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With the continuous development of the Internet, social media based on short text has become popular. However, the sparsity and
shortness of essays will restrict the accuracy of text classification. Therefore, based on the Bert model, we capture the mental
feature of reviewers and apply them for short text classification to improve its classification accuracy. Specifically, we construct a
model text at the language level and fine tune the model to better embed mental features. To verify the accuracy of this method, we
compare a variety of machine learning methods, such as support vector machine, convolution neural networks, and recurrent
neural networks. The results show the following: (1) Through feature comparison, it is found that mental features can significantly
improve the accuracy of short text classification. (2) Combining mental features and text as input vectors can provide more
classification accuracy than separating them as two independent vectors. (3) Through model comparison, it can be found that Bert
model can integrate mental features and short text. Bert can better capture mental features to improve the accuracy of clas-

sification results. This will help to promote the development of short text classification.

1. Introduction

With the proliferation of online text information, text
classification plays a vital role in obtaining information
resources [1]. As an efficient and well-known natural lan-
guage processing technology, text classification can identify
the content of a given document and find the relationship
between document features and document categories. It is
widely used in various fields, such as event detection [2,3],
media analysis [4, 5], viewpoint mining [6, 7], and predicting
product revenue [8,9]. Although text classification has al-
ways been a well-known problem, a suitable solution for
short text classification has not been found. Especially, with
the rapid growth of the digital media scale, a complex en-
vironment will affect the results of text content retrieval and
analysis. This makes short text classification a challenging
task. Therefore, to promote content analysis of online text
information, a reliable text classification tool is needed [10].

Recently, a large number of scholars have studied text
classification. Traditional classification algorithm models

include K-nearest neighbor (KNN) [11], naive Bayes (NB)
[12], and support vector machine (SVM) [13]. These models
have good classification results and have been widely used.
They extract the features of text documents and then use one
or more classifiers to predict multiple related tags [14, 15].
However, such methods are time-consuming and require the
extensive domain knowledge of experts [10]. At present,
with the development of deep learning, the traditional
classification methods are gradually integrated and replaced
by deep learning classification algorithms. As deep learning
can learn representation from data without complex feature
engineering, it has become a hot research topic in this field
[16, 17]. To obtain a better classification effect, many re-
searchers use a convolutional neural network (CNN) [18]
and recurrent neural network (RNN) [19] to extract and
calculate text features. In particular, the bidirectional en-
coder representations from transformers (Bert) [20] de-
veloped by Google. Different from the previous network
architecture, Bert is based on attention mechanism and
transformer coding structure. However, previous studies
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have not used the mental feature of the speaker, that is,
mental features, for short text classification.

The current research challenges are as follows. Although
the emergence of machine learning will improve the effect of
text classification, the sparsity and shortness of text will limit
the accuracy of text classification. At the same time, with the
growth of smart phones, short text has been integrated into
daily life. Therefore, a method is needed to quickly identify
the publisher’s intention, to improve the accuracy of clas-
sification. In addition, when it comes to cross languages, the
traditional method uses the same corpus to train the clas-
sifier, but this method cannot be extended to multilingual
environment [21]. To address this knowledge gap, in this
research work, we focus on text classification according to
users’ mental features, and use cross-lingual data sets for
experiments. Given this, this paper proposes a method,
which effectively integrates mental features with text content
on a linguistic level. Specially, we have designed two
methods to integrate text context and all features on a
linguistic level. Then, we fine-tune the model by evaluating
the significance of each feature. The mental features can
reflect the speaker’s behavior and improve the accuracy of
the method. Meanwhile, to verify the accuracy of this
method, we compare a variety of machine-learning methods.
The results show that our method has significant advantages
in short text classification tasks.

The main contributions of this paper are as follows:

—-A Bert-based mental approach is proposed for the
classification of short text content. The proposed method
combines the user’s mental feature with the short text content.
It can help better identify the user’s intention contained in the
short text, that is, false comments or text topic detection.

—Compared with other existing machine-learning re-
search, the proposed method effectively integrates mental
feature vector and short text vector. It improves the accuracy
of text classification and achieves good accuracy on cross-
corpus data sets.

The rest of this paper is shown as follows. Section 2
summarizes the literature reviews. In Section 3, we introduce
the methodology. Section 4 is an experiment, including data
set, research settings, evaluation metrics, and experimental
results. Section 5 discusses the key findings, theoretical
implications, and practical implications. Finally, the con-
clusion is presented.

