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Abstract
Cell-free DNA (cfDNA) has become widely recognized as a promising candidate biomarker for minimally invasive charac-
terization of various genomic disorders and other clinical scenarios. However, among the obstacles that currently challenge 
the general progression of the research field, there remains an unmet need for unambiguous universal cfDNA nomenclature. 
To address this shortcoming, we classify in this report the different types of cfDNA molecules that occur in the human body 
based on its origin, genetic traits, and locality. We proceed by assigning existing terms to each of these cfDNA subtypes, 
while proposing new terms and abbreviations where clarity is lacking and more precise stratification would be beneficial. We 
then suggest the proper usage of these terms within different contexts and scenarios, focusing mainly on the nomenclature as 
it relates to the domains of oncology, prenatal testing, and post-transplant surgery surveillance. We hope that these recom-
mendations will serve as useful considerations towards the establishment of universal cfDNA nomenclature in the future. In 
addition, it is conceivable that many of these recommendations can be transposed to cell-free RNA nomenclature by simply 
exchanging “DNA” with “RNA” in each acronym/abbreviation. Similarly, when describing DNA and RNA collectively, the 
suffix can be replaced with “NAs” to indicate nucleic acids.

Introduction

The presence of cell-free DNA (cfDNA) in human blood 
was discovered in the 1940s (Mandel 1948), but only in 
the last 2 decades have researchers started to uncover the 
immense potential of cfDNA as a minimally invasive 
source of diverse biological and pathological information. 

Although cfDNA research is still a young field of inquiry, 
it is becoming clear that the utility of cfDNA spans multi-
ple domains of both basic research and clinical diagnostics 
(Akirav et al. 2011; Amicucci et al. 2000; Atamaniuk et al. 
2004; De Vlaminck et al. 2014; Diaz and Bardelli 2014; 
Fleischhacker and Schmidt 2007; Hui 2019; Lo et al. 1998; 
Stroun et al. 1989; Thierry et al. 2016; Wan et al. 2016; 
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Zandvakili and Lazaridis 2019; Zemmour et al. 2018). 
In addition, cfDNA analysis represents a point of major 
advancement in the application of next-generation molecu-
lar techniques and bioinformatics towards minimally inva-
sive patient-centered diagnosis, prognosis, prediction, and 
monitoring (Tuaeva et al. 2019).

While initially discovered in blood, cfDNA molecules 
have now been detected in all human body fluid types. The 
composition of the cfDNA population in any body fluid 
depends on several factors, such as the location of the fluid, 
the relative contribution of different organs and cell types, 
the mechanisms by which cfDNA is generated and released, 
the conditions surrounding its movement from immediate 
extracellular space into the specific body fluid, its interaction 
with other extracellular components, and its stability/half-
life in the fluid. Concurrently, all these factors are modulated 
by various, often interconnected, biological and physiologi-
cal factors, many of which are liable to notable intra- and 
interindividual variation (for comprehensive reviews, refer 
to Aucamp et al. 2018, Thierry et al. 2016, and Ungerer 
et al. 2020). As a result, the cfDNA profile in any body 
fluid is generally highly complex, often consisting of DNA 
fragments from diverse origins, including multiple organs, 
different cell types, and non-human endogenous and exog-
enous sources (e.g., microbial and viral DNA). Furthermore, 
it is now well understood that cfDNA molecules conserve, 
on a primary level, the unique genetic and epigenetic codes 
that characterize its originating source. In addition to the 
classical epigenetic marks (DNA methylation and histone 
modifications), cfDNA from different sources often carry 
unique information in the form of secondary structural fea-
tures, such as protein-complexes, extracellular vesicle asso-
ciations, and variable fragment size, end-point motifs, and 
nucleosome density (reviewed in Bronkhorst et al. 2019b). 
Despite these differences, cfDNA of different origins often 
display overlapping features. To list some examples, clonal 
hematopoiesis-derived cfDNA often exhibit cancer-associ-
ated mutations identical to circulating tumor DNA (ctDNA) 
(Gormally et al. 2006; Hu et al. 2018); ctDNA and wild-type 
DNA derived from different cell types often exhibit similar 
DNA methylation patterns and histone modifications; and 
ctDNA and cell-free fetal DNA (cffDNA) exhibit similar 
fragment sizes (Chan et al. 2004; Fan et al. 2010; Jiang et al. 
2015; Mouliere et al. 2011; Sun et al. 2018; Sanchez et al. 
2018).

Therefore, the characteristics of the cfDNA profile in a 
typical biospecimen source change dynamically, are highly 
heterogeneous, but also demonstrate overlapping physico-
chemical features despite originating from disparate sources 
and processes. Historically, this inherently complex cfDNA 
mixture in most biospecimen types has not only complicated 
the analytical differentiation between cfDNA molecules of 

different origins, but also hampered the establishment of a 
proper nomenclature.

