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Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and

personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored,

little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequenc-

ing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individ-

uals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized

gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of

individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupan-

cy—many of these differences lie close to start codons and upstreamORFs. Our results reveal a new level of gene expression

variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation.

[Supplemental material is available for this article.]

Deciphering the molecular mechanisms that underlie human var-
iation is essential for understanding human diversity and person-
alized medicine. To date, genetic variants that affect protein
function in humans have been well studied, but those that control
protein levels are less well characterized. Yet, misregulation of pro-
tein levels can have profound consequences for humanhealth. For
example, transcriptional regulatory mutations that increase telo-
merase gene expression have been identified in ∼70% of melano-
ma patients (Horn et al. 2013; Huang et al. 2013) and are frequent
in several other cancers (Huang et al. 2013). Similarly, changes in
protein levels of SHANK3, neuroligins and neurexins have been
linked to autism spectrum disorder, schizophrenia, and learn-
ing disorders (Darnell 2011). Therefore, understanding how RNA
levels and translation efficiency control protein levels on an indi-
vidual basis is required not only for understanding human pheno-
typic diversity, but also for personalized medicine as thousands of
human genome sequences become available.

Protein expression is determined atmany levels, including (1)
RNA expression, (2) translation efficiency, and (3) protein stability.
Recent studies have begun to unravel the extent of human varia-
tion at RNA levels and its control through transcription factor
binding sites and chromatin (Stranger et al. 2007; Kasowski et al.
2010, 2013; McDaniell et al. 2010; Montgomery et al. 2010;
Pickrell et al. 2010; Pai et al. 2012; Westra et al. 2013). However,
protein levels often correlate poorly with RNA expression (Vogel
and Marcotte 2012; Ly et al. 2014). Translation efficiency, i.e.,

the number of proteins synthesized permRNA, has been suggested
to account for a large component of the unexplained variation in
protein levels (Schwanhäusser et al. 2011; Marguerat et al. 2012).
Although recent studies in yeast have begun to address the genetic
control of translation efficiency (Albert et al. 2014; Artieri and
Fraser 2014; McManus et al. 2014; Muzzey et al. 2014), little is
currently known about variation in translation efficiency and its
genetic determinants in humans. Further, an integrated view of
how expression is controlled at many different levels is lacking
in humans.

Here, we utilized RNA-seq and ribosome profiling to identify
ribosome occupancy profiles. Ribosome profiling involves RNase
digestion of unprotected RNA and isolation of ribosome-bound
mRNA segments. The sequences of ribosome-protected mRNA
fragments can then be used to deduce the number of ribosomes
per message in conjunction with RNA-seq data. We integrated
thesemeasurements with quantitative proteomics to reveal a com-
prehensive view of the variation in gene expression programs
across a diverse set of humans.

Results

Measuring ribosome occupancy across individuals at a global scale

To measure genome-wide ribosome occupancy of mRNAs, we first
improved and adapted the ribosome profiling protocol (Ingolia
et al. 2009, 2011, 2012) for lymphoblastoid cell lines (LCLs) (Fig.
1A). A critical step in the ribosome profiling method involves
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RNasedigestionof unprotectedRNAsbefore isolating and sequenc-
ing ribosome-associated mRNAs. While optimizing the protocol,
we observed that RNase I digestion caused extensive degradation
of ribosome integrity (Fig. 1B,C; Supplemental Fig. S1A). The loss
of polyribosome signal was not accompanied by a correspond-
ing increase in monosome signal (Fig. 1C; Supplemental Fig.
S1A), but rather a shift toward lighter fractions indicative of free
and degraded RNAs (Fig. 1C; Supplemental Fig. S1A). Hence,
RNase I treatment can lead to a loss in ribosome integrity in addi-
tion to producing the expected 80S ribosome footprints (i.e.,
monosomes).

We tested whether other RNases could alleviate this problem
and found that treatment with RNase A and RNase T1 (which col-
lectively cut after C, U, and G) resulted in complete digestion of
polyribosomes into monosomes (Fig. 1D; Supplemental Fig. S1A).
Recent work in Drosophila and other systems also reported the
importance of optimizing nuclease digestion to generate robust ri-
bosome profiling data (Dunn et al. 2013; Ricci et al. 2014). Using
our optimized ribosome profiling protocol, we generated ribosome
occupancy maps for LCLs obtained from 30 individuals of
diverse ethnic backgrounds: five Europeans, two Asians, and 23
Yorubans with significant genetic diversity (Fig. 1E). These lines
were chosen because (1) their genomes have been sequenced
(The International HapMap 3 Consortium 2010; The 1000
Genomes Project Consortium 2012); (2) their relative protein and
RNA levels have been previously measured (Khan et al. 2013;
Wu et al. 2013); and (3) they can be grown in large quantities.
Importantly, the ribosome occupancy maps were based on at least
two replicate samples for themajority of individuals. In parallel,we
generated 44 deep RNA-seq libraries (with amedian of∼12million
uniquely mapped transcriptome reads) from the same cells and
combined these with those from previous work (Pickrell et al.

2010; Lappalainen et al. 2013; ’t Hoen et al. 2013), thereby provid-
ing multiple RNA-seq replicates for most individuals.

We leveraged replicate measurements to assess data quality
and its dependence on several parameters, including alignment
strategy, mRNA enrichment method, PCR artifacts, gene length
normalization, and batch effects (Supplemental Fig. S2A–E;
Supplemental Methods). In addition to verifying the high quality
of the data, replicate measurements also enabled modeling of
gene-specific variance in RNA expression and ribosome occupancy
per individual, allowing robust derivation of individual-specific
translation efficiency estimates. Specifically, we developed a linear
modeling–based approach to regress out the effects of RNA expres-
sion from ribosome occupancy measurements to calculate transla-
tion efficiency (Supplemental Methods).

Finally, for the 28 individuals studied here, we previously
measured relative protein abundances via isobaric tag-based quan-
titative proteomics using the same cell lines (Wu et al. 2013). In to-
tal, we present a combined analysis of 133 high-throughput
sequencing libraries (83 RNA-seq and 50 ribosome profiling librar-
ies) and extensive protein expression measurements (Fig. 1E).

