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Abstract 

To investigate the effect of curcumin on the multivariate and docking analysis on peroxisome proliferator activated 
receptor-γ, the rats were fed with high fructose diet (Group 2) to induce insulin resistance and curcumin was co-
administered orally (Group 4) for a period of 8 weeks and measured the biochemical parameters in blood, kidney and 
liver tissues. The results showed a significant (p ≤ 0.05) increase in the level of creatinine, glucose, insulin, low density 
lipoprotein, total cholesterol, triglyceride, urea, uric acid, very low density lipoprotein and decreased albumin, high 
density lipoprotein and total protein level in the blood of Group 2 when compared with Group 1 control rats. Further, 
analysis on liver and kidney tissues showed a significant decrease in antioxidants, hexokinase and increased glucose 
6-phosphatase and fructose 1,6-bisphosphatase, hydroperoxides and TBARS in Group 2 rats. Furthermore, the multi-
variate and loading coefficient analysis showed that albumin, HDL, catalase, glutathione reductase, hexokinase and 
vitamin E are the most contributing factors in blood, liver and kidney. Subsequently, molecular docking was carried 
out to determine the binding efficiency of curcumin as agonist of PPARγ showed high affinity compared to piogl-
itazone. The histology of liver and kidney were also studied and the administration of curcumin along with fructose 
protects the organs from the abnormal changes and also prevents the fat accumulation. Overall, these results dem-
onstrate the preventive role of curcumin on diet induced insulin resistant in rats by ameliorating the altered levels of 
metabolic changes and potential binding of curcumin with PPARγ as agonist in the treatment of insulin resistance.

Keywords:  Insulin resistance, High fructose diet, Curcumin, Antioxidants, Blood glucose, PPARγ, Molecular docking

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Background
Diabetes mellitus is characterized by insulin resistance 
and an important public health concern or risk with the 
quality of life worldwide. About 366 million people are 
affected with diabetes globally and this expected to rise 
to 552 million by the year 2030 (Bigoniya et  al. 2012). 
India leads the world with 62.4 million people with type 
2 diabetes and expected to rise to 101 million by 2030 
(Mohan and Anbalagan 2013). In evidence, the preva-
lence of diabetic has dramatically increasing due to mod-
ern lifestyle with increased consumption of high sugar 
diet especially fructose (Zimmet et  al. 2001). Increased 

fructose mediates oxidative stress (Pasko et  al. 2010) 
which induces insulin resistance (Gaby 2005) leading to 
the pathogenesis of diabetes and its complications.

Fructose, a highly lipogenic carbohydrate, that produce 
large amount of hepatic triose-phosphate for fatty acid 
synthesis and inhibit lipid oxidation which favor fatty 
acid re-esterification and synthesis of very low density 
lipoprotein (VLDL) and triglyceride (TG). In addition, 
metabolic conversion of fructose to triose-phosphate 
occur independent of insulin in a rapid manner. Thus 
increased fructose stimulates lipogenesis and TG, which 
contribute to reduced insulin sensitivity, hepatic insulin 
resistance, glucose tolerance and oxidative stress (Pasko 
et al. 2010; Suwannaphet et al. 2010). In diabetes, insulin 
resistance leads to glucose overload and its underutiliza-
tion in the liver. Although several therapeutic strategies 
has been practiced for treatment of diabetes, there are 
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certain limitations due to their high cost and adverse side 
effects which includes the development of hypoglycemia, 
weight gain, gastrointestinal disturbances and liver toxic-
ity (Saikia et al. 2011).

Based on the involvement of oxidative stress in com-
plicating diabetes mellitus, efforts are made to determine 
the suitable anti-diabetic and anti-oxidant therapeutic 
strategy (Modak et  al. 2007; Srinivasan and Ramarao 
2007; Spiller and Sawyer 2006) which may suggest to 
help in the management of diabetes and thus it remain 
as a large unmet area of possible therapy without less 
adverse effects. Recently, the natural substances are used 
as therapeutics in the management of diabetes melli-
tus. The hypoglycemic effect of herbal extracts has been 
demonstrated in human and animal models of type 2 dia-
betes (Patel et al. 2012; Ayyanar et al. 2008). The World 
Health Organization (WHO) has recommended that 
traditional medicinal herbs could be further investigated 
(Modak et  al. 2007) and especially the plant medicine 
that prevent diabetes mellitus because of the likelihood 
of high compliance and become largely free from side 
effects (Suwannaphet et al. 2010). One such phytochemi-
cal and polyphenol flavonoid of turmeric, curcumin the 
ginger family (Zingiberaceae) has a long history of use 
in traditional Indian medicine as supplemental herbal 
diet (Maheshwari et al. 2006). Curcumin is a hydropho-
bic polyphenol compound extracted from the rhizome 
of the herb Curcuma longa used as food supplement that 
possess many pharmacological activities including anti-
inflammatory (Aggarwal and Harikumar 2009), anti-can-
cer properties (Ireson et al. 2002), powerful anti-oxidant 
(Kuhad and Chopra 2007) and as an anti-diabetic agent 
(Arun and Nalini 2002).