Due to the persistent lack of widespread consensus on 
nomenclature, the literature is flooded with numerous self-
devised terms that describe different types of cfDNA. As 
summarized in Table 1, it is clear that (i) several variations 
of terms and abbreviations are often used to describe the 
exact same cfDNA type, (ii) the same terms are often used 
to describe cfDNA types that differ structurally and biologi-
cally, and (iii) incompatible terms are often used to describe 
the same cfDNA types. Although there is no direct evidence 
that inconsistent use of nomenclature presents a major obsta-
cle to the development of clinically meaningful cfDNA tests, 
it does complicate interstudy comparisons and is a source 
of biased reading and referencing of literature. In addition, 
unclear and overlapping definitions often make it difficult for 
patients and genetic counsellors, for example, to understand 
the terminology. These drawbacks emphasize the need for 
unambiguous nomenclature (Otandault et al. 2019). As the 
cfDNA research field is currently in a strong growth phase 
with a rapid influx of new researchers, publications, as well 
as companies and associated stakeholders, it is an opportune 
time to address cfDNA nomenclature.

Indeed, a survey from the attendants of the 10th inter-
national CNAPS (Circulating Nucleic Acids in Plasma and 
Serum) meeting indicated that, despite different viewpoints 
on some aspects of the nomenclature, researchers in the 
cfDNA field recognize that there are several inconsisten-
cies in cfDNA terminology and that there is a need for a 
unification of nomenclature (Otandault et al. 2019). Working 
towards such a unification, most of the Scientific Commit-
tee members of the 10th CNAPS meeting have cooperated 
to produce this report in which we have assigned what we 
consider to be suitable terms and abbreviations (both exist-
ing and new) to the different cfDNA types as it relates to 
different biological compartments and DNA origins, focus-
ing on three highly investigated diagnostic areas: oncology, 
prenatal testing, and post-transplant surgery surveillance. As 
such, this proposal takes the shape of an exhaustive stratifi-
cation of cfDNA subtypes. However, bearing in mind that 
such precise stratification of cfDNA subtypes in most clini-
cal biospecimens would be unnecessary or impractical, the 
main goal of this proposal is to provide an expanded selec-
tion of nomenclature that could serve as a useful reference in 
specific scenarios for both basic researchers and clinicians. 
In line with this, it is important that the nomenclature sug-
gested here should not be regarded as a consensus view of 
the broad cfDNA research community, but rather be scruti-
nized as a free-standing proposal representing the views of 
the authors. The secondary goal of this work is simply to 
raise awareness on the importance of proper nomenclature.

We hope that these recommendations will serve as 
a useful guideline for fellow researchers in the field or 
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Table 1   List of the highly varied cell-free DNA (cfDNA) terms and their corresponding abbreviations or acronyms identified through exhaustive 
screening of the literature

Category Term Abbreviations found in the literature

Total DNA Blood plasma DNA N/A
Cell-free circulating DNA cfcDNA, fcDNA
Cell-free DNA cfDNA, cf-DNA, (cf) DNA, CFDNA
Circulating cell-free DNA cfDNA, ccfDNA, ccf DNA
Circulating DNA cirDNA, circDNA, C-DNA
Circulating extracellular DNA exDNA, ecDNA
Circulating free DNA cfDNA
Extracellular DNA exDNA
Extracellular occurring DNA eoDNA
Free circulating DNA fcDNA
Free DNA fDNA
Plasma DNA N/A

Total DNA and RNA Cell-free chromatin cfCh
Cell-free nucleic acids cf-NAs
Circulating cell-free nucleic acids cf-NAs, ccfNAs
Circulating nucleic acids cirNAs, cir-NA, CNAs
Circulating nucleic acids in plasma and serum CNAPS CNAPS
Extracellular nucleic acids exNA

Mitochondrial DNA Cell-free mitochondrial DNA cfmDNA, CFmDNA, cf-mtDNA, cf-mt-DNA
Mitochondrial cell-free DNA McfDNA
Plasma cell-free mitochondrial tumor DNA N/A
Plasma tumor mitochondrial DNA tmtDNA
Whole blood mitochondrial DNA wb-mtDNA

Nuclear DNA Cell-free nuclear DNA CFnDNA, cf-nDNA
Circulating, cell-free nuclear DNA ccf-nDNA
Nuclear cell-free DNA NcfDNA

Specific source Cell-free seminal DNA cfsDNA
Cell-surface bound extracellular DNA csbDNA
Cerebrospinal fluid tumor DNA CSF-tDNA
Urinary cell-free DNA ucfDNA

Oncology Cell-free circulating tumor DNA ctDNA, cfTDNA
Cell-free tumor DNA ctDNA, cftDNA
Cell-free tumor-derived DNA tDNA
Circulating free tumor DNA cftDNA
Circulating tumor DNA ctDNA
Tumor DNA N/A
Tumor-derived circulating DNA N/A
Tumor-derived DNA N/A

Prenatal testing Cell-free fetal DNA cffDNA, cff-DNA, fDNA, f-DNA
Cell-free maternal DNA cfmDNA
Cell-free total DNA cftDNA
Circulating cell-free fetal DNA cffDNA
Circulating fetal DNA cf-DNA, fDNA
Fetal cell-free DNA fDNA
Fetal DNA f-DNA, fDNA
Free circulating fetal DNA cfDNA
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international associations such as the ICH (https​://www.ich.
org/) to systematically set up a universal cfDNA nomencla-
ture in the near-future. Figure 1 summarizes the proposed 
nomenclature, whereas Table 2 indicates the context in 
which each term may be useful.

