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ABSTRACT

Spinal cord injury (SCI) remains a significant clinical challenge, with no fully effective 
treatment available despite advancements in various therapeutic approaches. This review 
examines the emerging role of induced neural stem cells (iNSCs) as promising candidates 
for SCI treatment, highlighting their potential for direct neural regeneration and integration 
with host tissue. We explore the biology of iNSCs, their mechanisms of action, and their 
interactions with host tissue, including modulating inflammatory responses, promoting 
axonal growth, and reconstructing neural circuits. Additionally, the importance of 
administration route, optimal timing for transplantation, and potential adverse events are 
discussed to address key challenges in translating these therapies to clinical applications. 
The review also emphasizes recent innovations, such as combining iNSC transplantation 
with rehabilitative training and the integration of biomaterials and growth factors to enhance 
therapeutic efficacy. Although preclinical studies have demonstrated positive outcomes, 
larger, controlled trials and standardized protocols are essential for validating the safety and 
effectiveness of iNSC-based therapies for SCI patients.
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INTRODUCTION

Currently, there is no fully effective treatment for spinal cord injury (SCI), despite various 
therapeutic strategies being investigated.7,29) Globally, there were 0.9 million incident 
cases and 20.6 million prevalent cases of SCI in 2019, representing a significant healthcare 
challenge worldwide.13) The economic burden of SCI is substantial, encompassing both direct 
medical costs and indirect losses due to decreased productivity and quality of life.30,58)

Treatment approaches could be categorized into several main areas: cellular therapies, 
rehabilitation strategies, and biomaterial applications.4,22,40,46,47) Among cellular therapies, 
mesenchymal stem cells (MSCs) have been the most widely studied and clinically tested 
cell type, known for their anti-inflammatory properties and ability to promote vascular 
regeneration.63) However, their limited capacity to differentiate into neural cells remains a 
significant drawback.22)

Induced neural stem cells (iNSCs) have recently emerged as promising candidates for SCI 
treatment, offering advantages such as direct neural regeneration potential and superior 
integration with host spinal cord tissue.24) Despite these benefits, concerns remain 
regarding their tumorigenic potential, low survival rates, and possible immune rejection 
responses.56) Indeed, stem cell therapy faces several challenges, including the potential risk 
of tumorigenesis, poor cell survival in the hostile environment of the injured spinal cord, and 
limited integration with host tissue.
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Recent advances in stem cell biology have opened new avenues for regenerative medicine, 
particularly through the development of iNSCs. Preclinical studies have demonstrated 
encouraging results, particularly when iNSC transplantation is combined with rehabilitative 
training. These studies have shown enhanced survival rates and neuronal differentiation of 
transplanted cells, along with improved motor function recovery.56)

The translation of these promising preclinical findings into clinical applications represents 
the next crucial step in developing effective treatments for SCI patients. Current research 
focuses on optimizing treatment protocols, improving cell survival rates, and enhancing 
functional outcomes through combination therapies.22)

BIOLOGY OF NEURAL STEM CELLS

The transplantation of neural stem cells (NSCs) holds substantial therapeutic potential for 
treating various neurodevelopmental, neurodegenerative, and neurotraumatic conditions by 
aiding in restoring and replacing damaged neuronal networks.62) An essential initial focus is 
to explore the acquisition of NSCs, considering both the sources of these cells and the dosage 
required for effective transplantation. Presently, there are three primary sources for obtaining 
NSCs: direct extraction from primary central nervous system (CNS) tissue (from either fetal 
or adult brain sources), differentiation of pluripotent stem cells, and transdifferentiation 
from somatic cells.49)

iNSCs represent a significant advancement in cellular therapy through their direct 
reprogramming from somatic cells. This process, achieved by introducing specific transcription 
factors such as Sox2, Brn2, and Foxg1, bypasses the pluripotent state, offering advantages over 
traditional induced pluripotent stem cells (iPSCs).50,56) The direct conversion approach reduces 
the risk of tumorigenicity while maintaining the desired NSC properties (FIGURE 1).