Integrative analysis of RNA expression, ribosome occupancy,

and protein levels

We first considered the relationship between RNA expression, ri-
bosome occupancy, and protein expression across genes. As ex-
pected, RNA expression and ribosome occupancy were highly
correlated (Spearman ρ = 0.87, P-value < 2.2 × 10−16; outlier robust
correlation 0.88 using Donoho-Stahel estimator) (Supplemental
Fig. S2F), albeit still lower than biological replicates of RNA expres-
sion data (Spearman ρ∼ 0.98, P-value < 2.2 × 10−16), indicating
that control of ribosome occupancy levels is distinct from RNA

Figure 1. Choice of RNase is critical for generating ribosome profiling data. (A) A schematic representation of the ribosome profiling strategy is shown. A
key step is the digestion of unprotected RNA segments with an RNase. The ribosome-protected RNA segments are isolated using a sucrose cushion and
prepared for high-throughput sequencing. (B) Human lymphoblastoid cells (GM12878) were lysed in the presence of cycloheximide. The samples
were ultracentrifuged through a 10%–50% sucrose gradient. Samples were fractionated while continuously monitoring absorbance at 254 nm. A repre-
sentative polysome profile is shown. (C) Samples were prepared for ultracentrifugation as in B with the following exception: The cleared lysate was incu-
bated with 100 units of RNase I (Ambion) for 30 min at RT before the ultracentrifugation. (D) Samples were prepared as in B, except 300 units of RNase T1
(Fermentas) and 500 ng of RNase A (Ambion) were used for the RNase digestion step. A complete digestion of polysomes into monosomes was observed.
(E) Schematic representation of the data sets used in the current study. Genotype, ribosome profiling, RNA-seq, and mass spectrometry-based proteomics
data were collected from lymphoblastoid cells derived from a diverse group of 30 individuals.
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levels. Importantly, ribosome occupancy correlated better with
protein levels than RNA expression correlated with protein levels
(Spearman ρ of 0.54 and 0.43, Donoho-Stahel estimator based cor-
relation coefficient 0.56 and 0.42, respectively; permutation test
for difference in correlation coefficient P-value < 10−4) (Supple-
mental Fig. S2F,G). Consistent with previous results (Ingolia
et al. 2009), these results suggest that ribosome occupancy is a bet-
ter predictor of protein level differences between genes.

Although the correlation analysis reveals pairwise relation-
ships, the interdependencies between RNA expression, transla-
tional efficiency, and protein levels are not captured. For
example, some genes with high protein levels can have low RNA
expression but very high translation efficiency, yielding a de-
creased correspondence between RNA expression and protein lev-
els. To reveal such interdependencies, we utilized self-organizing
maps (SOM), an integrative machine learning method that is ro-
bust to noise and allows assessment of all relationships simultane-
ously (Fig. 2A; Kohonen 1990; Wehrens and Buydens 2007).
Because SOMs are sensitive to differences in mean and variance
of the input variables, we first converted each measurement into

its relative rank order expressed as percentiles ensuring equal
weighting of the input variables for the SOM training (Supplemen-
talMethods). After training, eachneuronwithin the SOMcontains
genes that share a similar pattern of expression and protein level
(Fig. 2A; Supplemental Fig. S2H).

The emerging map recapitulated the pairwise relationships
between RNA expression, ribosome occupancy, and protein levels
across neurons (Fig. 2B). We further grouped neurons in the SOM
using a clustering approach (affinity propagation clustering) (Frey
and Dueck 2007). This approach uncovered nine clusters in the
SOM, revealing the distinct relationships between RNA expression
and translation efficiency in determining protein levels. For exam-
ple, genes in Cluster 6 have relatively high RNA expression but do
not reach high protein levels as they are translationally repressed
(Fig. 2C).

We then examined functional (GO term) enrichments (Berriz
et al. 2003, 2009) across the different clusters within the SOM and
found specific functional enrichments for four of the nine clusters
(Fig. 2C; Supplemental Table S1). Genes with high translation effi-
ciency and high protein levels were enriched for diverse functional

Figure 2. Ribosome occupancy correlates better with absolute protein levels than RNA expression and protein levels. (A) A self-organizing map (SOM)
was trained using ribosome occupancy, RNA expression, translation efficiency (TE), and protein levels. These measurements were converted into their rel-
ative rank order before training. After training, each neuron in the SOM contains several genes sharing similar expression patterns. (B) Four different col-
orings of the trained SOM depict the mean ribosome occupancy, RNA expression, translation efficiency, or protein levels for each neuron. (C) Neurons of
the SOM were grouped using affinity propagation clustering (Frey and Dueck 2007). Shared coloring between nodes indicates membership to the same
cluster. For each cluster, the mean rank in ribosome occupancy (RO), RNA expression (RE), translation efficiency (TE), and protein level (PL) was shown for
the representative neuron of the cluster. The number of genes in each cluster (n) is shown. (D) For four of nine clusters, significantly enriched gene ontology
(GO) terms were identified (FuncAssociate; permutation-based corrected P-value < 0.05) (Supplemental Table S1; Berriz et al. 2009). For Clusters 5 and 8,
selected GO categories were shown (log2 odds ratio). Supplemental Table S1 contains the full list of enriched terms.
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categories such as the proteasome complex, glycolysis, mRNA
splicing, and DNA damage checkpoint (P-value < 0.05 for all cate-
gories using permutation-based multiple hypothesis correction)
(Supplemental Table S1; selected examples are shown in Fig. 2D).
Conversely, genes associated with translation and cytosolic ribo-
some constituents were enriched among those that exhibited
very high RNA and protein levels despite having lower translation
efficiencies (P-value < 0.05 for all categories using permutation-
based multiple hypothesis correction) (Supplemental Table S1;
Fig. 2D), raising the possibility that higher protein stability or feed-
back mechanisms on translation efficiency modulate the levels of
translation components. These findings indicate that some sets of
functionally coherent genes adopt alternative strategies to achieve
their respective steady-state protein levels.