Nomenclature for total cell‑free DNA 
in different biological compartments

Whether in naked-form, protein-bound, or associated with 
extracellular vesicles (EVs), DNA that is liberated from 
the confinement of cells into any type of extracellular 
space is typically denoted by either of two general terms: 
extracellular DNA (exDNA) or cfDNA. While these two 
terms are often used interchangeably, clear biases in their 
use are apparent in the literature. The term exDNA is more 
frequently used to describe non-human DNA in the envi-
ronmental context (e.g. soil, sediments, aquatic environ-
ments, and biofilm). One common exception here is the 
use of exDNA to describe both human and pathogen DNA 
captured in neutrophil extracellular traps (NETs) (Massberg 
et al. 2010), which are often referred to as exDNA traps. 
Conversely, the term cfDNA has been more widely adopted 
to describe various forms of DNA in the human context (i.e., 
body fluids). Therefore, it should be noted that the defini-
tions of the terms exDNA and cfDNA, despite still often 
being used interchangeably, have diverged to the extent that 
they often mean different types of DNA. Accordingly, when 
cfDNA types only derived from human body fluids are under 
consideration, we give preference to the term cfDNA.

Two main types of human body fluids are commonly dis-
tinguished: those that are by definition circulating (blood 
and lymphatic fluids), and those that do not form part of the 
circulatory system (i.e., stool, saliva, sputum, urine, semen, 
amniotic fluid, cerebrospinal fluid, bile, bronchial lavage, 
esophageal brushings, breast discharge, tears, and cysts). 
Different approaches are used to assign nomenclature to 
cfDNA present in these different body fluids: (i) the total 
pool of cfDNA in both circulating and non-circulating body 
fluids can be described as cfDNA; (ii) when only cfDNA 
present in circulating body fluids is under consideration, 
either of the terms cfDNA or circulating DNA (cirDNA) 

can be used; (iii) in cases where it is necessary (or when it 
would provide clarity) to discriminate between cfDNA com-
ing from these two different sources (e.g., when performing 
simultaneous characterization and comparison of cfDNA 
mutational profiles in plasma vs urine), the total cfDNA 
population in non-circulating body fluids can be defined as 
cfDNA, while the total cfDNA population in the circulatory 
system can be defined as cirDNA. However, these defini-
tions overlap slightly which may also result in confusion 
and could be resolved by implementing separate nomencla-
ture for DNA present in non-circulating vs. circulating body 
fluids, such as non-circulating cell-free DNA (nccfDNA) 
and circulating cell-free DNA (ccfDNA), respectively. An 
alternative approach may be to simply specify the body fluid 
in question, which in itself defines whether or not the fluid is 
circulating, e.g., plasma cfDNA, serum cfDNA, lymphatic 
fluid cfDNA, urine cfDNA, stool cfDNA, and cerebrospi-
nal fluid cfDNA. While these are straightforward and via-
ble approaches, it is unlikely to replace the popular terms 
cfDNA, cirDNA and ctDNA. One minor caveat, however, to 
be aware of when using the term cirDNA is its overlap with 
the nomenclature for circular DNA, an extrachromosomal 
DNA structure that can be present intracellularly and extra-
cellularly (Kumar et al. 2017; Sin et al. 2020). In most cases, 
extrachromosomal circular DNA is abbreviated as eccDNA, 
but is in some cases also abbreviated as cirDNA.

Apart from describing cfDNA present in internal fluids, 
the term cfDNA can also be used to describe cfDNA recov-
ered from any body fluids that have become separated from 
a body in a non-clinical setting, such as blood, sweat, and 
feces, which may represent valuable specimens for forensic 
casework (Quinones and Daniel 2012; Vandewoestyne et al. 
2013). Similarly, the DNA present in human cell culture 
supernatant can be termed cfDNA (Bronkhorst et al. 2016).

