm.202107653.

100. Song, Y., Min, J., Yu, Y., Wang, H., Yang, Y.,
Zhang, H., and Gao, W. (2020). Wireless
battery-free wearable sweat sensor
powered by human motion. Sci. Adv. 6,
eaay9842. https://doi.org/10.1126/sciadv.
aay9842.

101. Zhai, Q., Yap, L.W., Wang, R., Gong, S.,
Guo, Z., Liu, Y., Lyu, Q., Wang, J., Simon,
G.P., and Cheng, W. (2020). Vertically
Aligned Gold Nanowires as Stretchable
and Wearable Epidermal Ion-Selective
Electrode for Noninvasive Multiplexed
Sweat Analysis. Anal. Chem. 92, 4647–
4655. https://doi.org/10.1021/acs.
analchem.0c00274.

102. Xu, J., Zhang, Z., Gan, S., Gao, H., Kong, H.,
Song, Z., Ge, X., Bao, Y., and Niu, L. (2020).
Highly Stretchable Fiber-Based
Potentiometric Ion Sensors for Multichannel
Real-Time Analysis of Human Sweat. ACS
Sens. 5, 2834–2842. https://doi.org/10.1021/
acssensors.0c00960.

103. Thau, L., Gandhi, J., and Sharma, S. (2022).
Physiology, Cortisol (StatPearls Publishing).

104. Raff, H., and Carroll, T. (2015). Cushing’s
syndrome: from physiological principles to
diagnosis and clinical care: Physiology of
Cushing’s syndrome. J. Physiol. 593,
493–506. https://doi.org/10.1113/jphysiol.
2014.282871.

105. Kumar, R., and Wassif, W.S. (2022). Adrenal
insufficiency. J. Clin. Pathol. 75, 435–442.
https://doi.org/10.1136/jclinpath-2021-
207895.

106. Bariya, M., Nyein, H.Y.Y., and Javey, A.
(2018). Wearable sweat sensors. Nat.
Electron. 1, 160–171. https://doi.org/10.
1038/s41928-018-0043-y.

107. McKeague, M., and DeRosa, M.C. (2012).
Challenges and Opportunities for Small
Molecule Aptamer Development. J. Nucleic
Acids 2012, 748913–748920. https://doi.org/
10.1155/2012/748913.
22 iScience 26, 107485, September 15, 2023
108. Munje, R.D., Muthukumar, S., Jagannath, B.,
and Prasad, S. (2017). A new paradigm in
sweat based wearable diagnostics
biosensors using Room Temperature Ionic
Liquids (RTILs). Sci. Rep. 7, 1950. https://doi.
org/10.1038/s41598-017-02133-0.

109. Parlak, O., Keene, S.T., Marais, A., Curto,
V.F., and Salleo, A. (2018). Molecularly
selective nanoporous membrane-based
wearable organic electrochemical device for
noninvasive cortisol sensing. Sci. Adv. 4,
eaar2904. https://doi.org/10.1126/sciadv.
aar2904.

110. Torrente-Rodrı́guez, R.M., Tu, J., Yang, Y.,
Min, J., Wang,M., Song, Y., Yu, Y., Xu, C., Ye,
C., IsHak, W.W., and Gao, W. (2020).
Investigation of Cortisol Dynamics in Human
Sweat Using a Graphene-Based Wireless
mHealth System. Matter 2, 921–937. https://
doi.org/10.1016/j.matt.2020.01.021.

111. Tang, W., Yin, L., Sempionatto, J.R., Moon,
J.M., Teymourian, H., and Wang, J. (2021).
Touch-Based Stressless Cortisol Sensing.
Adv. Mater. 33, 2008465. https://doi.org/10.
1002/adma.202008465.

112. De Giovanni, N., and Fucci, N. (2013). The
Current Status of Sweat Testing For Drugs of
Abuse: A Review. Curr. Med. Chem. 20,
545–561. https://doi.org/10.2174/
0929867311320040006.

113. Tai, L.C., Gao, W., Chao, M., Bariya, M.,
Ngo, Q.P., Shahpar, Z., Nyein, H.Y.Y., Park,
H., Sun, J., Jung, Y., et al. (2018).
Methylxanthine Drug Monitoring with
Wearable Sweat Sensors. Adv. Mater. 30,
1707442. https://doi.org/10.1002/adma.
201707442.

114. Tai, L.-C., Liaw, T.S., Lin, Y., Nyein, H.Y.Y.,
Bariya, M., Ji, W., Hettick, M., Zhao, C., Zhao,
J., Hou, L., et al. (2019). Wearable Sweat
Band for Noninvasive LevodopaMonitoring.
Nano Lett. 19, 6346–6351. https://doi.org/
10.1021/acs.nanolett.9b02478.

115. Im, K.H., Nguyen, T.K., Kim, J.K., Choi, J.H.,
Lee, T.S., Cinti, S., Mercier, P.P., and Wang,
J. (2016). Noninvasive Alcohol Monitoring
Using a Wearable Tattoo-Based
Iontophoretic-Biosensing System. ACS
Sens. 18, 1011–1022. https://doi.org/10.
1021/acssensors.6b00356.
116. Sears, M.E., Kerr, K.J., and Bray, R.I. (2012).
Arsenic, Cadmium, Lead, and Mercury in
Sweat: A Systematic Review. J. Environ.
Public Health 2012, 1–10. https://doi.org/10.
1155/2012/184745.

117. Kim, J., de Araujo, W.R., Samek, I.A.,
Bandodkar, A.J., Jia, W., Brunetti, B., Paixão,
T.R., and Wang, J. (2015). Wearable
temporary tattoo sensor for real-time trace
metal monitoring in human sweat.
Electrochem. Commun. 51, 41–45. https://
doi.org/10.1016/j.elecom.2014.11.024.

118. Gao, W., Nyein, H.Y.Y., Shahpar, Z., Fahad,
H.M., Chen, K., Emaminejad, S., Gao, Y., Tai,
L.-C., Ota, H., Wu, E., et al. (2016). Wearable
Microsensor Array for Multiplexed Heavy
Metal Monitoring of Body Fluids. ACS Sens.
1, 866–874. https://doi.org/10.1021/
acssensors.6b00287.

119. Yang, Q., Rosati, G., Abarintos, V., Aroca,
M.A., Osma, J.F., and Merkoçi, A. (2022).
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