Gene expression variability between individuals

Wenext focused onhow ribosome occupancy and RNA expression
differ between individuals. We leveraged replicate measurements
and identified genes with significant inter-individual variance in
RNA expression or ribosome occupancy, exceeding technical
noise.We found that∼27%of genes had statistically significant in-
ter-individual variation in RNA expression compared to only ∼7%

of genes that had detectable variation in ribosome occupancy
(Holm’s method adjusted P-value < 0.05 based on a simulation
based likelihood ratio test) (Fig. 3A,B; Holm 1979). Consequently,
∼20% of all genes exhibit inter-individual RNA expression varia-
tion that is not reflected in ribosome occupancy. These results
were not explained by different sensitivities of the measurements
(Supplemental Fig. S3A). These results were also consistent when
restricting the analysis to only the Yoruban individuals or when
excluding RNA expression data not generated by our laboratory,
indicating the robustness of the results.

Genes that exhibited significant inter-individual variation in
both RNA expression and ribosome occupancy were highly en-
riched for gene ontology terms, including “chemokine receptor
activity,” “complement activation,” “leukocyte migration,” and
“antigen binding” (P < 0.05 permutation-basedmultiple hypothe-
sis correction) (Fig. 3C; Supplemental Table S2), indicating a role in
immune functions. Consistently, protein levels that exhibit the
most variation between individuals were previously shown to be
enriched for “immune system process” (Wu et al. 2013). These
functional categories are highly specific to the function of the
studied cell type, LCLs (Fig. 3C; Supplemental Table S2). Given
that genes with significant inter-individual variation were directly
pertinent to the function of the cell line studied here, it is likely

Figure 3. Identification of genes with significant inter-individual variability in RNA expression and ribosome occupancy improves the ability to identify
personal differences in protein levels. (A) Ribosome occupancy and RNA expression was modeled using a linear mixed model treating individuals as a ran-
dom effect andmean expression as the fixed effect. A simulation-based exact likelihood ratio test (Scheipl et al. 2008) was used to compare the linearmixed
model to a linear model that did not include the individual as a predictor. The number of genes that show significant inter-individual in RNA expression or
inter-individual variation in ribosome occupancy is plotted (Holm’s corrected P-value < 0.05). (B) The Venn diagram depicts the overlap between the two
groups. (C) Enriched gene ontology (GO) terms among genes with significant inter-individual variation in both RNA expression and ribosome occupancy
was determined using FuncAssociate (Berriz et al. 2009). Cytoscape (Smoot et al. 2011) was used to visualize the enriched GO terms (permutation test
corrected P-value < 0.05, odds ratio > 3) (Supplemental Table S2). Nodes correspond to GO terms and are colored by the corrected P-value. The size of
the node is proportional to the logarithm of the odds ratio. The similarity between GO terms was quantified using Kappa similarity. The strength of the
similarity was visualized using darker edge colors (Supplemental Methods). An edge-weighted spring embedded layout is shown. (D) For each gene,
Spearman correlation was calculated between individual specific RNA expression and relative protein levels. The distribution of the correlation coefficients
was plotted as a density. Genes that showed significant variation in both RNA expression and ribosome occupancy between individuals are plotted with red
bars and genes without detectable variation in RNA expression and ribosome occupancy are shown with white bars.
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that carrying out similar studies in other cell types will expand the
set of genes whose expression levels differ significantly between
individuals.

Within genes that exhibited significant inter-individual vari-
ation in both RNA expression and ribosome occupancy, we identi-
fied three subsets. Within the first subset, the variability in RNA
expression was comparable to variability in ribosome occupancy
(Supplemental Fig. S3E). This first subset contained 54% of all
genes exhibiting inter-individual variation in both RNA expres-
sion and ribosome occupancy. The second subset consisted of
genes that had higher RNA-level variability compared to ribosome
occupancy variability. This subset encompassed nearly twice as
many genes as the third subset, where ribosome occupancy vari-
ability was higher than that of RNA expression (Supplemental
Fig. S3E). These results were consistent with the observation that
for many genes, inter-individual RNA expression variation is not
reflected in ribosome occupancy. Taken together, our results are
consistent with yeast studies that reported translational buffering
of divergent RNA expression (Artieri and Fraser 2014; McManus
et al. 2014). However, we note that an alternative explanation of
our findings is the presence of an untranslated pool of mRNA
(e.g., nuclear-retained or sequestered cytoplasmically in P bodies)
that is variable between individuals.

A small, but interesting fraction of genes (0.7%) exhibited dif-
ferential ribosome occupancy between individuals with no appar-
ent differences at the RNA level (Supplemental Table S3). These
were enriched in genes coding for proteins involved in “cellular re-
sponse to chemical stimulus” and the “Golgi apparatus” (P < 0.05
permutation-based multiple hypothesis correction) (Supplemen-
tal Table S2). These results suggest that translational control may
play important roles in cellular signaling, whereby rapid cellular
responses are often required.

Relationship between individual differences in protein levels,

ribosome occupancy, and RNA expression

Anoutstanding question in understanding phenotypic variation is
how individual-specific protein levels relate to corresponding dif-
ferences in gene expression. We previously measured relative pro-
tein levels for approximately 6000 proteins using the same cell
lines (Wu et al. 2013). As expected, the protein levelmeasurements
were skewed toward genes that are more highly expressed and
translated (Wilcoxon rank-sum test P < 2.2 × 10−16) (Supplemental
Fig. S3B). We first calculated the correlation between RNA ex-
pression and the corresponding protein level across individuals.
Consistent with previous results (Wu et al. 2013), the median cor-
relation coefficient was 0.22, with 11% of genes showing a statisti-
cally significant correlation (Spearman correlation coefficient, 5%
FDRusing the Benjamini-Hochbergmethod) (Fig. 3D; Supplemen-
tal Fig. S3C; Benjamini and Hochberg 1995).