Nomenclature for cell‑free DNA subtypes 
as defined by different origins

As discussed earlier, exDNA or cfDNA is found in different 
biological compartments in various organisms within the 
plant (Chayen and Norris 1953; Stroun et al. 1971, 1963) 
and animal kingdoms (Mandel 1948; Stroun et al. 1977, 

Table 1   (continued)

Category Term Abbreviations found in the literature

Post-transplant surgery sur-
veillance

Cell-free donor-derived DNA cfdDNA

Donor-derived cfDNA dcfDNA, ddcfDNA, dd-cfDNA

Donor-specific cfDNA cfdDNA

Graft-derived cell-free DNA GcfDNA

https://www.ich.org/
https://www.ich.org/
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1967). In humans, the origins of cfDNA can be highly heter-
ogeneous due to the involvement of various tissues, organs, 
diverse mechanisms of release, endogenous microbes, and 
exogenous material. Thus, studies or reports combining data 
from different types of clinical samples, preclinical mod-
els, and even cell culture supernatants, should preferably 
distinguish the nature and origin of cfDNA by appropriate 
nomenclature. In such cases, as alluded to in the previous 

section, DNA extracted from non-circulating body fluids can 
be distinguished from DNA extracted from circulating body 
fluids by simply exchanging the “cf” prefix with “cir”. Per-
taining to human cells, cfDNA of mitochondrial origin can 
be termed cell-free mitochondrial DNA (cf-mtDNA) (Chiu 
et al. 2003; Meddeb et al. 2019). In studies or reports where 
cfDNA of both mitochondrial and nuclear origin are con-
comitantly described, greater contrast between the two types 

Fig. 1   Nomenclature for cell-free DNA (cfDNA) in humans. The 
cfDNA content in biospecimens is biologically and structurally 
diverse. Assigning proper names to distinct types of cfDNA mol-
ecules thus represents an important step towards a common under-
standing of concepts among researchers. In this figure, we dem-
onstrate how such a nomenclature can be devised in the fields of 
oncology, prenatal testing, and post-transplant surgery surveillance to 
differentiate between the different cfDNA types present in biospeci-
mens collected from human body fluids. For the correct interpretation 
of this figure, three important points should be noted: First, the term 
cfDNA is appropriate for describing any free-floating DNA present in 
both circulating (i.e., blood and lymphatic fluids) and non-circulating 
body fluids (e.g., urine, saliva, and cerebrospinal fluid). Second, in 
cases where it is necessary (or when it would provide clarity) to dis-

tinguish between cfDNA coming from these different sources (e.g., 
parallel characterization of cfDNA in both body fluid types), the total 
cfDNA in non-circulating body fluids can retain the term cfDNA, 
while the total cfDNA in circulation can be termed circulating DNA 
(cirDNA). Similarly, for describing different cfDNA subtypes that 
are present only in circulation, the “cf” prefix in the respective abbre-
viations can simply be replaced by the prefix “cir”. Third, while the 
terms cirDNA and cfDNA can be used interchangeably, there exist 
common preferences for either type in certain cases, as indicated by 
the asterisk symbols. Therefore, the usage of the above terms is often 
appropriate only in specific experimental settings and other scenarios. 
Table  2 provides more information on this nomenclature, and indi-
cates the different contexts in which each of the above terms may be 
useful
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may be facilitated by use of the term cell-free nuclear DNA 
(cf-nDNA). Pertaining to cfDNA of non-human origin, stud-
ies have demonstrated high levels of cfDNA fragments in 
human blood samples originating from known and unknown 
resident microorganisms (Burnham et al. 2016; Chiu and 
Alice 2019; Kowarsky et al. 2017; Stroun and Anker 1971). 
To describe the total cfDNA population originating from the 
metagenome of any microbe types that populate humans, 

the terms cell-free microbial DNA (cf-micDNA) or cell-
free viral DNA (cf-virDNA) may be useful. In some cases, 
environmental nucleic acids, such as plant and bacterial 
DNA, can be taken up by humans through food, water, and 
other liquids and can be present in body fluids for extended 
time periods before it is degraded, excreted, or taken up by 
proximal cells (Spisák et al. 2013; Woegerbauer et al. 2020). 

Table 2   Suggested usage of the proposed nomenclature

When it is preferred or necessary to describe cfDNA types present in or isolated from circulating body fluids, the prefix “cf” in the above terms 
can be replaced with “cir”. Similarly, when it is preferred or necessary to describe cfDNA types present in or isolated from non-circulating body 
fluids, the prefix “cir” in the above terms can be replaced with “cf”

Category Term Abbreviations Suggested to use when characterizing or 
referring to:

Currently used Newly proposed

Familiar cfDNA types
 Total DNA Extracellular DNA exDNA Any type of non-human DNA present in 

environmental compartments
Cell-free DNA cfDNA Any type of DNA present in any human 

body fluids, mucosa, as well as cell cul-
ture supernatant

Circulating DNA cirDNA Any type of DNA in circulation
 Origins Cell-free nuclear DNA cf-nDNA cfDNA of human nuclear DNA origin that 

needs to be distinguished from cfDNA of 
any other origin

Cell-free mitochondrial DNA cf-mtDNA cfDNA of human mitochondrial origin that 
needs to be distinguished from cfDNA of 
any other origin