Recent studies have shown that the interaction of the 
ligand activated transcription factor peroxisome prolif-
erator-activated receptor gamma (PPARγ) with naturally 
occurring molecules increases insulin sensitivity and 
have anti-diabetic capacity (Wang et  al. 2014). PPARγ 
is one of three known isoforms, a regulator of lipid and 
glucose metabolism responsible for metabolic disorders 
and also act as the molecular target for drugs against sev-
eral metabolic disorders (Grygiel-Gorniak 2014; Kim and 
Ahn 2004). Hence, the present study was focused to eval-
uate the effect of curcumin on biochemical parameters, 
their potential changes with multivariate analysis and 
the effect of docking of curcumin with PPARγ on most 
contributing factors against high fructose diet fed insulin 
resistance in adult male Wistar rats.

Methods
Chemicals and animal model
The chemicals, reagents, fructose and curcumin were 
purchased from National Scientific Suppliers, Puduch-
erry, India and are of analytical grade. Adult male Wistar 
rats weighing 120–140  g were purchased from the Sri 
Venkateshwara Enterprises, Bangalore, India. All the ani-
mals were maintained under standard laboratory condi-
tions at temperature 27 ±  2  °C and 12 h light and dark 
cycles throughout the experimental period. The rats 
were provided with laboratory chow (VRK Nutritional 
solution, Chennai) and water ad  libitum. All procedures 
in the study were conducted in accordance with ethics 
standards of Institutional Animals Ethical Committee 
(IAEC), Chettinad Academy of Research and Education, 
Kelambakkam, TN, India.

Experimental design
 The rats were divided into four groups with six animals 
in each.

Group 1:	� Control rats received normal rat chow diet 
daily.

Group 2:	� Rats received 60  % high fructose diet for 
8 weeks.

Group 3:	� Rats received 80 mg curcumin/kg. b. wt. orally 
for 8 weeks.

Group 4:	� Rats received 60  % high fructose diet and 
80 mg curcumin/kg. b. wt. orally (co-adminis-
tration) for 8 weeks.

Induction of insulin resistance in rats
60 % fructose diet was prepared by weighing 60 g of fruc-
tose mixed with 40 g of rat chow diet and fed to the rats 
(Group 2) for a minimum of 8 weeks for the induction of 
insulin resistance (Xue et al. 2008; Park et al. 2015; Dupas 
et al. 2016). The fasting blood glucose level was measured 
in serum (blood was collected from the tail vein using 
lancet) to assess the induction of insulin resistance every 
week and the animals with blood glucose concentration 
more than 200  mg/dl were taken for the study (Wilson 
and Islam 2012; Tan and Kim 2013).

Curcumin was dissolved in 0.2  % Dimethyl Sulfoxide 
(DMSO) solution and given orally to rats using an intra-
gastric tube (Mathews et  al. 2012). Earlier studies have 
reported that DMSO as a vehicle does not have any toxic 
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effect (Castro et al. 2014; Basnet and Shalko-basnet 2011) 
even with a high dose of 5 ml/kg b. wt. was tolerable in 
rats and it does not affect the values when compared with 
control rats (Gad 2009). At the end of the experimen-
tal period, animals were anesthetized and decapitated 
in order to reduce stress, blood was collected rapidly in 
tubes containing anticoagulant and without anticoagu-
lant for plasma and serum separation, respectively. The 
collected blood was centrifuged at 3000 rpm for 20 min. 
The serum was used for insulin assay and the plasma was 
used for other biochemical parameters. In addition, liver 
and kidney were immediately dissected out, washed in 
ice-cold 0.15 M saline to remove the excess of blood and 
a part of it was preserved and used for histological stud-
ies. The remaining tissues was weighed and homogenized 
using mortar and pestle to prepare 10 % tissue homoge-
nate using ice-cold tris–Hcl buffer (0.2  M, pH 7.4). The 
homogenate was centrifuged at 10,000  rpm for 20  min 
at 4  °C and the supernatant was used for the estimation 
of antioxidants, lipid peroxidation enzymatic and non-
enzymatic assays. All samples were collected early in the 
morning after animals had fasted overnight (12 h).