We next repeated this analysis for the set of genes that we
identified as having significant RNA expression variability be-
tween individuals. Among this subset, relative protein levels and
RNA expression had a median correlation coefficient of 0.43
(Spearman correlation coefficient) (Supplemental Fig. S3D), indi-
cating a partial correlation between RNA and protein variability.

Finally, we tested whether joint measurement of RNA expres-
sion and ribosome occupancy improved this correspondence.
Specifically, we considered genes that exhibit significant inter-in-
dividual variation in both ribosome occupancy and RNA expres-
sion. Strikingly, 83% of these genes had statistically significant
correlation between differences in protein levels and RNA expres-

sion with a median correlation coefficient of 0.67 (Spearman cor-
relation coefficient, 5% FDR using Benjamini Hochberg method)
(Fig. 3D; Supplemental Fig. S3C). The large difference between
the correlation coefficients indicates that measuring both ribo-
some occupancy and RNA levels simultaneously greatly improves
the ability to identify gene expression variability between individ-
uals that will eventually result in personal differences in protein
levels.

Genetic determinants of variability in ribosome occupancy

Wenext investigatedwhether genetic differences between individ-
ualswere associatedwith theobservedvariation ingeneexpression,
specifically at the ribosome occupancy level. We used two comple-
mentary approaches. First, we used the 21 unrelated individuals
fromtheYorubanpopulationandconducteda cis-quantitative trait
loci (cis-QTL)mapping approach.Using the cis-QTLmapping strat-
egy,we identified significant associationbetween singlenucleotide
polymorphisms (SNPs) and ribosomeoccupancy for 67 genes (30%
FDR) (Supplemental Fig. S4A–D; Supplemental Table S4). Although
34 of the 67 ribosome occupancyQTLs (roQTLs) were not associat-
ed with significant differences in RNA expression (nominal associ-
ation P-value > 0.05), this analysis cannot conclusively show that
these roQTLs are not associated with RNA expression. Overall
roQTLs had consistent effects on RNA expression and protein
levels (Spearman ρ = 0.86, P < 2.2 × 10−16) (Supplemental Fig.
S4A–D). Consistent with recent work comparing two yeast strains
(Albert et al. 2014), these results suggest that genetic effects that
were propagated through RNA expression to ribosome occupancy
caused consistent changes in protein levels for this set of genes.

The role of uORFs in modulating ribosome occupancy

Wenext adopted a targeted approach that was both better powered
and enabled detection of combined effects of multiple genetic
variants on ribosome occupancy. We first analyzed variants mod-
ifying upstream open reading frames (uORFs), which can alter pro-
tein expression by regulating translation (Wethmar et al. 2014). In
humans, approximately half of annotated transcripts contain
uORFs, and presence of uORFs is widely polymorphic across indi-
viduals (Supplemental Table S5; Calvo et al. 2009; Barbosa et al.
2013; Waern and Snyder 2013). Disruption of a uORF in the HR
gene has been previously shown to lead to Marie Unna hereditary
hypotrichosis bymodulating the translation of themainORF, sug-
gesting that human disease can be associated with changes in
uORFs (Wen et al. 2009).

We correlated genetic alterations to uORF presence with ribo-
some occupancy of the main coding region and found 33
transcripts with significant association (5% FDR) (Fig. 4A–D;
Supplemental Fig. S4E,F). One particular advantage of this targeted
approach was the ability to detect changes to uORFs caused by
multiple genetic variants. For example, two different SNPs in the
ZNF215 gene result in merging of two uORFs by removing a stop
codon (Fig. 4D).Merging of the uORFs significantly increased ribo-
some occupancy of the main coding region (P < 0.001) (Fig. 4D).

In addition to impacting translational efficiency, nucleotide
variants changing uORFs may alter RNA abundance. For example,
they may change transcript stability by triggering nonsense-
mediated decay (Kervestin and Jacobson 2012). Alternatively, the
variant or variants in linkage disequilibrium may alter transcrip-
tional output as a proximal element downstream from the tran-
scription start site. Of the 33 significant associations between
changes in uORFs and ribosome occupancy, ∼52% (17 of 33) also
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had a significant effect on RNA levels (nominal P-value < 0.05), in-
dicating the presence of uORFs and RNA levels are often coupled.
However, for 16 other genes, the observed effect was solely on ribo-
some occupancy, suggesting direct modulation of the translation
efficiency of the main reading frame (Fig. 4A,B, Supplemental
Table S5). We further observed that presence of uORFs could be as-
sociatedwith both increased anddecreased ribosomeoccupancyof
the main coding region (Supplemental Fig. S4G). We verified the
robustness of these results by limiting the analysis to data from
Yoruban individuals and using an alternative statistical frame-
work based on linear mixed models (Supplemental Fig. S4E,F;
Supplemental Table S5). These results reveal that natural genetic
variation within the human population can specifically cause per-
sonal differences in translation through changes to uORFs.

The role of sequences surrounding the start codon in modulating

ribosome occupancy

Wenext analyzed the Kozak sequence, the region surrounding the
start codon for its effect on translation efficiency (Fig. 5A).
Previous work has suggested that Kozak sequence is important
for both start codon selection and translation efficiency of specific
transcripts (Kozak 1987). However, the extent and impact of natu-
ral genetic variation affecting the Kozak sequence and the global
effect of the Kozak region on translation efficiency have not
been studied.

We first determined whether certain positions of the Kozak
sequence have a global effect on translation efficiency. We found
a highly significant and large effect of the nucleotides at position
−3 and at position −2 on translation efficiency (Bonferroni adjust-
ed Kruskal–Wallis test P = 5.7 × 10−20 for position −3; P = 1.2 ×
10−17 at position −2) (Fig. 5A; Supplemental Fig. S5A).
Additionally, the 2 nt immediately after the start codon had statis-

tically significant effects on translation efficiency (Bonferroni ad-
justed P < 2.8 × 10−7) (Supplemental Fig. S5A). Although previous
work using reporter systems anticipated the significance of these
features (e.g., Kozak 1987), our analyses highlight the role of se-
quence composition near the ATG in modulating translation effi-
ciency of endogenous genes at a global scale.