Functionally, iNSCs demonstrate remarkable pluripotent capabilities, including 
differentiation into neurons and astrocytes, and exhibit spontaneous intracellular 
calcium signaling. These cells can develop into functionally mature neurons, with their 
differentiation process critically regulated by the Wnt/β-catenin pathway and trophoblast 
glycoprotein levels.28,35) This controlled differentiation process is essential for successful 
therapeutic applications.

Upon successful transplantation and differentiation, these cells demonstrate remarkable 
integration capabilities with host neural networks. The transplanted cells differentiate 
into both neurons and glia, effectively filling lesion cavities in injured areas.36,60) Most 
significantly, they establish functional synapses with host tissue and demonstrate the ability 
to create new neural circuits within existing networks. This integration is facilitated by the 
capacity of transplanted cells to extend axons both cephalad and caudally from the injury site, 
reaching distances up to approximately 6 cm into supraspinal structures.36,60) Such extensive 
axonal growth and integration capabilities are crucial for establishing functional neural 
connections and promoting recovery after SCI.

The discovery of iPSCs has been a groundbreaking advancement in regenerative medicine 
and biological research. The ability to convert adult somatic cells, such as blood cells or skin 
fibroblasts, into NSCs via iPSCs has spurred extensive research in the field. Encouraging 
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outcomes have been documented following the transplantation of iPSC-derived NSCs 
into animal models of SCI, where these cells have demonstrated improved survival, tissue 
preservation, and differentiation into neurons. Furthermore, functional recovery has been 
noted, supported by axon remyelination and increased levels of neurotrophic factors within 
the spinal cord.2,51)

CLASSIFICATION OF iNSC TYPES

iNSCs can be categorized into 3 major types based on their derivation sources and generation 
methods. The first category includes directly transdifferentiated iNSCs, which are generated 
from somatic cells such as fibroblasts or peripheral blood mononuclear cells through the 
forced expression of specific transcription factors.14,43) These cells are advantageous due 
to their faster generation time and reduced risk of tumor formation compared to other 
methods, making them a promising option for clinical applications.14) The second category 
consists of iPSC-derived NSCs, which are created through an intermediate pluripotent state 
using OSKM factors (Oct3/4, Sox2, Klf4, and c-Myc). This approach produces high cell yields 
but raises concerns regarding tumorigenicity, as residual undifferentiated cells may remain 
after differentiation.20) The third category includes NSCs directly isolated from CNS tissue. 
These cells serve as a natural source of neural progenitors but face practical limitations, such 
as restricted accessibility and low scalability, which hinder their broader application.43) Each 
type of iNSC exhibits distinct clinical potential. Transdifferentiated iNSCs are particularly 
promising for treating SCIs due to their efficient differentiation into neuronal lineages 
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FIGURE 1. Comparison of iNSCs (left) and MSCs (right): iNSCs, reprogrammed from somatic cells, focus on neuronal regeneration and neurotrophic support, 
while MSCs, derived from bone marrow, adipose, or umbilical cord, provide anti-inflammatory, immunomodulatory effects, and extracellular matrix remodeling 
for spinal cord injury repair. 
iNSC: induced neural stem cell, MSC: mesenchymal stem cell.



and their ability to form functional synapses with host neurons.20) These cells also exhibit 
immunomodulatory properties and support endogenous tissue regeneration without 
inducing tumor formation, underscoring their value for therapeutic use.14)

HOST TISSUE RESPONSE

Host tissue response to transplanted iNSCs after SCI demonstrates complex and multifaceted 
processes. The primary responses occurring in the damaged spinal cord tissue include: 
in the initial phase, detrimental cellular processes occur at the injury site, such as axonal 
degeneration, neuronal cell loss, neuroinflammation, reactive gliosis, and scar formation.9) 
Transplanted iNSCs elicit specific responses in host tissue that facilitate recovery. They 
modulate glial scar formation by reducing the accumulation of scar matrix, which promotes 
long-distance axonal growth and neural connectivity.34)