Analytical procedures
Serum insulin was measured by chemiluminesence 
immunoassay (CLIA) explained by Marschner et  al. 
(1974). Plasma glucose was estimated using a commer-
cial kit (Sigma Diagnostics (I) Pvt. Ltd., Baroda, India) 
(Trinder 1969). Also, the plasma urea levels was deter-
mined using Fawcett and Scott method (1960), uric acid 
by Caraway (1955), creatinine by Tietz (1987), albumin 
and total protein by Reinhold (1953) and lipid profile 
(Total Cholesterol, TG, HDL, LDL, VLDL) were esti-
mated spectrophotometrically according to the standard 
procedures using commercially available diagnostic kits 
(Sigma diagnostic (I) Pvt. Ltd., Baroda. India). Further, 
the levels of antioxidants, lipid peroxides and metaboliz-
ing enzymes were studied in the tissue samples of liver 
and kidney. The antioxidants such as catalase (CAT) 
(Sinha 1972), glutathione peroxidase (GPx) (Rotruck et al. 
1984), super oxide dismutase (SOD) (Kakkar et al. 1984), 
reduced glutathione (GSH) (Ellman 1959) were  deter-
mined. Lipid peroxidation was measured as a thiobarbitu-
ric acid reacting substances (TBARS) using Niehius and 
Samuelson (1968), hydroperoxides by Jiang et  al. (1992) 
and total protein was estimated by Lowry et  al. (1951). 
Vitamin E was determined by the method of Baker and 
Frank et al. (1951) and vitamin C level by the method of 
Omaye et al. (1979). For metabolizing enzymes, hexoki-
nase activity was determined by the method of Brand-
strup et  al. (1957), Glucose 6-phosphatase activity by 

Koida and Oda (1959) and fructose 1,6-bisphosphatase as 
described by Gancedo and Gancedo (1971).

Protein–ligand docking
Molecular docking study was carried out with curcumin 
as agonist of PPARγ (Lewis et  al. 2010). The agonist of 
PPARγ suggests increasing the concentration of albumin, 
CAT, GSH and hexokinase (Al-Malki and El Rabey 2015; 
Panasyuk et al. 2012; Garcia-Fuentes et al. 2010; Dhaunsi 
et  al. 2010), which are the most contributing proteins of 
PLS-DA analysis. The crystal structure of PPARγ protein 
was retrieved from Protein Data Bank (3DZY). The solvent 
molecules and the co-crystallized ligands were removed 
from the protein structure prior to docking. Docking 
energy calculations for curcumin with the proteins were 
done Autodock4 with a grid that accommodates the bind-
ing sites cavity for PPARγ in order to allow curcumin to 
determine its effective confirmation. The protein was used 
as a rigid model structure with Merck molecular force field 
(MMFF) used for the scoring function. To test the binding 
efficiency of curcumin, the co-crystallized ligand pioglita-
zone (2XKW) was docked into the PPARγ. Different orien-
tations of the ligands were searched and ranked based on 
their least energy scores.

Histology studies: hematoxylin and eosin (H&E) staining
The saline washed liver and kidney tissues were fixed 
with 10 % formalin solution for the histological examina-
tions. The paraffin embedded tissue sections were stained 
with H & E were examined and photographed under a 
light microscope for observation of structural abnormali-
ties (Wagnerberger et al. 2013; Sun et al. 2013).

Oil red O staining
For the detection of lipids, portions of liver were rapidly 
frozen in cryostat and embedded in Tissue-Tek, 3–4 μm 
cryosections were mounted on the microscope slides 
and air-dried for 2 h. After fixation in 4 % neutral formal-
dehyde for 10 min, sections were stained with oil red O 
(0.5 % oil red O dissolved in propylene glycol) for 10 min 
at 60 °C. The sliced sections were then counterstained for 
histopathology (Wagnerberger et al. 2013).

Statistical analysis
The significance changes in biochemical parameters were 
analyzed using statistical SPSS (version 21) package. 
Analysis of variance (ANOVA) was performed to dem-
onstrate a significant difference (p ≤ 0.05) in biochemical 
parameters between the analyzed groups. Furthermore, 
the multidimensional data were subjected to partial least 
square discriminant analysis (PLS-DA) using SIMCA 
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software (Umetrics, Inc., Kinnelon, NJ) to confirm the 
potential contribution of these biochemical parameters 
to differentiate the groups from control. Also, the impor-
tance of each parameter in the PLS-DA was evaluated by 
variable importance in the projection (VIP) scores. The 
score greater than 1 were positively reflects the influence 
of biochemical parameters on the classification and the 
correlation analysis was demonstrated to determine the 
interdependency between the biochemical parameters 
towards the classification between groups.