Cell-free microbial DNA cf-micDNA cfDNA from any microbial origin
Cell-free viral DNA cf-virDNA cfDNA from any viral origin

 Oncology Circulating tumor DNA ctDNA The aggregate circulating DNA population 
originating from a tumor

Mutant circulating tumor DNA mut-ctDNA ctDNA with cancer-specific mutations
Epigenetically modified circulating tumor 

DNA
epi-ctDNA ctDNA with cancer-specific epigenetic 

modifications
Mutant circulating tumor mitochondrial 

DNA
mut-ct-mtDNA mut-ctDNA of mitochondrial origin that 

needs to be distinguished from other 
ctDNA types

Wild-type circulating DNA wt-cirDNA Wild-type cirDNA originating from any 
cells

 Prenatal testing Cell-free fetal DNA cffDNA Fetal DNA in circulation
Cell-free maternal DNA cfDNA Maternal DNA in circulation

 Post-transplant 
surgery surveil-
lance

Donor-derived cell-free DNA ddcfDNA Donor-derived cfDNA in organ transplant 
patients

Recipient cell-free DNA RcfDNA Recipient-derived cfDNA in organ trans-
plant patients

New/uncommon cfDNA types
 Various Extracellular vesicle associated DNA evDNA cfDNA associated with extracellular 

vesicles
Exosome associated DNA exoDNA cfDNA associated with exosomes
Cell-free somatic DNA cf-somDNA cfDNA originating from somatic cells
Cell-free germline DNA cf-germDNA cfDNA originating from germline cells
Cell-fee nucleosomes cfNucs cfDNA or histone modifications associated 

with nucleosomes
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Such cfDNA molecules could be collectively termed human 
metagenomic cfDNA.

On one hand, the vast number of cfDNA sources, the 
immense heterogeneity of cfDNA types, as well as the co-
existence of genomes of various origins within human body 
fluids highlight the importance of caution when drawing 
conclusions on the measurement of these molecules. On the 
other hand, the high sensitivity and specificity of contempo-
rary detection methods (e.g., Q-PCR, ddPCR and sequenc-
ing), integrated bioinformatics approaches, and wide range 
of genetic and epigenetic features that are open to inter-
rogation enable increasingly enhanced characterization 
of cfDNA (Alborelli et al. 2019; Bronkhorst et al. 2019a; 
van der Pol and Mouliere 2019). This presents the unique 
opportunity of using cfDNA to reconstruct in silico the vari-
ous genomes and epigenomes that are present in different 
regions of the human body in an unprecedented, minimally 
invasive manner. Harnessing this information may not only 
enable the identification of more disease-specific biomark-
ers, but, since cfDNA can be collected serially and over long 
periods, may also allow the monitoring of natural changes 
in the genome over time as well as allow the monitoring of 
dynamic genomic changes in response to a variety of envi-
ronmental factors. This in turn may enable differentiation 
between a wide range of physiological states within individ-
uals and between different individuals. As more scrutiny is 
placed on the various features of cfDNA and as increasingly 
more cfDNA studies on various physiological and pathologi-
cal conditions are being conducted, the research field, and 
by extension the nomenclature, becomes more complex. In 
line with this, we will in the remainder of the paper focus on 
cfDNA nomenclature as it relates to three branches of medi-
cine that have been positively impacted by cfDNA research.

Cell‑free DNA nomenclature in different 
branches of medicine

Oncology

The term ctDNA is used to describe fragments of DNA that 
are released by a tumor into blood. While ctDNA is a well-
accepted term, there are at least two potentially confound-
ing ambiguities worth noting. First, in some cases ctDNA is 
used exclusively for denoting tumor-derived cirDNA frag-
ments that harbor specific nuclear DNA mutations. In such 
cases, it is not clear whether the definition of ctDNA is also 
inclusive of DNA fragments that contain epigenetic modi-
fications, as well as mitochondrial DNA. Second, in oncol-
ogy the term cirDNA is often used to denote only wild-type 
cirDNA, but in most other cfDNA research fields cirDNA is 
a broad term used to describe the total population of plasma 
DNA, regardless of cellular origin.