The extent and potential role of natural variation that might
alter the Kozak sequence across the genome remains largely unex-
plored in the human population (Supplemental Table S6; Xu et al.
2010). Among the set of individuals studied here, there were ap-
proximately 150 genetic variants altering the Kozak region in at
least three individuals. Approximately 65% of Kozak region vari-
ants reduced the position weight matrix (PWM) score of the refer-
ence sequence (Supplemental Fig. S5B). This effect was even more
pronounced for Kozak variants that were observed in a single indi-
vidual. Of these, 77% reduced the PWM score of the reference se-
quence, suggesting that selective pressure may be acting to
optimize the Kozak sequence.

We next tested the effect of these variants on ribosome occu-
pancy of the main coding region. We utilized the position weight
matrix for the Kozak region to score the impact of each variant on
the Kozak strength (Fig. 5A).We found nine genes with Kozak var-
iants that modified ribosome occupancy significantly with no sig-
nificant effect on the RNA levels (10% FDR using Benjamini-
Hochberg correction; RNA expression association P-value > 0.01;
using a conservative linear mixed model, two of these genes had
P < 0.01) (Fig. 5B,C; Supplemental Fig. S5C), indicating the pres-
ence of variants specifically affecting translation efficiency.

Finally, to directly examine the role of genetic variation on
translation efficiency, we used reporter assays (Jang et al. 1988)
for six genes. These included four geneswith Kozak region variants
and two geneswith uORF variants.We cloned the reference 5′ UTR
or the variant 5′ UTRwith a single base change at the Kozak region

Figure 4. Nucleotide variants that modify upstream ORFs can alter ribosome occupancy of the main coding region. (A) We identified single nucleotide
polymorphisms that generate, delete, or otherwise modify an upstream open reading frame (uORF). We tested whether changes to uORFs affected ribo-
some occupancy of the main coding region using a linear regression framework. The absolute value of the effect size from the regression was plotted
against the P-value of association. For 17 uORF changes shown with red circles, the association was solely with ribosome occupancy (nominal P-value
> 0.05 or opposite signed regression coefficients for RNA expression). Supplemental Table S5 shows the robustness to population stratification and linear
mixed model. (B) A SNP in the 5′ UTR of the LENG8 gene introduces a premature in-frame stop codon that shortens an existing uORF. This event results in
lower ribosome occupancy of the main coding region, as shown in the boxplot (pRibo = 0.002). The horizontal bar reflects the median of the distribution,
and the box depicts the interquartile range. The whiskers are drawn to 1.5 times the interquartile range. (C) In another example, SRRM1, a SNP completely
eliminates an existing uORF by removing its start codon. The loss of this uORF is associated with reduced ribosome occupancy of the main coding region
(pRibo = 0.0004; pRNA = 0.19). (D) The reference sequence of ZNF215 gene has two short uORFs. Two different genetic variants eliminate the stop codon of
the first uORF (UGA to UAC or UGA to CAA), resulting in merging of the two short uORFs into a single long uORF. The merging of the uORF significantly
modulates both ribosome occupancy and RNA expression (pRibo = 0.0001 and pRNA = 10−9, respectively).
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or the uORF upstream of a Renilla luciferase and transfected the re-
sulting constructs into human HEK 293 cells. To normalize differ-
ences in RNA expression and transfection efficiency, an HCV
internal ribosome entry site driven firefly luciferase was cloned af-
ter the Renilla stop codon, and the ratio of the Renilla to firefly lu-
ciferase was quantified. Differences in this ratio between the
reference and variant 5′-UTR-containing reporters for four genes
recapitulated the results from our ribosome profiling data, i.e., se-
quences that were associated with reduced translational efficiency
also gave low luciferase ratios. These results provide an indepen-
dent validation of our conclusion that natural genetic variation
can modify sequences surrounding the start codon leading to per-
sonal differences in translation (Fig. 5D–F; Supplemental Fig. S5D).

Discussion

This study demonstrates that translation efficiency varies among
individuals, and nucleotides important for regulating translation
efficiency can be identified. In several cases, we uncovered the
mechanisms controlling translation efficiency variation in hu-
mans. These included uORFs and sequences near the translation
initiation sites. Our study revealed that genetic differences be-
tween individuals could lead to gene expression differences at
the level of translation.

We leveraged replicate measurements to identify genes with
significant variability in RNA expression or ribosome occupancy
between individuals. We found that genes that exhibit significant
variability in both RNA expression and ribosome occupancy were
highly enriched for functions directly pertinent to LCLs such as
immune response and leukocyte migration (Fig. 3). Hence, ex-
tending this analysis framework to additional cell types or tissues
will likely uncover more genes with variable expression among
individuals.

We also investigated the relationship between differences in
protein levels and variability in RNA expression and translation.
We found that joint analysis of RNA expression and translation
improved our ability to identify the extent of gene expression var-
iation that would be reflected in protein levels, indicating a tight
coupling of translation efficiency and protein levels. These analy-
ses were skewed toward genes with higher expression levels due to
missing protein level measurements (Supplemental Fig. S3B).
Hence, further improvements in proteomics technology will be
needed to test the generalizability of our results to lowly expressed
proteins. Despite the significant improvements obtained by joint
analysis of ribosome occupancy and RNA level measurements,
there remains unexplained variability in protein levels. One po-
tential contributor to this discrepancy is variability in protein deg-
radation rates (Vogel and Marcotte 2012). Another important
future direction will be to investigate the contribution of RNA