Results and discussion
The present study was designed to explore the effect of 
oral administration of curcumin against high fructose 
diet induced insulin resistance in adult male Wistar rats 
resulted in the following findings: the level of glucose¸ 
insulin and renal markers were significantly decreased and 
increased level of antioxidants, HDL with the alterations in 
the metabolic enzymes in Group 4 compared to Group 2 
rats. The average concentration of each parameter was cal-
culated and represented as tables along with their stand-
ard deviation (SD). The typical analyses of antioxidants, 
lipids, lipid peroxidation, metabolizing enzymes and renal 
markers suggest a critical role of curcumin in preventing 
insulin resistance in adult male Wistar rats. These find-
ings shows that the co-administration of curcumin pos-
sesses a potential antihyperglycemic effect by ameliorating 
the disturbances caused in the Group 2 insulin resistance 
induced animals.

Biochemical variations in blood
Glucose, an abundant molecule and contribute for insu-
lin resistance. Diet high in fructose induce insulin resist-
ance in experimental rats and reduce insulin sensitivity 
associated with impaired action of hepatic insulin and 
also glucose disposal from the body (Elliot et al. 2002). At 
the same time, fructose, a lipogenic sugar, high in diet is 
independent of insulin action causes increased produc-
tion of triglycerides leads to lipogenesis rapidly due to 
unregulated fructose metabolism. This in turn results in 
insulin resistance which reduces glucose uptake result-
ing in an increase in the fasting levels of blood glucose 
and insulin secretion (Basciano et al. 2005; Ramesh and 
Saralakumari 2012). Statistical analysis of biochemical 
parameters showed a significant increase in creatinine, 
glucose, insulin, LDL, total cholesterol, TG, urea, uric 
acid, VLDL and decreased concentration of albumin, 
HDL and total protein in Group 2 rats (p ≤ 0.05) when 
compared with group1 control rats (Table  1). Further, 
the co-administration of curcumin along with fructose 
(Group 4) showed the reinstating of most of the bio-
chemical parameters (Table 1).

Our results showed that curcumin is a potent hypolipi-
demic and renoprotective agent that reduces the lipogen-
esis and alter the lipogenic enzymes which regulate the 
homeostatic level of lipids, increase the uptake of glucose 
peripherally and prevent the changes in lipid metabolism 
that caused by the administration of high fructose diet.

Table 1  Effect of curcumin on glucose, insulin, lipid profile and renal markers in blood of control and experimental rats

Values are represented as mean ± SD, n = 6, p < 0.05, comparisons are made between * Group 1 versus Group 2; # Group 2 versus Group 4

Biochemical parameters Group 1 Group 2 Group 3 Group 4

Fasting blood glucose (mg/dl) 109.53 ± 9.08 207.63 ± 9.90* 108.64 ± 7.86 114.11 ± 12.74#

Fasting insulin (µU/ml) 0.17 ± 0.02 0.99 ± 0.14* 0.24 ± 0.02 0.33 ± 0.02#

Total Cholesterol (mg/dl) 142.16 ± 41.23 263.33 ± 36.14* 175.83 ± 28 162.16 ± 26.23#

Triglycerides (mg/dl) 106.5 ± 8.19 269.16 ± 28.18* 99.66 ± 13.1 102.66 ± 18.99#

HDL (mg/dl) 47.16 ± 11.73 37.5 ± 13.69* 82.66 ± 16.08 95.16 ± 18.87#

LDL (mg/dl) 73.7 ± 33.08 172 ± 43.3* 73.23 ± 40.39 46.46 ± 34.45#

VLDL (mg/dl) 21.5 ± 1.54 53.83 ± 5.63* 19.93 ± 2.62 20.53 ± 3.79#

Total protein (g/dl) 11.83 ± 0.55 9.14 ± 0.90* 11.08 ± 0.78 10.90 ± 0.47#

Albumin (g/dl) 3.33 ± 0.17 2.19 ± 0.19* 3.30 ± 0.28 3.41 ± 0.32#

Urea (mg/dl) 10.79 ± 1.49 16.11 ± 3.60* 10.83 ± 1.22 10.37 ± 0.93#

Uric acid (mg/dl) 12.05 ± 3.75 22.90 ± 6.10* 12.99 ± 3.93 13.03 ± 0.62#

Creatinine (mg/dl) 0.81 ± 0.01 1.12 ± 0.13* 0.87 ± 0.02 0.82 ± 0.07#
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Biochemical variations in tissue
In liver, hexokinase is an important regulator of glucose 
storage and disposal whereas in pancreas it regulate gly-
colytic rate and play a central role in control of glucose 
stimulated insulin secretion (O’Doherty et  al. 1999). 
Insulin resistance and lipid peroxidation has been devel-
oped with abnormal increase in the production of free 