2. Literature Review

2.1. Mental Theory. The concept of mental theory was first
proposed by Craik [22]. The basic assumption of the mental
theory is that any form of communication is based on the
situational way people talk about [23, 24]. It represents how
people imagine and understand the situation in the world.
Although it may contain factual information, it is not only
able to identify facts, it can also be used to make judgments
and inferences, to affect people’s behavior. When people use
signs to represent objects, it is often quite abstract. There-
fore, mental models need to be used to explain existing
concepts by adding more information [25], which will have a
potential impact on people. Mental theory has been widely
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used in many fields, such as management education [26] and
management decision-making [27, 28].

In the field of text, the mental theory has been proved to
improve text comprehension [29-31]. Specifically, mental
theory reflects the different levels of representation formed
by the speaker in the process of text writing. Representation
refers to an abstract propositional representation between
the thought contained in the text and its linguistic infor-
mation. This is also a cognitive representation of reality,
which is related to the speaker’s cognition, perception, and
behavior in various situations [25, 32]. It is worth noting that
it represents the content of the text (the events, objects, and
processes described in the text), rather than the character-
istics of the text itself [33].

At the same time, deep learning can be used as a
powerful tool to expand mental theory. For example, to
improve teaching efficiency, Tawatsuji et al. [34] and Matsui
et al. [35] extracted the relationship between students’
mental state and mental information through deep learning,
supplemented by teachers’ speech behavior. To ensure
driving safety, Darwish et al. [36] analyzed the driver’s
psychology through in-depth learning and judge how the
driver perceives the environment. Dutta et al. [37] believed
that machine-learning algorithm is used as a classification
tool of mental state, which can improve the accuracy of
classification.

Therefore, this paper combines mental theory with deep
learning to apply the classification of short texts. By dis-
covering the relationship between text and mental features,
more accurate classification results will be obtained.

2.2. Text Classification Method. Recently, most classification
methods are mainly based on machine learning. In terms of
KNN, Moldagulova et al. [11] and Trstenjak et al. [38] use the
KNN algorithm to classify documents. The results show that
this algorithm has good classification performance. In terms
of Xgboost, Wang et al. [39] took the Xgboost algorithm and
granularity parameters as input characteristics to predict
sample categories. Li and Zhang [40] proposed a classification
prediction model based on the Xgboost algorithm. In terms of
NB, Zhu et al. [12] used the NB algorithm for text classifi-
cation. Jiang et al. [41] proposed an improved NB technology
for text classification performance. This method solves the
problem of unsatisfactory results caused by the uneven dis-
tribution of training data. Bilal et al. [42] used the NB al-
gorithm for periodical literature classification. The results
show that the accuracy of this method is high enough. In
addition, some scholars also studied SVM, which is a method
used to predict and define how to classify data sets [43]. It can
classify text data into predefined classes [44]. In terms of
SVM, Luo [13] applied the SVM model to the classification of
English texts and documents. The results show that this
method has good performance. According to Vijayarani et al.
[45], the accuracy of SVM is slightly higher than that of NB.
However, traditional target classification focuses on feature
engineering to maximize the use of classifiers [46-48], such as
SVM. Such methods are time-consuming and require the
extensive domain knowledge of experts.
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With the development of machine learning, a large
number of NN models have emerged in natural language
processing tasks [49,50]. As these methods can learn rep-
resentation from data without complex feature engineering,
NN has become a hot research topic in this field. Mainstream
NN include RNN [19,51], gated neural network (GNN)
[52,53], CNN [50, 54, 55], and long short-term memory
(LSTM) [56]. The most popular neural network architec-
tures are CNN and RNN. CNN has a good performance on
features extraction by convolution kernel, which improves
the accuracy of feature descriptors. RNN is widely used to
capture flexible context information. However, Kandhro
et al. [57] found that the performance of the LSTM method
has more advantages than CNN and RNN. LSTM solves the
vanishing gradient problem and has long-term dependence,
which can retain the characteristics of previous learning
[56]. Tang et al. [58] found that LSTM can effectively capture
the information of sentences. Lee et al. [59] mine tourists’
destinations and preferences through text classification and
spatial clustering based on LSTM. The results show that this
method has good results. Subsequently, Google proposed
Bert [20]. This model has made a breakthrough in the text
field and achieved the most advanced results. A large
number of scholars widely used Bert, which is enough to
prove its great advantages in feature extraction [60,61].