Additionally, iNSCs regulate inflammatory responses in both the acute and chronic phases 
by altering the expression of inflammatory mediators like tumor necrosis factor, thereby 
influencing the activation, mobilization, and polarization of microglia and infiltrating 
immune cells.37) These cells also contribute to the reconstruction of neural circuits within the 
damaged spinal cord, restoring connectivity with supraspinal pathways.37)

Collectively, these host tissue responses lead to significant improvements in motor and 
sensory function.34) Notably, human neural stem cells (hNSCs) with reduced SOX9 gene 
expression demonstrate enhanced integration with host tissues and an increased tendency to 
differentiate into motor neurons, further supporting functional recovery.34)

ANIMAL MODELS AND TRANSPLANTATION TIMING

Animal studies investigating iNSC transplantation in SCI have demonstrated promising 
therapeutic outcomes across various injury phases. Significant functional improvements 
were observed in all treatment periods, with transplantation in the subacute phase (3–14 days 
post-injury) emerging as the optimal window for treatment.54) Based on systematic reviews 
and meta-analyses, higher doses (≥1×106 cells) yielded superior results, particularly when 
delivered through intra-lesional transplantation.55)

Histopathological analyses confirmed successful cell engraftment, with transplanted cells 
migrating to both rostral and caudal regions of the lesion site and showing preferential 
differentiation into oligodendrocytes, resulting in reduced astrogliosis, enhanced tissue 
preservation, and promoted remyelination of preserved tissue.1)

The timing of stem cell transplantation following SCI is a critical factor in treatment 
outcomes. Administering cells at an acute stage may be more effective in repairing damaged 
neural circuits before the glial scar barrier forms. However, the substantial number of 
chronic patients underscores the need to develop innovative strategies to enhance the 
effects of cell transplantation during the chronic phase. Additional preclinical studies are 
required to better determine the optimal timing for NSC transplantation. As is well known, 
SCI is a 2-phase process with complex cellular and molecular responses that evolve over 
time, making it challenging to pinpoint the best treatment window. Among the stages of 
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injury—acute (within 24 hours post-injury), subacute (3–14 days post-injury), and chronic 
(after 14 days post-injury)—the subacute period is considered the most effective window for 
performing transplantation surgery.6,56) Notably, experimental studies involving intrathecal 
transplantation of MSCs in adult rats have identified days 7–9 post-injury as the optimal 
timing for transplantation.8) Many researchers have conducted numerous studies on stem cell 
transplantation therapy for subacute SCI and have shown the efficacy of cell transplantation 
therapy.25,45) Clinical trials in human patients have also been initiated based on the results of 
preclinical studies.59)

While these results are encouraging, current limitations include relatively fewer studies on 
chronic phase treatment and the need for research in more severe injury models, with recent 
reviews emphasizing the importance of standardizing experimental protocols and improving the 
quality of animal studies to facilitate better clinical translation.3) The microenvironment of the 
chronically injured spinal cord is very different from that in the subacute phase, and the spinal 
cord is extremely difficult to regenerate owing to various factors that inhibit axon extension and 
cavity formation. In particular, scarring is a significant problem in cell transplantation therapy for 
chronic SCI because it prevents the engraftment of transplanted cells.56)

ROUTE OF ADMINISTRATION (INTRATHECAL, 
INTRALESIONAL, INTRAVENOUS INJECTION)
The administration route is a critical factor to consider in cell transplantation. In the context 
of SCI, three primary injection methods have been explored: intrathecal, intralesional (i.e., 
intraspinal) and intravenous. The intrathecal injection method delivers stem cells into 
the subarachnoid space, with several notable characteristics. This approach is minimally 
invasive, performed via lumbar puncture, and allows for wide distribution as cerebrospinal 
fluid circulation facilitates the spread of stem cells to a broad area, including the injury site.  
It also has a high potential for repeated administration and is relatively safe.