radicals and simultaneous reduction of the antioxidants 
leads to the damage of cellular organelles and enzymes 
(Maritim et al. 2003). The analysis with kidney and liver 
tissues showed significant (p ≤  0.05) decrease in CAT, 
GPx, hexokinase, hydroperoxides, GSH, SOD, vitamin 
C and E and increased glucose 6-phosphatase, fruc-
tose 1,6-bisphosphatase and TBARS in Group 2, when 

Table 2  Influence of curcumin on metabolizing enzymes, antioxidants and lipid peroxides in kidney of control and exper-
imental rats

Values are represented as mean ± SD, n = 6, p < 0.05, Comparisons are made between * Group 1 versus group 2; # Group 2 versus Group 4

Biochemical parameters Group 1 Group 2 Group 3 Group 4

Hexokinase (mM of glucose phosphorylated/h/mg protein) 4.67 ± 0.16 3.34 ± 0.18* 4.76 ± 0.13 5.62 ± 0.26#

Glucose 6-phosphatase (mM of inorganic phosphorous liberated/min/mg 
protein)

28.38 ± 1.72 46.27 ± 2.06* 26.58 ± 1.75 37.19 ± 2.53#

Fructose 1,6-bis phosphatase (mM of inorganic phosphorous liberated/h/
mg protein)

11.26 ± 1.88 26.97 ± 2.21* 20.69 ± 1.37 18.91 ± 5.58#

Catalase (units/mg of protein) 58.55 ± 0.76 17.53 ± 1.64* 49.44 ± 0.91 70.42 ± 0.69#

Super oxide dismutase (units/mg protein) 1518.34 ± 8.72 678.73 ± 10.71* 1345.78 ± 16.94 1134.16 ± 11.86#

Glutathione peroxidase (units/mg protein) 169.20 ± 1.0 17.53 ± 1.0* 102.94 ± 1.95 124.07 ± 2.18#

Vitamin C (µM/mg of tissue) 1.80 ± 0.04 0.72 ± 0.06* 1.8 ± 0.04 1.27 ± 0.03#

Vitamin E (µM/mg of tissue) 4.03 ± 0.12 1.35 ± 0.04* 3.52 ± 0.05 2.63 ± 0.07#

Glutathione reductase (mg/100 g of tissue) 1.40 ± 0.01 0.40 ± 0.04* 1.36 ± 0.05 0.80 ± 0.01#

Thiobarbituric acid reactive substances (mM/100 g tissue) 0.14 ± 0.02 0.34 ± 0.02* 0.12 ± 0.01 0.08 ± 0.003#

Hydroperoxides (mM/100 g of tissue) 540.10 ± 10 1271.17 ± 354.15* 517.81 ± 46.55 640.24 ± 73.76#

Table 3  Influence of curcumin on metabolizing enzymes, antioxidants and lipid peroxides in liver of control and experi-
mental rats

Values are represented as mean ± SD, n = 6, p < 0.05, comparisons are made between * Group 1 versus Group 2; # Group 2 versus Group 4

Biochemical parameters Group 1 Group 2 Group 3 Group 4

Hexokinase (mM of glucose phosphorylated/h/mg protein) 4.62 ± 0.16 2.59 ± 0.27* 3.62 ± 0.23 5.38 ± 0.30#

Glucose 6-Phosphatase (mM of inorganic phosphorous liberated/min/mg 
protein)

0.24 ± 0.03 5.69 ± 0.30* 0.24 ± 0.03 1.59 ± 0.15#

Fructose 1,6-bis phosphatase (mM of inorganic phosphorous liberated/h/
mg protein)

116.25 ± 4.54 167.05 ± 11.10* 131.50 ± 35.10 140.39 ± 5.26#

Catalase (Units/mg of protein) 108.67 ± 1.81 69.10 ± 2.06* 108.27 ± 1.85 107.82 ± 1.66#

Super oxide dismutase (Units/mg protein) 1526.39 ± 18.29 685.25 ± 4.44* 1337.80 ± 11.87 1135.74 ± 8.20#

Glutathione peroxidase (Units/mg protein) 142.00 ± 1.86 21.48 ± 1.11* 93.34 ± 1.81 137.81 ± 2.32#

