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Abstract

A main application for mRNA sequencing (mMRNAseq) is determining lists of differentially-
expressed genes (DEGs) between two or more conditions. Several software packages
exist to produce DEGs from mRNAseq data, but they typically yield different DEGs, some-
times markedly so. The underlying probability model used to describe mRNAseq data is
central to deriving DEGs, and not surprisingly most softwares use different models and
assumptions to analyze mRNAseq data. Here, we propose a mechanistic justification to
model mMRNAseq as a binomial process, with data from technical replicates given by a bino-
mial distribution, and data from biological replicates well-described by a beta-binomial distri-
bution. We demonstrate good agreement of this model with two large datasets. We show
that an emergent feature of the beta-binomial distribution, given parameter regimes typical
for mMRNAseq experiments, is the well-known quadratic polynomial scaling of variance with
the mean. The so-called dispersion parameter controls this scaling, and our analysis sug-
gests that the dispersion parameter is a continually decreasing function of the mean, as
opposed to current approaches that impose an asymptotic value to the dispersion parame-
ter at moderate mean read counts. We show how this leads to current approaches overesti-
mating variance for moderately to highly expressed genes, which inflates false negative
rates. Describing mRNAseq data with a beta-binomial distribution thus may be preferred
since its parameters are relatable to the mechanistic underpinnings of the technique and
may improve the consistency of DEG analysis across softwares, particularly for moderately
to highly expressed genes.

Introduction

Since the advent of the microarray around the turn of the 20™ century, whole transcriptome
profiling has been of great importance to systems biology [1-8]. The ability to observe how
every transcript in a cell population responds to, for example, treatment with a drug or a
change in the expression of a gene-of-interest, gives insight into the wiring and function of bio-
logical systems. A common method for deriving biological knowledge from such perturbation
experiments is to identify lists of differentially expressed transcripts or genes (DEGs) between
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two (or more) conditions. By analyzing the genes which show up on such lists, one can identify
larger functional units such as biological processes, pathways, networks, and organelles that are
involved in the response, giving clear hypotheses for further targeted experiments [9-13]. The
centralized collection of most transcriptome experiments in databases such as the gene expres-
sion omnibus (GEO) and the connectivity map (CMAP) has given further insight by enabling
the use of big data methods to identify general trends and connections that do not emerge
from a single experiment (or even a handful) [14-16].

While the microarray was the transcriptomic workhorse in the 2000s, the advent of mas-
sively parallel sequencing has given rise to deep mRNA sequencing (mnRNAseq) [17,18], an
alternative way to measure the transcriptome. Like most new technologies, mRNAseq was orig-
inally much more expensive than microarrays; however, it has now become quite competitive,
and in many ways a superior technical method for transcriptome profiling [19-22]. The basic
premise is to isolate mRNA from a sample, PCR amplify it, and then subject it to tens-of-mil-
lions of “short” (~50-100 bp typically) sequencing reads. By aligning the resulting sequence
reads with the known genome, and then counting the number of reads that align to a particular
gene or transcript, one obtains a measurement of expression. One caveat of this traditional
form of quantification is the inherent PCR bias that can distort the original number of tran-
scripts in the sample. A recent method based on incorporating a short unique molecular identi-
fier (UMI) sequence into every transcript molecule provides a new method of quantification
that reduces PCR bias and thus improves linearity and precision [23-25].