However, previous studies have not used human mental-
related features for short text classification. We assume that
in a specific linguistic pattern, mental features can provide
more information for short text classification. Therefore, this
paper studies the Bert method for short text classification,
and fine-tune it. Specifically, to obtain more accurate clas-
sification results, we combine mental features with text
content according to specific short text patterns.

3. Methodology

3.1. Theory. The sparsity and shortness of short text may
seriously destroy the representation of short text. An im-
portant solution is to enrich the short text representation by
involving the cognitive aspects of the text, such as mental
features. Generally, the short text content of users can be
enriched from external mental and internal mental features
(as shown in Figure 1).

Figure 1 shows the conceptual framework proposed in
this study, which is divided into two main stages: mental
model processing and classification model training. First, we
propose two methods to embody mental features, namely,
history information and Maslow’s need. Our text data set
contains cross-lingual corpus. The approach proposed in
this paper can effectively integrate mental feature vector and
short text vector, classify short text with higher accuracy, and
help readers understand the intention contained in the text.
Next, the application of nonconcentric zhite is introduced in
methods 1 and 2, respectively.

3.1.1. Method 1. The historical information of users contain
their behavior laws. There will be great differences in the
historical information of different users. Based on this, this

paper introduces the user history feature into the short text
classification model as an external mental feature. Its con-
cept is as shown in Figure 2. By enriching the user’s intention
expressed in a short text, accurate classification is carried
out.

3.1.2. Method 2. This paper takes Maslow’s need as the
internal mental feature. Maslow’s needs include five levels
of cognitive needs, including physiological needs, security
needs, emotional needs, respect needs, and self-realization
needs. It can be expected that different levels of needs play
an important role in everyone’s character formation.
Therefore, it is also important to understand these basic
requirements in short text classification. If the mental
feature is constructed according to the different needs of
users, the short text can be enriched, and the readers can
better understand the content of the text. Its concept is as
shown in Figure 3.

3.2. Model Structure. The Bert is realized by constructing
mental features and combining domain-related knowledge.
Its structure is shown in Figure 4. The model integrates text
and features into a corpus instead of inputting them with
different vector matrices. The data input rules can be de-
scribed as follows:

(i) [Text] indicates the text content
(ii) [F] represents a Feature item

(iii) [CLS] indicates that the corpus is used for the
classification model

(iv) [SEP] represents a clause symbol, which is used to
disconnect two sentences in the input corpus

The Bert mainly consists of the following three parts:

Input layer: the feature and text data are used to es-
tablish the input sequence for this model. Then, the
final input representation is obtained by summing the
position embedding, word embedding, and segmen-
tation embedding of each tag sequence.

Encoder layer: it consists of 12 transform blocks, which
input the marked sequence and output the represen-
tation of the sequence.

Output layer: it consists of a simple softmax classifier at
the top of the encoder layer, which is used to calculate
the conditional probability distribution on the pre-
defined classification label.

3.2.1. Input Layer. The difference between the two methods
is how we input meta-data into the Bert:

(i) Pair Method (PM): this method inputs the feature
text into the model as a sentence independent of the
claim. That is, at the token level, the claim is sepa-

rated from the feature text by the special token
"[SEP].
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Output layer structure, see Figure 5. The embedding features of these
> three words are as follows:
ety e (1) Token embedding: this embedding is a vector to

convert each word into a fixed dimension. The input
text will be tokenized when it is sent into this em-
bedding. In addition, two special tokens, [CLS] and
[SEP], will be inserted at the beginning and the end
of the tokenization result. They are regarded as the
following classification tasks and the effect of di-
viding sentences on services, respectively.

I I (2) Position embedding: this embedding refers to

Text Feature

FiGURE 4: Basic structure of the Bert.

encoding the position information of words into
feature vectors. It is a crucial link to introduce the
word position relationship into the model.

(3) Segment embedding: there are only two vector

(ii) News Text Method (NTM): this method inputs the
news text into the model as a single sentence.
Noteworthy, the News Text is composed of Claim
and Feature Text. They are separated by ’;’. Only one
’[SEP]’ token is added at the end of the entire token
sequence.

representations of this embedding. The former
vector assigns 0 to each token in the first sentence,
and the latter vector assigns 1 to each token in the
second sentence. If the input has only one sentence,
its segment embedding is all 0.

The input representation of each token e is obtained by ~ 3.2.2. Encoder Layer. The model architecture is composed of
adding its token embedding (W), segment embedding (S), 12 layers of transformers. Its basic structure is shown in
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Ficure 5: Construction of input sequence representations for Bert.