In contrast, intralesional transplantation involves directly implanting stem cells into the 
injured spinal cord area. Key features of this approach include precise targeting, as stem cells 
can be directly delivered to the damaged site, and high engraftment rates due to the direct 
implantation, which supports more remarkable cell survival. However, it requires surgical 
access, making it a more invasive procedure.

Intralesional transplantation demonstrates a higher cell engraftment rate when considering 
cell survival and distribution. Experimental studies have shown that an average of 25.6–26.7 
cells per high-power field survive with intralesional transplantation, compared to an average 
of only 20.6 cells for intrathecal injection.26) Regarding timing and frequency, studies 
indicate that a shorter time to treatment initiation post-injury and more frequent stem cell 
injections increase the likelihood of functional recovery.61) Both methods share therapeutic 
mechanisms, including neuron repair or replacement, neurotrophic factor secretion, and 
suppression of localized inflammatory responses,17) as previously discussed (TABLE 1).15,26,61)

In selecting a clinical treatment approach, factors such as the acute or chronic nature of 
the injury, the number of cells to be delivered (ranging from tens of thousands to millions), 
and the potential use of immune suppressants should be considered.15) Given these 
characteristics, intralesional transplantation is preferred when precise targeting and high 
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cell survival are required, whereas intrathecal injection is more suitable when repeated 
administration is necessary or when a less invasive approach is desired.

Meanwhile, there are studies reporting positive outcomes with intravenous administration 
as well. Nishimura et al.44) observed that animals receiving hNSCs via intravenous injection 
demonstrated behavioral improvements, electrophysiological recovery, reduced glial scar 
formation, and preservation of nerve fibers. These findings suggest that the cells can survive, 
proliferate, and migrate to the lesion site. Additionally, Osaka et al.48) also support intravenous 
delivery of cells as a minimally invasive approach with significant therapeutic potential.

Further research is needed to determine the optimal route of administration. Minimally 
invasive methods reduce surgical risks for patients, but they may compromise some 
therapeutic efficacy. It is essential to thoroughly investigate these factors in preclinical 
studies to find the best balance between safety and effectiveness.

ADVERSE EVENTS

The most common adverse events following cell therapy for SCI are primarily associated 
with neurological symptoms. These include transient back pain and meningism, reported 
in approximately 90% of cases, as well as spinal cord malacia, observed in 80% of patients. 
Peripheral neurological symptoms, such as neuropathic pain, increased muscle tone, 
spasticity, and rigidity, are also frequently reported, along with incision site pain, allodynia, 
and hyperalgesia.19)

Local complications at the injection site represent another significant category of adverse 
events. The most prevalent of these is cerebrospinal fluid leakage, followed by wound 
infections and delayed healing. Systemic reactions have also been documented, including 
fever (14.1%), headache (4.2%), transient muscle tone increase (1.6%), and dizziness 
(1.3%). Additionally, skin manifestations, such as facial flushing or rash, have been reported 
in some cases.21)

A key concern is the risk of tumorigenicity, particularly given the stem cell nature of iNSCs. 
While certain studies have reported no tumor formation,27,53) others have documented 
tumorigenic risks, particularly linked to pluripotent-derived NSCs.41,52) As research 
progresses, more evidence has emerged regarding the tumorigenic potential of iPSC-derived 
NSCs, which must be carefully managed to ensure high clinical standards in applying these 
therapies. The pathological mechanisms underlying this risk involve complex interactions 
between immune and neural cell responses, with dynamic changes occurring primarily at 
three days post-injury and a second wave of microglial activation around day 14.21)
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TABLE 1. Route of administration - intrathecal and intralesional
Intrathecal injection Intralesional transplantation