Vitamin C (µM/mg of tissue) 1.60 ± 0.06 0.70 ± 0.02* 1.6 ± 0.06 1.15 ± 0.02#

Vitamin E (µM/mg of tissue) 1.56 ± 0.03 0.83 ± 0.04* 1.54 ± 0.04 2.22 ± 0.008#

Glutathione reductase (mg/100 g of tissue) 1.59 ± 0.04 0.06 ± 0.003* 1.43 ± 0.04 1.06 ± 0.04#

Thiobarbituric acid reactive substances (mM/100 g tissue) 0.05 ± 0.004 0.31 ± 0.03* 0.04 ± 0.006 0.20 ± 0.004#

Hydroperoxides (mM/100 g of tissue) 737.12 ± 63.57 1115.18 ± 223.04* 599.56 ± 71.90 779.10 ± 100.92#
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compared with Group 1 rats (Tables  2, 3). In Group 4 
rats, the administration of curcumin along with fruc-
tose showed an effective contribution of curcumin 
in changing the antioxidants and metabolic enzymes 
(Tables  2, 3). The salubrious effect may be due to co-
administration of curcumin along with high fructose 
diet prevented the increase in the level of antioxidants 
and decrease in the level of TBARS and lipid hydroper-
oxides with altered carbohydrate metabolizing enzymes 
towards the glucose metabolism which help in regulat-
ing the homeostasis.

Multivariate analysis
To explore the biochemical multidimensional data, unsu-
pervised statistical method was executed between the 
groups. The PLS-DA plots’ for blood, kidney and liver 

showed a clear differentiation of Group 2 from others 
(Fig. 1a–c). The loading coefficient map of blood (Fig. 2a) 
indicate a significantly elevated concentrations of cre-
atinine, glucose, insulin, LDL, total cholesterol, TG and 
VLDL which shows that these factors are predominantly 
responsible for the separation of Group 2 from other 
groups. Of these factors, glucose, insulin, creatinine, 
total cholesterol, TG and VLDL scored ≥1 in VIP plot 
(Fig.  2b), indicate the potential contribution for insu-
lin resistance. Further, the loading coefficient of kidney 
(Fig. 3a), biochemical parameters showed that TBARS is 
the most contributing factors for insulin resistance with 
the VIP score ≥1 (Fig. 3b). In liver (Fig. 4a), the glucose 
6-phosphatase, TBARS and vitamin C were identified as 
the most contributing factors for insulin resistance with 
VIP score ≥1 (Fig. 4b). Similarly, the separation of Group 

Fig. 1  Multivariate PLS-DA analysis. Blood (a), kidney (b) and liver (c) shows a significant differentiation (p ≤ 0.05) between the groups. The obser-
vations were coded according to groups: green control; blue fructose; red curcumin; yellow fructose + curcumin
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Fig. 2  Loading coefficient and VIP plot for blood parameters of Group 2 rats. The loading coefficient map showing (a—blood) that insulin, glucose, 
VLDL, total cholesterol, LDL, triglyceride and creatinine were predominantly responsible for the classification of groups. b The VIP scores for the 
biochemical parameters analyzed in (Group 2 blood) showing glucose, insulin, triglyceride, creatinine and VLDL with VIP ≥ 1

Fig. 3  Loading coefficient and VIP plot for kidney parameters of Group 2 rats. The loading coefficient map showing (a—kidney) that glucose 
6-phosphatase, fructose 1,6-bisphosphatase, hydroperoxides and TBARS were predominantly responsible for the classification of groups. b The VIP 
scores for the biochemical parameters analyzed in (Group 2) kidney showing hexokinase, catalase, glutathione reductase and TBARS with VIP ≥ 1
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4 samples was attributed to albumin and HDL as the 
major protecting factor of insulin resistance determined 
by VIP plot (Fig.  5a). Subsequent analysis showed CAT, 
GSH, hexokinase are the major protective components 
of kidney (Fig.  5b) and GSH, hexokinase and vitamin E 
are the important protective factor of liver from insulin 
resistance (Fig.  5c). Overall, these biochemical changes 
confirm the likely importance of fructose in causing insu-
lin resistance.