In most cases, it is sufficient to define ctDNA simply as 
any type of cfDNA fragments that are released by a tumor 
and examined for the purposes of characterizing cancer. 
However, in certain cases (e.g., when ctDNA is used for 
the simultaneous analysis of genomic DNA mutations, 
epigenetic modifications, or mitochondrial DNA muta-
tions in cancer patients) the above-mentioned ambiguities 
may become a source of confusion, which may be clari-
fied through stratification of the different ctDNA subtypes. 
For this, the following nomenclature may be considered: 
(i) any cirDNA fragments that exhibit cancer-associated 
nuclear DNA mutations can be termed mutant circulating 
tumor DNA (mut-ctDNA); (ii) any cirDNA fragments that 
exhibit cancer-associated epigenetic modifications can be 
termed epigenetically modified circulating tumor DNA 
(epi-ctDNA); (iii) any circulating mitochondrial DNA (cir-
mtDNA) fragments that exhibit cancer-associated mutations 
can be termed mutant circulating tumor mitochondrial DNA 
(mut-ct-mtDNA), and (iv) each of these three ctDNA types 
can be distinguished from any background DNA by the term 
wild-type cirDNA (wt-cirDNA). Although wild-type DNA 
is generally understood to mean DNA without any novel 
mutations, the term wt-cirDNA is co-opted here to denote 
any cirDNA molecules that do not contain the specific can-
cer-associated nuclear and mitochondrial DNA mutations 
or epigenetic modifications that are being interrogated, irre-
spective of their cellular origin. Similarly, mut-ctDNA, epi-
ctDNA, and mut-ct-mtDNA are identified as such when they 
contain the cancer-specific markers that are absent in the 
wt-cirDNA as defined by the assays that are used, regardless 
of the specificity of the assay. In other words, whether the 
“variants” are truly cancer-defining or overlap with iden-
tical mutations or epigenetic modifications present in the 
cfDNA derived from normal tissues or other diseased tissues 
is not here taken into consideration. Indeed, this is one of the 
main issues that is currently being addressed by translational 
cfDNA research.

In line with this, a potentially confounding factor worth 
noting is the accumulating evidence for the presence of 
cancer-associated genomic alterations (e.g., mutations in 
the p53 tumor suppressor gene) in the clonal hematopoie-
sis (CH)-derived cfDNA of both cancer patients (Hu et al. 
2018) and healthy individuals that do not have cancer and 
likely never will develop cancer (Anglesio et al. 2017; 
Fernandez-Cuesta et al. 2016; Genovese et al. 2014; Gor-
mally et al. 2006; Newman et al. 2016). Experimental or 
in silico differentiation between CH-derived cfDNA and 
ctDNA molecules that bear the same mutations will pro-
vide a better understanding of the clinical implications of 
this phenomenon. This in turn will aid in the development 
of cfDNA assays with increased diagnostic sensitivity and 
specificity, thereby reducing the probability of misdiag-
nosing CH-derived cfDNA as malignancy. In most clinical 
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settings, however, it is currently not possible to confidently 
trace cfDNA molecules back to their originating compart-
ment and it is not yet clear how these molecules can be 
distinguished analytically. Therefore, there may not be an 
immediate need for terminology. However, an argument 
can be made that it may be useful to devise a provisional 
nomenclature based on the prospect that advances in our 
understanding of cfDNA biology would inform the devel-
opment of methods that in the future allow more accurate 
differentiation between cfDNA molecules of different 
origins, notwithstanding similar DNA mutation profiles. 
This may, for example, become achievable through paral-
lel characterization of cfDNA mutations and secondary 
features that exhibit tissue or cell-specific signatures, 
such as unique fragment sizes (Jiang et al. 2015; Marass 
et al. 2020; Mouliere et al. 2018; Sanchez et al. 2018), 
endpoint motifs (Cristiano et al. 2019; Jiang et al. 2020), 
nucleosome density/positioning (Snyder et al. 2016; Ulz 
et al. 2019b, 2016), or methylation patterns (Lehmann-
Werman et al. 2016; Moss et al. 2018; Zemmour et al. 
2018). Such a terminology may look as follows: DNA 

released from any non-tumor cells are termed non-tumor 
circulating DNA (NT-cirDNA). NT-cirDNAs that do not 
exhibit cancer-associated mutations can be termed wild-
type non-tumor circulating DNA (wt-NT-cirDNA). Con-
versely, NT-cirDNAs that exhibit cancer-associated muta-
tions can be termed mut-NT-cirDNA. Thus, in addition to 
cirDNA of microbial, viral and exogenous origin, the total 
cirDNA profile obtained following isolation of DNA from 
a cancer patient’s blood sample can be comprised of both 
ctDNA (mut-ctDNA, epi-ctDNA, and mut-ct-mtDNA) and 
NT-cirDNA (wt-NT-cirDNA and mut-NT-cirDNA). Note, 
the term wild type is often incorrectly used by oncologist 
as meaning wild type at the position/locus of specifically 
screened mutations.

Since most cancer studies have thus far been based on 
the characterization of DNA extracted from circulation, 
the focus in this section was placed on the nomenclature 
of DNA in circulation. However, it is becoming clearer that 
some non-circulating body fluids contain a richer source of 
specific tumor-derived cfDNA (reviewed in (Bronkhorst 
et al. 2019b)). Thus, when considering DNA extracted from 

Fig. 2   Nomenclature for cell-free DNA (cfDNA) in oncology. In 
the above representation, we demonstrate how nomenclature can be 
devised to differentiate between the different types of cancer cell-
derived cfDNA fractions present in samples collected from a the cir-

culatory system (blood and lymphatic fluids), b other bodily fluids 
(e.g., urine, feces, cerebrospinal fluid, bronchial lavage, and sputum), 
and c cell culture supernatant. Table 2 summarizes the different con-
texts in which each of the above terms may be useful



573Human Genetics (2021) 140:565–578	

1 3

body fluids other than blood or serum, the prefix “cir” can 
be replaced by “cf” (Table 2). Nomenclature for cfDNA in 
cancer is summarized in Fig. 2.