Invasiveness15) Minimally invasive through lumbar puncture Highly invasive requiring surgical exposure of injury site
Technical difficulty61) Relatively easy to perform via subarachnoid space Technically complex, requires precise surgical targeting
Cell distribution26) Widespread distribution through cerebrospinal fluid circulation Localized distribution directly at injury site
Cell survival rate26) Lower engraftment rate Higher engraftment rate
Repeat administration61) Easy to repeat multiple injections Limited by surgical risks and tissue scarring
Risk of complications15) Lower risk due to minimal invasion Higher risk due to surgical intervention



Tumorigenicity mainly presents in two forms: teratoma formation and true tumor 
development.5,23) However, the precise mechanisms driving each are not yet fully understood. 
Some studies suggest that factors used in the reprogramming process and any residual 
undifferentiated cells may lead to epigenetic changes that increase the tumorigenic potential 
of iPSC-derived NSCs.12,38) Teratoma formation is primarily linked to the “epigenetic memory” 
retained within the cells and the lack of sufficient purification in the cell samples intended 
for transplantation.12) Strategies to address these risks include increasing the number of cell 
passages to reduce “epigenetic memory,” developing more effective purification systems, 
reprogramming iPSCs to avoid teratoma-inducing pathways, and even transplanting cells at 
a more differentiated state to mitigate these risks. Notably, meta-analyses have indicated that 
the overall prevalence of adverse events in cell therapy is approximately 19%,11) with NSCs 
being among the cell types most associated with these effects.

CLINICAL TRIALS

A comprehensive review of stem cell-based therapies for SCI has provided significant insights 
into their therapeutic potential. Recent systematic analysis of 66 clinical studies, involving 
1,086 patients, revealed that cervical injuries were most prevalent (42.2%), with bone 
marrow-derived stem cells being the predominant cell type used (71.1% of studies).1)

Clinical outcomes from these trials have shown varying degrees of success. A systematic 
review of 53 studies (including 21 clinical trials) demonstrated consistent improvements in 
American Spinal Injury Association Impairment Scale (AIS) grades and enhanced sensory 
scores, though motor function improvements remained relatively modest.42) The majority of 
these studies were phase I/II trials, employing either direct surgical implantation or injection 
into the spinal cord or submeningeal spaces. Safety profiles from both general stem cell trials 
and iNSC-specific studies have been generally favorable, with most adverse events being mild 
and transient.18,42)

In recent years, iPSC-derived NSC therapy has emerged as a promising approach.56) Preclinical 
studies have demonstrated several key mechanisms of therapeutic efficacy, including 
enhanced survival rates and successful neuronal differentiation of transplanted human-
induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). The 
first-in-human clinical trial using hiPSC-NS/PCs for subacute SCI has been initiated, marking 
a significant milestone in the field.59) However, clinical trials investigating NSC treatment 
for patients with SCI have been limited in number.31) It is encouraging, however, that several 
studies have reported both procedural safety and some degree of functional recovery following 
NSC transplantation in SCI patients.16,32,57) Nevertheless, due to the small sample sizes and the 
fact that most trials included only patients in the subacute (1 week to 6 months post-injury) 
and chronic (over 6 months post-injury) phases, determining the therapeutic efficacy of NSCs, 
particularly for acute phase SCI, remains challenging (TABLE 2).10,16,31-33,39,57)

FUTURE PERSPECTIVE

Current challenges in the field include the need for standardized protocols, optimization 
of delivery methods, and the establishment of larger controlled trials. The timing of 
intervention appears crucial, with different efficacy levels observed between subacute and 
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chronic phases. Recent innovations have focused on combination approaches, particularly 
the integration of hiPSC-NS/PC transplantation with rehabilitative training, which has shown 
enhanced therapeutic outcomes compared to single-treatment approaches.