Figure 5. Nucleotide variants modulating the sequence around the translation initiation site alter translation efficiency. (A) The Kozak region is defined as
the 6 nt preceding and 2 nt following the start codon. The derived position weight matrix was visualized using WebLogo (Crooks et al. 2004). The upper
panel shows the effects of each nucleotide at the−3 position on translation efficiency. The effect of nucleotides on translation efficiency was tested using the
Kruskal–Wallis test. (B) The effect of a Kozak region variant on the ribosome occupancy of NTPCR was assessed using a linear model (P-value = 1.1 × 10−6).
A boxplot was used to visualize the distribution of ribosome occupancy for individuals with given genotypes. The horizontal bar reflects the median of the
distribution and the box is drawn to depict the interquartile range. (C)WDR11 had two naturally occurring SNPs in its Kozak region. An additivemodel was
adopted to calculate the change in the position weight matrix score of the Kozak region. (D) 5′ UTRs with or without Kozak variants were cloned into a
translation efficiency reporter. The reporter expresses a biscistronic mRNA, in which the Renilla luciferase is translated under the control of the cloned
5′ UTR, and the firefly luciferase is translated under the control of Hepatitis C virus (HCV) internal ribosome entry site (IRES). (E,F) The ratio of Renilla to
firefly luciferase activity was plotted for NTPCR (E) and WDR11 (F). Error bars represent SEM. The difference between the ratios was assessed using a
two-sided two-sample t-test. (∗) P-value < 0.05.
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sequence features (e.g., Vogel et al. 2010) to the relationship be-
tween RNA expression, ribosome occupancy, and protein levels.

Importantly, genes that have individual variability only in
RNA expression are less likely to have corresponding differences
at the protein level. Among this subset of genes, only 40% had sta-
tistically significant covariation between RNA levels and protein
levels (5% FDR). An important implication of this result concerns
ongoing efforts that aim to identify genetic determinants of RNA
expression (Lappalainen et al. 2013; Battle et al. 2014). These stud-
ies are in part motivated by the finding that most disease risk
factors identified by genome-wide association studies lie in non-
coding regions (Edwards et al. 2013). By linking genetic differences
to RNA expression, these studies hope to uncover functional con-
nections to disease states. Yet, our analyses suggest that the func-
tional impact of RNA-level differences needs to be carefully
considered to establish causal relationships to phenotype.

Recent consortium efforts measured RNA expression in large
sets of genotyped samples (approximately 900 in Battle et al.
2014 and approximately 500 samples in Lappalainen et al.
2013) to identify trans-acting genetic effects on RNA expression.
Interestingly, 85% of the trans-effects on RNA expression wereme-
diated by the effects of the associated SNP on a nearby gene (Battle
et al. 2014), indicating that changes in regulators of RNA ex-
pression lead to differences in RNA levels of distant transcripts.
Similarly, genetic variation in translation regulators is likely to
have trans-effects on ribosome occupancy of many transcripts.
For example, levels of global regulators of translation such as
MTOR, and translation initiation factors (e.g., EIF4E), have the po-
tential to modulate the translation of a large number of targets
(Mamane et al. 2007; Thoreen et al. 2012). In fact, a recent study
that compared translation in two different strains of yeast suggest-
ed that the relative importance of trans-effects on translation is
comparable to that for RNA levels (Albert et al. 2014). Future stud-
ies in the human population will likely uncover trans-acting and
additional cis-acting genetic variants associated with translation
and reveal the contribution of population-level variation to trans-
lation variability.

A recent analysis (Battle et al. 2015) of RNA expression, ribo-
some occupancy, and protein measurements from several human
LCLs concluded that there is a scarcity of human genetic variants
associated with translation-specific effects. However, we note crit-
ical limitations in their ribosome profiling data. As demonstrated
in Figure 1 and recently by Miettinen and Björklund (2015), the
nuclease digestion conditions used in Battle et al. (2015) lead to
severe ribosomal degradation and significantly lower monosome
purity in ribosome profiling libraries. Moreover, the Battle et al.
(2015) study design lacks replicate experiments, precluding proper
assessment of the reproducibility of ribosome profiling measure-
ments. In resequencing experiments, Battle et al. (2015) reported
rank correlations lower than 0.9 (Spearman ρ) for the majority of
their samples (Supplemental Fig. S2A in Battle et al. 2015). In con-
trast, we consistently achieved greater than 0.98 rank correlations
between biological replicates using independently grown cells and
independently prepared ribosome profiling libraries. Here, by le-
veraging higher quality ribosome profiling data sets with replicates
and independent reporter experiments, we identify genetic vari-
ants associated with translation efficiency undetected in Battle
et al. (2015).

Our study revealed several genetic variants that control trans-
lation efficiency variation in humans, including those affecting
the Kozak region and upstream open reading frames (uORFs). A
particularly interesting question is the molecular mechanisms of

these sequence-function relationships. An intriguing feature of ge-
netic variantsmodifying uORFs on translationwas the observation
that both gain and loss events could lead to increased translation
of the downstream open reading frame (Supplemental Fig. S4G),
consistent with previous work that implicated both positive and
negative regulation of translation efficiency by uORFs (Brar et al.
2012; Waern and Snyder 2013). Whereas several mechanisms
have been implicated in negative regulation of translation efficien-
cy by uORFs, including nonsense mediated decay (Kervestin and
Jacobson 2012), less is known about the mechanisms of positive
regulation by uORFs. Recent work identified a complex, DENR-
MCT1, that catalyzes translation reinitiation downstream from
certain uORFs (Schleich et al. 2014), suggesting that DENR-
MCT1 or similar factors may act on subsets of uORFs to increase
reinitiation frequency of the downstream ORFs leading to higher
translation efficiency.

Recent structural analysis of the yeast 48S translation initia-
tion complex permitted an unprecedented view of the molecular
environment of the start codon in eukaryotes (Hussain et al.
2014), revealing a potential mechanism by which Kozak region
variants affect translation efficiency. Remarkably, this structural
analysis revealed that eIF2A directly contacts nucleotides at posi-
tions −2 and −3, the same two positions that our global analysis
of Kozak variants highlighted as being the most important for
translation efficiency (Fig. 5A). Thus, our results provide function-
al evidence that these residues are of general importance for trans-
lational efficiency.

Together, these results demonstrate that genetic alterations in
the humanpopulation and disease-associatedmutationsmay pen-
etrate to phenotype through changes in translation. In the era of
personal genome sequencing, this information is crucial for under-
standing the role of genetic variants on gene expression, pheno-
typic traits, and human disease susceptibility.