Prenatal testing

Molecular analysis of plasma and serum DNA during 
human pregnancy has led to the discovery that maternal 
blood contains cfDNA of both fetal and maternal origin 
(Amicucci et al. 2000; Lo et al. 1997). The origin of the 
cell-free fetal DNA (cffDNA) is the cytotrophoblast; so 
strictly speaking, it is placental DNA rather than fetal DNA 
that circulates in maternal blood (Alberry et al. 2007; Flori 
et al. 2004). However, the term “cffDNA” has gained uni-
versal acceptance in the prenatal literature and no change 
to this practice is proposed here. This uniquely accessi-
ble source of fetal DNA has opened up new possibilities 
for prenatal diagnosis and screening (Lo et al. 1998). The 
use of cffDNA for fetal molecular diagnostics is called 
noninvasive prenatal diagnosis (NIPD) and has clinical 
applications in the determination of fetal blood group, 
fetal sex, and an expanding range of monogenic conditions 
(Chitty and Lo 2015). This should be distinguished from 
the use of cffDNA for the detection of fetal chromosome 
conditions such as trisomy 21, which has been variously 
called noninvasive prenatal testing (NIPT), noninvasive 
prenatal screening (NIPS) and maternal cfDNA screen-
ing (Benn et al. 2013; Gregg et al. 2016; Taylor-Phillips 
et al. 2016). The use of cffDNA for aneuploidy detection 
is a screening test, and diagnostic confirmation with inva-
sive testing (chorionic villus sampling or amniocentesis) 
is still required after a high-risk result. The phenomenon 
of fetoplacental mosaicism is the biological reason why 
NIPT cannot achieve diagnostic accuracy for chromosome 

conditions, as the placental karyotype (which characterizes 
the plasma cfDNA profile) is not always representative of 
the true fetal karyotype (Brison et al. 2018; Pertile et al. 
2017). CffDNA describes the fetoplacental-derived frac-
tion of the maternal plasma cfDNA (the total DNA deriv-
ing from both the fetus and the mother should simply be 
termed as cfDNA). The ‘fetal fraction’ (FF) is the propor-
tion of total maternal plasma cfDNA that arises from the 
fetoplacental unit, that is FF = cffDNA/(cffDNA + mater-
nal plasma cfDNA). The FF is an important quality con-
trol metric in NIPT and is routinely calculated by most 
laboratories during the clinical workflow (Hui and Bianchi 
2020). Nomenclature for cfDNA in prenatal testing is sum-
marized in Fig. 3a.

Post‑transplant surgery surveillance

Characterization of donor cfDNA derived from a trans-
planted organ is emerging as a potentially useful tool to 
monitor post-transplant allograft rejection, dysfunction, 
and injury (Bloom et al. 2017; De Vlaminck et al. 2014; 
Moss et al. 2018; Schütz et al. 2017; Sharon et al. 2017; 
Sigdel et al. 2019). A method called “genome transplant 
dynamics” (GTD) is one of the first approaches developed 
for discriminating between donor and recipient cfDNA 
molecules, and is based on the quantification of unique 
single-nucleotide polymorphisms distributed across the 
genome (Snyder et al. 2011). To-date, several terms have 
been used to describe donor cfDNA, including donor-
specific cfDNA (cfdDNA), donor-derived cfDNA (either 
dcfDNA, ddcfDNA, or dd-cfDNA), cell-free donor-
derived DNA (cfdDNA), and graft-derived cell-free DNA 
(GcfDNA). To simplify this, we suggest using only the 

Fig. 3   Nomenclature for cell-free DNA (cfDNA) in a prenatal testing and b post-transplant surgery surveillance. Table 2 summarizes the differ-
ent contexts in which each of the above terms may be useful
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term donor-derived cfDNA (ddcfDNA) for describing the 
cfDNA originating from the donor organ and to distinguish 
ddcfDNA from the host cfDNA using the term recipient 
cfDNA (RcfDNA) (nomenclature summarized in Fig. 3b).

Expansion of cell‑free DNA nomenclature 
in the future

The landscape of cfDNA research will continue to change, 
likely prompting further diversification and expansion of 
nomenclature. There are at least three major drivers of 
this change:

First, there is a rapidly growing interest in the research 
field. Beyond the domains of oncology, prenatal testing 
and post-transplant surgery surveillance, cfDNA has been 
identified as a potential biomarker in various other condi-
tions, such as cardiovascular disease (Polina et al. 2020), 
autoimmune disease (Duvvuri and Lood 2019), sepsis 
(Ullrich et al. 2020), trauma (Gögenur et al. 2017), aging 
(Teo et al. 2019), physical exhaustion (Breitbach et al. 
2012), and may even become a useful clinical tool in vet-
erinary science (Goggs et al. 2020).