The field continues to evolve with particular emphasis on developing comprehensive 
treatment strategies that combine cellular therapy with rehabilitation protocols and 
bioengineering approaches. Future directions point toward the need for more rigorous trial 
designs and more extended follow-up periods to assess long-term safety and efficacy better.

CONCLUSION

In summary, the application of iNSCs offers promising advances in the treatment of SCI, 
demonstrating potential in neural regeneration, host tissue integration, and functional 
recovery. However, challenges remain, including the need for standardized protocols, 
optimization of cell administration routes, and larger clinical trials to validate findings. 
Recent advancements in combination therapies, such as the integration of rehabilitative 
training and biomaterials, show potential to enhance iNSC efficacy. Continued research is 
necessary to refine these strategies, address long-term safety concerns, and bring effective 
iNSC-based therapies closer to clinical reality for SCI patients.
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TABLE 2. Summary of clinical studies using iNSCs for human SCI treatment in the last decade
Study Year Key findings SCI stage targeted Administration route Primary outcome
Shin et al.57) 2015 • 5/19 patients showed motor and sensory 

improvements. Transplanted cells were 
well tolerated without serious adverse 
events. Preliminary data showed limited 
but measurable neurological recovery.

Cervical SCI (AIS A and B); 
Treatment initiated 16–213 
days post-injury

Direct intralesional 
transplantation

Safe and feasible with 
modest neurological 
recovery.1.0 mL, 1.0×105 cells per µL 

center, 5 mm rostral & caudal

Levi et al.32) 2019 • HuCNS-SC transplantation demonstrated 
safety across multiple centers. Trends in 
motor score improvements were noted, 
although not statistically significant.

Chronic cervical SCI (C5–C7, 
AIS A and B); Treatment 
initiated 4–24 months post-
injury months

Perilesional intramedullary 
injections

Safe and tolerable with 
early indications of 
efficacy.Dose: from 15,000,000 to 

40,000,000 cells
Curtis et 
al.10)

2018 • 2/4 patients demonstrated motor score 
improvements, achieving 2 levels of 
recovery. No major adverse events were 
reported over 1 year.

Chronic thoracic SCI (T2–T12, 
AIS A); Treatment initiated >1 
year and <2 years post-injury

Six intraspinal injections 
(2×105 cells/injection)

Safe and effective in 
demonstrating early 
functional recovery.The injections were placed 

bilaterally into the remaining 
tissue lateral to the injury site 
and within the medial white 
matter-appearing tracts of 
approximately one segment 
below the injury site

Levi et al.33) 2018 • No evidence of tumor formation or 
adverse events directly related to cells. 
Mild functional improvements were seen 
in some participants over 12 months.

16 to 104 weeks post injury Manual (free-hand) 
intramedullary transplantation

Surgical safety and 
tolerability with modest 
benefits.Dose: >20, <40 million cells

Ghobrial et 
al.16)

2017 • All patients tolerated the procedure. 
Modest improvements in sensory and 
motor functions were observed. No new 
lesions or syrinx formation noted.

At least 4 months after injury Rostral and caudal to the 
lesion site with a 2-hand 
technique, intramedullary 
injections

Safe with mild functional 
recovery.

Dose: 40 million cells
Martin et 
al.39)

2024 • Safe and feasible for chronic SCI 
treatment.

Chronic thoracic SCI (T2–T12, 
AIS A); Treatment initiated >1 
& <2 years post-injury

Intramedullary, a dose of 
2×105 cells per injection site 
bilaterally into the remaining 
tissue lateral to the injury site

Safety and feasibility 
assessment of NSI-566 
transplantation.• 2/4 patients showed durable neurological 

improvements, including increased motor 
and sensory scores.

• Tolerability of the procedure was 
confirmed with no major adverse events.

iNSC: induced neural stem cell, SCI: spinal cord injury, AIS: American Spinal Injury Association Impairment Scale.
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