Figure 6. Each transformer is composed of a self-attention
module, add&norm module, feed-forward module, and
add&norm module:

(1) Self-attention module: this module is to find the
correlation between words. Each self-attention
mechanism first converts the input data into three
vectors through three parameter matrices Q, K, and
V. Where, Q is the query vector parameter matrix, K
is the key vector parameter matrix, and V is the value
vector parameter matrix. The converted vector di-
mension is smaller than the input dimension. Then,
the machine calculates the self-attention vector of the
Q. The main process is to divide the Q and the K by
the square root of the K. This will reduce the vector
size to a certain extent, which is conducive to keeping
the gradient stable during backpropagation. After
that a softmax operation is performed on all nor-
malized dot products. Its purpose is to normalize,
which can strengthen the influence of relevant time
step data and weaken the influence of irrelevant time
steps. Finally, multiply the aforementioned results by
V. The calculation of self-attention is shown in the
following formula:

Z = Attention (Q, K, V)

T (1)
= softma_x(g)V,

\/jt

where Z is the output vector of the attention module.

(2) add&norm module: in this module, the Z vector
is input into LayerNorm, which normalizes Z.
The purpose of this is not to let the Z vector to fall
in the saturation region of the activation

function. Therefore, the normalized N vector is
obtained.

(3) Feed-forward module: as the calculation in the self-
attention module is linear, to improve the nonlinear
fitting ability of the model, a feed-forward network
needs to be connected behind it. The network
consists of two linear mapping parts. The first part is
linear mapping and nonlinear activation relu func-
tion. The second part is a linear mapping. The for-
mula is as follows:

F(Z) = relu(0,ZW, + b,)W, + b,, (2)

where F is the output vector of the feed-forward neural
network, W, and W, are the weight matrix, b, and b, are the
bias.

Then the output of the feed-forward network is nor-
malized by the add&norm module.

The aforementioned steps are a transformer. After 12
times, the output of the 12th transformer is a hidden state
vector, that is, the T vector.

3.2.3. Output Layer. The output layer is a simple softmax
classifier at the top of the model. This model only uses the
final hidden state vector T[CLS] as the aggregate repre-
sentation of the sequence, that is, the T vector output
through the transformer. The final classification result is
obtained according to the following formula:

exp (P (y;IT[CLS], 0))
Y1 exp (P (yIT[CLS], 9))’
(3)

where V € R°" is the trainable task-specific parameter
matrix, and ¢ is the number of labels. % is the dimension with
a default value. It is worth noting that the category y; with
the probability of occurrence is the category to which the T
[CLS]. Therefore, the final distribution function will output a
C-dimensional vector. Each dimension represents the
probability that T[CLS] belongs to y;. When the C-di-
mensional vector elements are normalized, the sum of them
is 1.

pP= softma_x(T[CLS]VT) =

4. Experiment
4.1. Data Set

4.1.1. For English Fake News Detection. The data set we
experimented with is based on the LIAR data set, which was
published by Wang [62]. It consists of a large number of
claims, namely text content and related features. These
features include subject, speaker, job, state, party, history,
and context. Where Claim is the text content (Text). History
indicates the speaker’s statistics on the historical behavior of
news speakers lying. From the perspective of psychology,
this behavior can fully describe an individual’s psychology.
Therefore, this paper takes this index as a mental feature. For
truthfulness, it is labeled as true, mostly true, half-true,
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F1GURE 6: The basic structure of the encoder.

4.2. Experiment Settings. To explore the effectiveness of text
classification, we first fine-tune the Bert method. Then, we
evaluate the three methods, including all the features.
Moreover, we use different feature combinations to evaluate
the significance of mental features. Specifically, for model
training, we set the learning rate to 2e-5, the batch size to 8,
and the training time to 3.0.

barely-true, false, and pants-on-fire by journalists. To avoid
these insignificant symbols affecting the results, we replaced
some specific punctuation marks.

4.1.2. For Chinese Topic Detection. The data set we
experimented with is based on social messaging data. The
data set is a calculation of a great amount of text content
and the Maslow’s need features. We regard this feature as

a mental feature because it can effectively reflect the
mental state of the text publisher. For topic, it is labeled
as meaningless, work/study, family, affection, leisure,
and a blessing. To avoid these insignificant symbols af-
fecting the results, we replaced some specific punctuation
marks.