Correlation analyses
Pearson correlation analysis was carried for Group 2 and 
4 rats on the major contributing biochemical factors (VIP 
score ≥1) in blood and tissues. In Group 2 blood (Fig. 6a), 
albumin, creatinine, glucose, insulin, total cholesterol, 
TG, and VLDL were positively associated with insu-
lin resistance. However, reinstation of these molecules 
were noticed (Fig.  6b) except LDL and total cholesterol 

in response to co-administration of curcumin (Group 4). 
Similarly, TBARS of kidney (Fig. 7) and glucose 6-phos-
phatase, TBARS and vitamin C of liver (Fig. 8) was rein-
stated in Group 4 compared to Group 2 rats. In addition 
to these changes, most of the molecules such as albumin 
and HDL-Cholesterol of blood, CAT, GSH, hexokinase of 
kidney, GSH, hexokinase and vitamin E of liver showed a 
positive association in Group 4 rats upon co-administra-
tion with curcumin.

Molecular docking
PPARγ, a ligand activated transcription factor that regu-
late various metabolic processes especially lipid and glu-
cose homeostasis (Grygiel-Gorniak 2014; Khamkar et al. 
2013; Setzer and Ogungbe 2012). As a molecular target 
for drugs against several metabolic disorders, PPARγ 
improves glucose homeostasis by regulating the expres-
sion hexokinase and inhibiting G6Pase and also regulates 

Fig. 4  Loading coefficient and VIP plot for liver parameters of Group 2 rats. The loading coefficient map showing (a—liver) that glucose 6-phos-
phatase, fructose 1,6-bisphosphatase, hydroperoxides, vitamin C and TBARS were predominantly responsible for the classification of groups. b The 
VIP scores for the biochemical parameters analyzed in (Group 2) liver showing glucose 6-phosphatase, glutathione reductase, catalase, superoxide 
dismutase, glutathione peroxidase and TBARS with VIP ≥ 1
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Fig. 5  VIP score plots for blood, kidney and liver parameters of Group 4 rats. a The VIP scores for the biochemical parameters of blood analyzed in 
Group 4 showing that HDL, urea, albumin and uric acid with VIP ≥ 1. b The VIP scores for the Group 4 kidney showing fructose 1,6-bisphosphatase, 
hexokinase, glutathione reductase and catalase with VIP ≥ 1. c The VIP scores Group 4 liver showing that vitamin E, hexokinase, glutathione reduc-
tase and hydroperoxides with VIP ≥ 1
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the action of insulin. Hence the molecular docking study 
was carried out to investigate the binding efficiency of 
curcumin as an agonist for PPARγ using Autodock4 
(Prashantha Kumar et  al. 2012). A molecular docking 
study was carried out to investigate the binding efficiency 
of curcumin as an agonist for PPARγ and to examine the 
most contributing factors on the experimental groups. 
The docking accuracy was evaluated in terms of the 
root mean square deviation (RMSD) and the prediction 
was considered successful if the RMSD value was less 
than 1.8 Å. The best ten energy poses for the curcumin 
against protein target was determined. The results are 
ranked according to least binding energies for score. The 
top ranked binding efficiency of curcumin with PPARγ 
showed −9.44  kcal/mol (Table  4). Curcumin showed 
better interaction with PPARγ at their active site. For 
Instance, Ile(341), Arg(288), Ser(289), Ala(292), Leu(333), 
Ile(326), Leu(330) and Met(329) contributes curcumin 
to binding region. Similarly, pioglitazone showed least 

binding energy of −7.92 which is comparatively high than 
curcumin. The agonist of PPARγ suggested an increase 
in the concentration of albumin, hexokinase, CAT and 
GSH which are the most contributing proteins of PLS-
DA analysis (Fig. 9). Overall, the docking results showed 
that curcumin is potentially involved in binding with the 
PPARγ as agonist that increase the concentration of most 
contributing factors that are associated with diabetes. 

Histology
The histopathology of liver and kidney of control and 
experimental rats were studied (Fig.  10). Several stud-
ies showed that high fat and high fructose diets induce 
insulin resistance and tissue damage. Excess fructose 
diet increases the lipid synthesis and metabolic diseases 
which cause lipotoxic cellular dysfunction and cause 
accumulation of lipids induces damages in the liver and 
kidney (Abo-youssef 2015; Hao et  al. 2015; De Castro 
et  al. 2013). The histology of kidney stained with H & E. 