Second, an increasing number of studies are aimed 
towards improving our understanding of how to best har-
ness the diverse biological and pathological information 
encoded in cfDNA for the management of various dis-
eases. For example, information on the level of cfDNA 
tissue-of-origin may be vital for understanding and treat-
ing diseases that are typically very difficult to examine 
and monitor noninvasively, such as neurodegenerative, 
inflammatory, and ischemic diseases. A recent study has 
shown that tissue-specific methylation patterns are con-
served in cfDNA fragments and can be used to identify 
cell-death in heart tissues (Zemmour et al. 2018). In addi-
tion, sophisticated approaches using a reference methyla-
tion atlas recently enabled the differentiation of cfDNA 
fragments isolated from healthy human plasma based on 
the relative contribution of different cell types, such as 
white blood cells (55%), erythrocyte progenitors (30%), 
vascular endothelial cells (10%) and hepatocytes (1%) 
(Moss et al. 2018).

Third, several landmark studies have recently demon-
strated the importance of an improved understanding of 
both the physico-chemical properties of cfDNA, as well 
as the biological and physiological factors that modulate 
these properties. This knowledge will not only aid in the 
identification of more disease-specific cfDNA features, but 
also inform the development of strategies that maximize 
the chances of detecting target cfDNA molecules, thereby 
increasing the diagnostic sensitivity and specificity of 
clinical assays, such as; the selection of patient conditions 
that either favor the release of target molecules or limit the 

release of background molecules into the body fluids in 
question prior to sampling; optimization of preanalytical 
procedures that preserve target molecules and limit the 
incidence of contaminating DNA; tailoring or development 
of extraction procedures that are either biased towards the 
capture of specific cfDNA molecules or the elimination of 
non-specific DNA molecules. Therefore, in keeping with 
these recent important findings, it may in the near-future 
become necessary to devise nomenclature for distinguish-
ing between (i) cytoplasmic vs. cell-surface bound cfDNA 
(Tamkovich and Laktionov 2019), (ii) cfDNA fragments 
that possess different epigenetic signatures (e.g., unique 
DNA fragmentation patterns and endpoint motifs, meth-
ylation patterns, nucleosome positioning and transcription 
factor binding sites) (Sanchez et al. 2018; Snyder et al. 
2016; Sun et al. 2018; Ulz et al. 2019a), (iii) cfDNA frag-
ments that exhibit different sizes, (iv) cfDNA fragments 
that originate from somatic cells vs. germline cells, which 
may be termed cell-free somatic DNA (cf-somDNA) and 
cell-free germline DNA (cf-germDNA), respectively, (v) 
cfDNA complexed or associated with different proteins 
and other subcellular components—for example, studies 
have shown significant portions of cfDNA to be associ-
ated with (a) histone proteins in nucleosomal structures, 
which may be termed cell-free nucleosomes (cfNucs), (b) 
extracellular vesicles, which may be termed extracellular 
vesicle associated DNA (evDNA), (c) specific extracellu-
lar vesicles such as exosomes, which may be termed exo-
some associated DNA (exoDNA), (d) small lipoprotein 
complexes, (e) fragments of cellular membranes, and (f) 
neutrophil extracellular traps (NETs) released from poly-
morphonuclear neutrophils, which are structures com-
posed of DNA, histones, granules and enzymes (Aucamp 
et al. 2018; Thierry et al. 2016).

Lastly, in this report, we focused on the terminology of 
cfDNA. However, in recent years, various types of cell-free 
RNA molecules have emerged as potentially powerful bio-
markers (e.g., non-coding RNAs such as miRNAs, lncRNAs, 
and rRNAs). It is feasible that much of the nomenclature 
proposed in this paper can be transposed to the cell-free 
RNA field by simply exchanging “DNA” with “RNA” where 
appropriate. Moreover, when both DNA and RNA are under 
consideration in the same instance the abbreviation prefixes 
can be followed by “NAs” to denoted nucleic acids, instead 
of “DNA” or “RNA”. In this regard, it is worth noting that 
a specific type of DNA and RNA is circular in structure 
and are sometimes termed cirDNA and cirRNA, respec-
tively. To avoid confusing these terms with circulating DNA 
(also abbreviated as cirDNA) and circulating RNA (also 
abbreviated cirRNA), we suggest using the more common 
nomenclature when it is necessary to refer to circular RNA 
(circRNA) or circular DNA, including extrachromosomal 
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circular DNA (eccDNA) or covalently closed circular DNA 
(cccDNA).
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