4.3. Evaluation Metric. For evaluation metric, we use the
following equation:

(TP + TN)

(P+N)’ @

accuracy =
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where TP is for true positive, P is for total positive, FN is for
false negative, and N is for total negative. By calculating these
values, we can get the accuracy of the results.

4.4. Experimental Results

4.4.1. Fine-Tuning Analysis for Bert. We first compare the
two input methods with all features included of Bert, namely
PM and NTM. From Table 1, the accuracy of NTM results is
0.476 in English Fake News Detection (EFND) and 0.960 in
Chinese Topic Detection (CTD), respectively. Both of them
are significantly better than PM. The main reason is that PM
inputs text and features as separate sequences. Although the
model can learn the representation of each sentence se-
quence through fine-tuning, due to the segmentation of text
and features, it will not be able to associate any feature
information with the text, effectively. In other words, as text
and features are input as different sentences, some infor-
mation may be lost, which is the main reason for poor
performance. We only need to input the text and features as
a whole sentence. It is not necessary to split it with [SEP].

4.4.2. Feature Selection and Analysis. To verify that mental
features contribute most to short text classification, we
experimented with NTM composed of text and single feature
items in the Bert method.

From Table 2, it can see that the model performs worst
when it is fine-tuned only with text in EFND. Meanwhile,
different features make different contributions to fake news
detection. The mental feature has the greatest improvement,
and their accuracy is more than 0.4 in EFND. This shows that
mental features can effectively improve the accuracy of fake
news detection.

In Table 3, we also found that the accuracy of text content
is much lower than that of mental features in CTD. It verifies
the contribution of mental features to topic detection.

4.4.3. Comparative Text Classification Method. In this sec-
tion, we first compare our method with existing methods,
using text and mental feature data. From Tables 4 and 5, the
performance of Bert is significantly better than other models.
It improves the accuracy by 0.2. This confirms the effec-
tiveness of Bert. It also shows that the self-attention
mechanism has a better ability to capture sequence se-
mantics. Based on ensuring the task awareness of the model,
it can directly learn the relationship between the target text
sequence and the corresponding classification label, which
simplifies the training.

In addition, when only plain text is used, our method is
also used to compare existing models. In Tables 4 and 5,
whether EFND or CTD, the results show that the perfor-
mance of models using the mental feature is significantly
better than those using plain text data. The mental feature
approximately improves the absolute value of accuracy by 0.2.

In summary, the experimental results of EFND and CTD
are consistent, indicating that mental features play a key role
in short text classification, whether false news detection or

7
TaBLE 1: The result of Bert in different methods.

EFND CTD

PM 0.265 0.754

NTM 0.460 0.960

TaBLE 2: The results with different features in EFND.

EFND Accuracy EFND Accuracy
Only text 0.273 Text + State 0.293
Text + Subject 0.281 Text + Party 0.288
Text + Speaker 0.284 Text + Context 0.288
Text + Job 0.285 Text + Mental 0.459

TaBLE 3: The results with different features in CTD.

CTD Accuracy CTD Accuracy

Text + Mental 0.960 Only text 0.780
TaBLE 4: The result of different methods in EFND.
Accuracy

Model Text + Mental Only text
Bert 0.460 0.273
Bays 0.243 0.236
SVM 0.259 0.256
Xgboost 0.250 0.217
KNN 0.222 0.206
CNN 0.165 0.155
LSTM 0.166 0.155
GRU 0.164 0.1437
BP 0.164 0.159
RNN 0.162 0.158

TABLE 5: The result of different methods in CTD.
Accuracy

Model Text + Mental Only text
Bert 0.960 0.780
Bays 0.582 0.564
SVM 0.578 0.564
Xgboost 0.577 0.575
KNN 0.564 0.397
CNN 0.550 0.497
LSTM 0.529 0.525
GRU 0.552 0.527
BP 0.533 0.527
RNN 0.512 0.496

topic detection. In especial, our method, regardless of
whether it has mental features or not, the result is the best.
Therefore, Bert not only has higher accuracy but also has
universality. In other words, it can be applied to cross-
linguistic and multidomain.



5. Discussion

5.1. Key Findings. The purpose of this study is to explore the
role of mental features in short text classification. In general,
our findings show that there are two factors in the mental
feature of information publishers. The first kind of factor is an
external mental feature, that is, historical information. The data
show that the classification result of the model is more accurate
under the joint action of short text and historical information.
This shows that the authenticity of the short text of the in-
formation published is affected by its subject. For those who
publish false reviews more often in history, the probability of
new short texts being false will increase. By combining the
effective features extracted from short text, we can better
understand the authenticity of publishers.