Methods

RNA-seq experiments and ribosome profiling experiments

Human lymphoblastoid cell lines (LCLs) were obtained from
Coriell Cell Repository. For replicate ribosome profiling experi-
ments, cells were grown separately to a density of 0.8–1.0 × 106

cells/mL. Approximately 10 million cells were pelleted at 250g at
4°C and washed with PBS. The pellets were frozen in liquid nitro-
gen prior to cell lysis. Seven A260 units of the cleared cell lysates
were incubated with 300 units of RNase T1 (Fermentas) and 500
ng of RNase A (Ambion). A 34% (Weight/Volume) sucrose cushion
was used to isolate ribosomes. Library preparation and sequenc-
ing was done as previously described with some modifications
(Supplemental Methods; Ingolia et al. 2012).

For RNA-seq experiments, LCLs were grown to a density of
3 × 105–6 × 105 cells/mL. Total RNA was extracted using TRIzol re-
agent according to the manufacturer’s instructions (Life Technol-
ogies), then purified using the Qiagen RNeasy kit (Qiagen) and
treated with RNase-free DNase (Qiagen). RNA integrity was
checked with a Bioanalyzer (Agilent), and only samples with an
RNA integrity number (RIN) of >9.5 were subsequently subjected
to either ribosomal depletion or poly-A selection. For ribosomal
RNA depletion, 5 μg of purified total RNA was depleted of rRNAs
using the Ribo-Zero Magnetic Gold Kit (Human/Mouse/Rat)
(Epicentre Biotechnologies). For poly-A selection, 10 μg of purified
total RNA were enriched by performing two cycles of selection us-
ing the Dynabeads mRNA Purification Kit (Life Technologies).
Stranded libraries were prepared following the dUTP protocol
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(Parkhomchuk et al. 2009). For each cell line, we generated 2 × 101
bp paired-end RNA-seq data using two biological replicates of ribo-
somal RNA depleted and three biological replicates of poly-A-se-
lected RNA.

Sequence alignment and processing

To enable comparable analysis of high-throughput sequencing
data sets, weused a uniformalignment andpreprocessingpipeline.
Reads were sequentially aligned using Bowtie 2 v.2.0.5 (Langmead
and Salzberg 2012). All reads mapping to human rRNA and tRNA
sequences were filtered out. The remaining reads were aligned to
APPRIS principal transcripts (release 12) (Rodriguez et al. 2013)
from the GENCODE mRNA annotation v.15 (Harrow et al. 2012).
For all transcript level analyses, reads that map only to coding re-
gions were used. For details, see Supplemental Methods.

Ribosome profiling sample identity verification

The cell line identity for all ribosomal profiling libraries were ver-
ified by comparing empirically generated genotype calls to the ref-
erence genotypes. Specifically, we utilized SAMtools mpileup
utility in combinationwith BCFtools (Li et al. 2009) to generate ge-
notype calls from the ribosomal profiling read alignments. Finally,
a custom Perl script was used to compare the number of perfect
matches between empirically called genotypes and the reference
genotype that was available from the HapMap and the 1000
Genomes Project (The International HapMap 3 Consortium
2010; The 1000 Genomes Project Consortium 2012). For details,
see Supplemental Methods.

Genotype data and processing

Genome sequences were obtained from the 1000 Genomes Project
pilot 2 trios and Phase1v3 (The International HapMap 3 Consor-
tium 2010; The 1000 Genomes Project Consortium 2012) for
27 of the 30 individuals. The genome sequences of three cell lines
(NA19139, NA19193, and NA19201) were imputed from HapMap
release 28 data (The International HapMap Consortium 2007; The
International HapMap 3 Consortium 2010) to the 1000 Genomes
Phase1v3 reference panel (The 1000 Genomes Project Consortium
2012).

We included all variant calls provided by both release and pi-
lot data sets without additional score or source filtering.We subset-
ted all single nucleotide polymorphisms (SNPs) that overlap
APPRIS transcripts and retained all phasing information from the
VCF files. About 8% of the variants in the pilot data set were
unphased; and for these variants, we randomly assigned the phase.
For details, see Supplemental Methods.

Sequence data normalization and quality control

After accounting for differences in themRNA enrichmentmethod,
∼9600 transcripts had a read count per million reads mapped
(cpm) (as implemented in the edgeR package) (McCarthy et al.
2012) greater than one in at least 40 RNA-seq libraries and 36 ribo-
some profiling libraries. We used trimmedmean ofM-values to ac-
count for differences in library size (Robinson and Oshlack 2010)
and estimated the mean to variance relationship in the data using
the voommethod (Law et al. 2014). We explicitly specified the in-
dividual identifier to indicate which libraries were replicates from
the same individual while applying the voommethod. The inverse
variance weights obtained from the voommethod were used in all
analyses where applicable. For details, see Supplemental Methods.

Calculation of translation efficiency

When combined with RNA expression measurements, ribosome
profiling enables the estimation of translation efficiency by cap-
turing a snapshot of the transcriptome-wide ribosome occupancy.
We treated ribosome profiling and RNA-seq as two experimental
manipulations of the RNA pool of the cell. Translation efficiency
was calculated using a linear model, in which the normalized ex-
pression values are dependent on the treatment (RNA-seq or
ribosome profiling) and the individual identifiers (limma R pack-
age) (Smyth 2005). For details, see Supplemental Methods.

Self-organizing maps for integrative gene expression analysis

We used SOMs to explore the relationship between protein levels
and the three expression measurements: RNA levels, ribosome oc-
cupancy, and translation efficiency. SOMs rely on a suitable mea-
sure of distance between the transcripts for the clustering. To avoid
skewing distance calculation due to difference in scale and vari-
ance of the expression measurements, expression levels and pro-
tein amounts were converted to percentiles using the empirical
cumulative distribution function for each level. The kohonen R
package (Wehrens and Buydens 2007) was used for training the
SOM with custom modifications to the plotting functions follow-
ing (Xie et al. 2013).We then clustered the codebook vectors of the
140 units in the SOM using affinity propagation clustering (Frey
and Dueck 2007) as implemented in the apcluster R package
(Bodenhofer et al. 2011). For details, see Supplemental Methods.