Fig. 6  Correlation co-efficient plot for blood parameters of Group 2 rats versus Group 4 rats. Correlation coefficient plots for the blood parameter in 
the Group 2 (a) and Group 4 rats (b) shows the association between biochemical parameter with the Group 2 and 4 rats, respectively. The biochem-
ical parameter with positive value represents positively correlated and the negative value represents the negative association to the analyzed rat
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Fig. 7  Correlation co-efficient plot for kidney parameters of Group 2 versus Group 4 rats. Correlation coefficient plots for the kidney parameters 
in the Group 2 (a) and Group 4 rats (b) shows the association between biochemical parameter with the Group 2 and Group 4 rats, respectively. 
The biochemical parameter with positive value represents positively correlated and the negative value represents the negative association to the 
analyzed rat

Fig. 8  Correlation co-efficient plot for liver parameters of Group 2 versus Group 4 rats. Correlation coefficient plots for the liver parameters in the 
Group 2 (a) and Group 4 rats (b) shows the association between biochemical parameter with the Group 2 and Group 4 rats, respectively. The bio-
chemical parameter with positive value represents positively correlated and the negative value represents the negative association to the analyzed rat
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Group 1 shows the normal architecture of the kidney 
(Plate  1). In Group 2 rats administered high fructose 
diet, necrosis of the proximal convoluted tubules (tubu-
lar necrosis) was observed. No characteristic histological 
changes were seen in Group 3 administered curcumin 
alone. A mild glomerular congestion with less cloudy 
changes of proximal tubule was seen in Group 4 rats co-
administered with curcumin when compared to Group 
2 rats. Also, the histological findings of liver in Group1 
control group depicts the normal architecture of liver 
and Group 2 rats fed with high fructose diet shows por-
tal congestion with periportal steatosis (fatty change) 

Table 4  Molecular docking of curcumin with PPAR gamma and pioglitazone

Rank Binding energy of curcumin with PPARγ Binding energy of curcumin with pioglitazone

1. −9.44 −7.92

2. −9.53 −7.42

3. −9.89 −7.3

4. −7.55 −8.42

5. −10.04 −9.35

6. −5.6 −6.11

7. −9.98 −8.27

8. −8.94 −8.64

9. −10.16 −6.7

10. −8.94 −9.49

Fig. 9  Molecular docking study of PPAR gamma. a The binding efficiency of pioglitazone with PPAR gamma. b The binding efficiency of curcumin 
with PPAR gamma of particular aminoacids in the binding sites

confirms the pathological condition. Group 3 curcumin 
administered rats showed no histological changes and 
Group 4 rats co-administered with high fructose diet and 
curcumin resulted in reduced centrilobular congestion 
with mild micro vesicular steatosis when compared to 
Group 2 rats. In addition, the Oil red O Staining showed 
in Plate  3 represents that there were no lipid droplets 
in the Group 1 and Group 3 rats whereas Group 2 rats 
showed significant infiltration of lipid accumulated in 
portal centrilobular cells. The Group 4 rats express the 
recovery of fatty changes in the liver with the co-admin-
istration of curcumin. Previous studies reported the 
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Conclusion
In conclusion, the present study demonstrate that cur-
cumin posses potential anti-hyperglycemic effect 
through increased insulin production associated with 
subsequent increase in the activity of antioxidants and 
glycolytic enzyme, decrease in the activity of gluconeo-
genic enzymes, alterations in lipids and renal markers. 
This study revealed that co-administration of curcumin 
along with fructose protects the metabolic abnormali-
ties caused by high fructose diet and oxidative stress in 
insulin resistance induced rats. Also, the multivariant 

Fig. 10  Effect of curcumin on histological changes in liver and kidney of control and experimental rats. Plate 1 shows the representative photo-
graphs of H&E stain on kidney (×400); Plate 2 shows the representative photographs of the H&E stain on liver (×100); Plate 3 shows the representa-
tive photographs of the Oil Red O stain on liver tissue (×100). Group 1 control; Group 2 fructose; Group 3 curcumin; Group 4 curcumin + fructose

accumulation of lipids, hepato-cellular damage in liver 
and glomerular congestion of kidney in high fat and high 
fructose diet fed rats (Lozano et al. 2016; Lee et al. 2015). 
These reports correlates with our study in Group 2, high 
fructose diet fed rats with those observations. The histo-
logical analysis of liver and kidney revealed that the co-
administration of curcumin protects the organs from the 
abnormal changes caused by the high fructose diet and 
thus co-administration of curcumin along with fructose 
effectively prevent the damages caused with high fruc-
tose diet induced insulin resistance in rats.
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analysis highlighted the most contributing factors like 
albumin, hexokinase, CAT and GSH which has been 
enhanced by docking with curcumin to PPARγ as ago-
nist. Overall, the current study suggests that curcumin 
act as a potent regulator of PPARγ thereby alters the 
most contributing factors that protect against metabolic 
disorders leading to diabetes mellitus. Further studies 
are underway to establish the role of curcumin as ago-
nist for PPARγ with gene expression in controlling dia-
betic complications.
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