The second type of factor is the internal mental feature,
that is, Maslow’s need. The results show that this feature is
related to the accuracy of short text classification. This
feature reflects the publisher’s deep-seated aspects, that is,
psychological changes. This shows that the content of short
texts can be enriched by depicting the psychological changes
of information publishers. People will have different psy-
chological changes when publishing different texts. By
taking psychological changes as auxiliary features, they can
map with text features. It can improve the accuracy of text
topic classification.

In summary, short text cannot completely reflect the
meaning that users want to express. Through mental fea-
tures, users’ intentions expressed in short texts can be
enriched.

5.2. Theoretical Implications. We apply mental features to
short text classification. Specifically, we prove through ex-
periments that the improvement of short text accuracy is
achieved through the integration of mental and text features.
In addition, through experiments, we find the form in which
these two features are input into Bert to achieve more ef-
fective fusion.

Our results are better than traditional methods. To improve
the accuracy of classification results, learning mental features
through the Bert model and recognizing their relationship with
short texts. This provides an innovative perspective and en-
riches the literature of short text classification.

5.3. Practical Implications. False review identification is very
important. With the vigorous development of the Internet
economy, the credibility of reviews is of great significance to
consumers. False reviews imitate the tone of real reviews,
which makes it difficult to distinguish between true and false.
Its content distorts the facts and misleads consumers, which
has a great negative impact on the interests of consumers
and the platform. From an academic point of view, there is
still a huge research space for the exploration of this di-
rection, which is very worthy of in-depth excavation by
interested researchers. By mining more consumers’ mental
features and depicting users’ mental portraits, the users’
credibility can obtain. Combining it with the text content, it
is expected to effectively identify the authenticity of reviews.
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Text topic classification method is the key technical basis of
network public opinion analysis. Internet public opinion refers
to people’s opinions or remarks with certain influence and
tendency on the Internet with the help of Internet media. With
the rapid growth of communication technology and intelligent
devices, there has been a huge surge in data traffic. Different
applications, users, and devices generate large amounts of data
every second [63]. Once the wrong or extreme public opinion
is spread, with its influence in the network world, it will often
cause huge public opinion pressure and even uncontrollable
consequences. Therefore, it is necessary to control the dy-
namics of public opinion. Through the in-depth mining of
users’ mental features, the performance features of network
public opinion can be reflected. It is hoped that it can provide a
reference for effectively understanding the evolutionary pro-
cess of network public opinion.

6. Conclusion

Due to the sparsity of the short text, it is difficult for the
machine to understand its content. We find two mental
feature that reflect the information publisher. By integrating
this feature with the text, the accuracy of short text topic
classification can be improved. In this context, we propose a
method which effectively integrates mental features with text
content on a linguistic level. Specially, we have designed two
input methods to integrate text context and feature on a
linguistic level. Namely, the pair method and new text
method. Also, to verify the accuracy of Bert method, we
compare a variety of machine-learning methods, such as
SVM, CNN, and RNN. The results show that (1) through
feature comparison, it is found that mental features can
significantly improve the accuracy of short text classification.
(2) Combining mental features and text as input vectors can
provide more classification accuracy than separating them as
two independent vectors. Namely, the new text method is
better than the pair method. (3) Through model comparison,
it can be found that the Bert model can integrate mental
features and short text. Bert can better capture mental
features to improve the accuracy of classification results.

There are still some limitations in this paper. Our results
demonstrate the effectiveness of mental features in false
review detection and topic classification. However, in dif-
ferent situations, the interference factors are different.
Therefore, it will be interesting to test our method for this
study in other contexts. We encourage other researchers to
take mental features as a meaningful framework and inte-
grate different features to improve the accuracy of short text
classification. In addition, this paper classifies short text on
offline data sets. Therefore, in the future, we expect to au-
tomatically record users’ daily information data to facilitate
real-time analysis of users’ mental status. In this way, short
text can be detected in real-time.

Data Availability

For English fake news detection (EFND), the data set we
experimented with is based on the LIAR data set (http://www.
cs.ucsb.edu/~william/data/liar_dataset.zip); For Chinese topic


http://www.cs.ucsb.edu/~william/data/liar_dataset.zip
http://www.cs.ucsb.edu/~william/data/liar_dataset.zip

Computational Intelligence and Neuroscience

detection (CTD), the data set we experimented with is based on
social messaging data. We welcome interested partners to
contact the first author for data (hyjsdu96@126.com).
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