Gene set enrichment analysis

FuncAssociate 2.0 was used for gene set enrichment analyses
(Berriz et al. 2009). The background gene list was explicitly defined
as the set of all genes that could potentially be included in the que-
ry set. We defined significant enrichments as GO terms with an
odds ratio >2 and adjusted P-value < 0.05. P-value adjustment
was carried out using a permutation method to account for the
overlap between the GO terms. We calculated the Kappa
Similarity Score between all pairs of significantly enriched GO
terms. We retained edges between all pairwise GO terms whose
Kappa similarity score was >0.1. Enriched GO terms were visual-
ized with Cytoscape (Smoot et al. 2011) using the edge-weighted
spring embedded layout. For details, see Supplemental Methods.

Analysis of inter-individual variation in RNA expression

and ribosome occupancy

Replicate measurements for RNA-seq and ribosome profiling were
used to determine inter-individual variance while controlling for
platform specific variance observed between replicates from the
same individual. To decompose these two variance components,
we used a linear mixed effects model in which we treated the indi-
vidual as a random effect. As before, we utilized the inverse vari-
ance weights obtained from the voom approach and fitted the
model using log-likelihood instead of a restricted maximum likeli-
hood approach.We tested the null hypothesis that the variance of
the random effect is zero. Rejection of the null hypothesis implied
that there was significant inter-individual variance in the ex-
pression of the given transcript. We adopted a simulation-based
approach using an exact likelihood ratio test implemented in the
RLRsim R package (Scheipl et al. 2008). Multiple-hypothesis cor-
rection was applied to RNA expression and ribosome occupancy
P-values separately using Holm’s method. For details, see Supple-
mental Methods.
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Cis-QTL identification

Association between gene expression and the genotype at each
variant position located in the exons of the APPRIS transcripts
was tested in the set of 21 unrelated Yoruban individuals using
PLINK v1.07 (Purcell et al. 2007). For each transcript, replicate
gene expression measurements were averaged for this analysis.
The expression values were regressed on variant genotypes assum-
ing an additive genetic model where genotypewas coded as 0,1, or
2 copies of the alternate allele and restricting the testing to variants
with a minor allele frequency >10% in the 21 unrelated Yoruban
individuals.

Genetic determinants of variability in ribosome occupancy

Testing the effect of uORF events on ribosome occupancy

We used AUG and CUG as potential start codons, and UAG, UAA,
andUGAas potential stop codons. CUG initiationhas been report-
ed in few well-documented cases, such as FGF2, VEGF, MYC, and
MHC class I transcripts (Hann et al. 1988; Vagner et al. 1996;
Meiron et al. 2001; Schwab et al. 2003). Additionally, recent stud-
iesmapping genome-wide translation initiation sites have suggest-
ed that upstream translation initiates frequently from non-AUG
codon, most prominently at CUG sites (Ingolia et al. 2011; Leek
et al. 2012).

To group individuals by uORF differences on a given tran-
script, we first determined all possible combinations of uORF
gain/loss events. We then tested whether the copy number of
the uORF variants affects ribosome occupancy of the main coding
region using two approaches. In the first approach, we used linear
regression. In the second, more conservative approach, we fitted a
linear mixedmodel assuming the difference in cell lines is an indi-
vidual-specific random effect, i.e., treating the different cell lines
of the same individual as “technical replicates.” For details, see
Supplemental Methods.

The effect of Kozak region sequence on translation efficiency

We defined the Kozak region as the 6 nt preceding the start codon
and the 2 nt following the start codon. We extracted the nucleo-
tide sequence of this region from all annotated APPRIS transcripts
and built a PWM, which recapitulated the known Kozak sequence
(Fig. 5A). We tested whether the nucleotide content of the Kozak
sequence affected translation efficiency using the Kruskal–Wallis
test. Specifically, we tested whether transcripts split into four cate-
gories based on the nucleotide at a given position has the same
translation efficiency. We corrected the P-value from this test us-
ing Bonferroni correction for the eight tests (number of positions)
that were performed.

Association between Kozak region genetic variants

and ribosome occupancy

Next, we collected all SNPs that intersect annotated Kozak regions.
We scored the variant and the reference Kozak sequence using the
PWMmatrix obtained above. We coded each variant by the PWM
score change and assumed an additive relationship between differ-
ent positions in the Kozak region and copy number of the allele.
We then tested whether the variants in the Kozak regions affect
ribosomeoccupancyof themain coding regionusing a linearmod-
el. For all Kozak variants affecting ribosome occupancy, we con-
ducted the same association test using RNA expression level as
the phenotype. As for the uORF analysis, we deemed RNA associa-
tion to be not significant if the nominal P-value was >0.05 or if
the regression coefficient had the opposite sign. For details, see
Supplemental Methods.

Luciferase reporter assays

To assay translation efficiency, we used a bicistronic luciferase
reporter construct (Jang et al. 1988). This construct has an SV40
promoter that drives the expression of a bicistronic transcript
that includes both the firefly and Renilla luciferase. Although the
Renilla luciferase translation is cap-dependent, firefly luciferase
has a Hepatitis C virus (HCV) internal ribosome entry site (IRES)
that enables cap-independent translation.

Gene segments were synthesized and cloned right in front of
the start codon (ATG) of the Renilla luciferase using the CloneEZ
system (GenScript). The bicistronic constructs were transfected
into HEK293 cells. Cap-dependent translation was calculated by
taking the ratio of Renilla (cap) to firefly (HCV IRES) luciferase ac-
tivity and derived from five replicate experiments. The HCV-IRES-
dependent translation of firefly luciferase accounted for differenc-
es in RNA expression and transfection efficiency. Outlier detection
was carried out as described (Jacobs and Dinman 2004). The differ-
ence between Renilla to firefly luciferase ratios was assessed using a
Welch two-sample two-sided t-test. For details, see Supplemental
Methods.

Data access

The sequencing data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm
.nih.gov/geo/) under accession number GSE65912.
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