Several open source software suites with associated probability models have been developed
to analyze mRNAseq data and identify DEGs. The first was Cufflinks / Cuffdiff [17], which has
an elegant underlying mathematical model to estimate the “fragments per kilobase of transcript
length per million mapped reads” (FPKM) metric of gene expression, and a t-test based on
approximate normality of the resulting FPKM estimate. Cuffdiff2 [26] more accurately esti-
mates false discovery rates for DEGs. Using this FPKM metric, Cuftdiff2 is specialized to a
transcript-resolution of gene expression, and comparison across different transcripts, but not
to count based data, which we focus on here. Other widely used software suites are EdgeR [27],
DESeq2 [28] and BaySeq [29], which, as opposed to the FPKM metric of Cufflinks/Cuffdiff,
retains the count-based nature of mRNAseq data and describes it with a negative binomial
model (also called Poisson-gamma). This probability model describes mRNAseq count data
well, and was predominantly used because it is the common choice to describe count-based
data that are “overdispersed” (i.e. variance that is greater than the mean) relative to the Poisson
distribution (variance = mean); it is well established that mRNAseq data are overdispersed
[30,31]. A recent meta-analysis found that each of these softwares can produce quite different
DEGs from the same dataset, a result that is common and not entirely surprising given the dif-
ferent modeling and assumptions used. Further, it was shown that the intersection of DEGs
from these softwares are preferred to reduce false positives, which indicates that each might
benefit from improvements to the underlying probabilistic treatment of the mRNAseq data
(32].

To that end, other probabilistic distributions have been examined. The beta-binomial distri-
bution has also been explored, and it also reflects the overdispersion of the data [33,34]. DEG
analysis based upon a beta-binomial distribution is now available as an option for BaySeq solely
for paired data (distinct from traditional DEG analyses) [35] and in the software BBSeq [36];
however, a derivation of the mean-variance relationship inherent in the beta-binomial distribu-
tion has yet to be undertaken. Furthermore, each software, as with negative-binomial or Pois-
son methods, has its own specific interpretation of the probabilistic models utilized resulting in
often very different selections of DEGs following analysis. This suggests the necessity of a theo-
retical derivation of an appropriate probabilistic distribution: a ground-up, first-principles
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approach to modeling the mean-variance relationship and overdispersion which, to date, has
not been deeply investigated.

Here, we propose that the basic mRNAseq experimental process is mechanistically a bino-
mial experiment: a series of N trials (reads) with an essentially constant probability of success
for a particular transcript/gene in each trial. This gives rise to a binomial distribution for counts
from technical mRNAseq replicates, with parameters that have physical interpretation. We
highlight how this binomial model agrees well with literature data for technical replicates.

For biological replicates, we propose that a beta-binomial distribution, where the probability of
success follows a beta distribution, can describe the data, and demonstrate its fit to two large lit-
erature datasets. Given ranges of beta-binomial parameter values typical for mRNAseq experi-
ments, a quadratic polynomial scaling between variance and mean emerges, as is consistently
experimentally observed. The dispersion parameter is the quadratic coefficient that controls
this scaling, and our analysis suggests that the dispersion parameter is a continually decreasing
function of the mean. Surprisingly, this is different from current approaches that impose an
asymptotic value on the dispersion parameter at moderate and high mean read counts. We
show how this leads to overestimating variance for moderately to highly expressed genes,
which inflates false negative rates in downstream DEG analysis. Because the beta-binomial
model emerges from the mechanism of the mRNAseq technique, it may be preferred, and its
use might not only help improve consistency in deriving DEGs, but also variance estimation
for moderately to highly expressed genes.

Methods
Solving for the Dispersion Parameter

For each gene i, we assume o} = i, + ¢, and solve for ¢; as follows. First, we expand the
right hand side of the equation:

Ne L N N+ e
%+ ﬁi l (ai + ﬁi)2 (O‘i + ﬁi)2

My + q)ilu;'zj =

_ Negd + Nop + g N
(o +B,)°

Including the left hand side provides the following equation:

Nj“iﬂi(Nj + o+ ﬁz) - I\]jai(ai + ﬁi + ‘PiNj“i)
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After simplifying:
ﬁt(N] +o; + ﬁ,)
g Yy + B+ eNa,
(it rp) o rPreds

PLOS ONE | DOI:10.1371/journal.pone.0157828 June 21,2016 3/18



@’PLOS ‘ ONE

Modeling mRNAseq Data

Writing in terms of ¢;:
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After some cancellation, this can be broken into two terms:
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Since N;is very large, NJTT ~1 andNLj ~ 0. Therefore, we find that:

N B;
P+ o+ B)

Bi ~ b 1

o (140 +p;) ~ Bioi o

This corroborates well with our original estimate. For 8; >>>a;, ¢, =

Downloading mRNAseq Data

UMI count data were obtained from the DToXS LINCS website (http://research.mssm.edu/
pst/DToxS) on July 1%, 2015, from DToXS LINCS ID Raw-Data-R2015-06-30. Raw (Level 1)
transcriptomic data released June 30™. 2015 were downloaded, and data from batch identifier
SR-1 were used in this study. There were 15 control samples (with sample name prefix CTRL),
but the sample CTRL.1.C1 was excluded because it showed poor correlation with the remain-
ing 14 samples. There were six samples treated with the kinase-inhibitor Sorafenib, (SOR), but
samples 1 and 3 were excluded as they had poor correlation compared to the remaining four.
Gierlinski yeast data were acquired from the European Nucleotide Archive (ENA) (http://
www.ebi.ac.uk/ena/data/view/ERP004763) consisting of 672 fastq files: 2 cell lines each with 48
biological replicates each with 7 technical replicates. Raw reads from the fastq files were then
aligned using Bowtie [37] against the Saccharomyces cerevisiae genome removing reads with
multiple alignments to the genome. Aligned reads were then sorted using Samtools [38] and
converted into files of gene read counts using Bedtools [39]. We followed the author’s method
for removing “bad replicates” that did not satisfy a quality score based upon median correlation
coefficient, outlier fraction and median reduced x> of pileup depth. We corroborated their cal-
culations and removed six WT biological replicates (21, 22, 25, 28, 34, 36) and four Asnf2 bio-
logical replicates (6, 13, 25, 35) just as they had done. All raw data are given in S1-S4 Tables.
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Estimating Beta-Binomial Distribution Parameters

First, the integer count data in S1-S4 Tables were divided by their respective sequencing depth,
which was calculated by summing the counts along a single column (sample). The resulting
probability of success estimates for each gene were fit to a beta distribution using method of
moments estimates for oo and B as follows:

(1050 )

p=a-n (T2 )

N N

where X = %Z X, is the sample mean and v = 5 Z (X, — %)* is the sample variance. These
i =1

o and § parameter estimates for each gene are also given in S1-S4 Tables.

Data Normalization
We normalize the data by scaling each sample to have an equivalent sequencing depth as the
sample with the maximum sequencing depth. That is, we take N = max(N;) and for each sam-

ple j, the normalized read counts are:

d

ij ij N.

Estimation of Dispersion

To obtain a smooth trend of dispersion that follows the data as implied by our beta-binomial
formulation, we fit an empirical quadratic polynomial to the plot of log(mean) vs log(disper-
sion) using the MATLAB fit tool (y = p1*x*+p2*x+p3). The parameter values for each data set,
in order of (p1,p2,p3) are Gierlinski WT (0.06, -0.90, 0.236), Gierlinski Asnf2 (0.04, -0.93,
0.26), LINCS Mapped Reads (0.007, -0.83, 0.57), and LINCS UMI (0.020, -0.96, 0.26).

To compare our approach of modeling dispersion with previous methods, we downloaded
the R packages DESeq2, Version 1.12.2 [28], and EdgeR, Version 3.14.0 [27]. For DESeq2, we
uploaded each data set and used the estimateDispersions command which generates three sepa-
rates formulations of dispersion for each gene: dispGeneEst reflects the raw dispersion estimate
from the data, dispFit represents a curve fit to the dispGeneEst data following the distribution
expected by DESeq2 and lastly dispersion which is a modified version of dispGeneEst with outli-
ers corrected to reflect the trend of dispFit values. For the purposes of our work, we use the dis-
persion value for each gene in each data set as that is the recommended setting by DESeq2. For
EdgeR, we use the estimateDisp command which also generates three dispersion estimates for
each gene: common.dispersion is a single value over all genes as a best estimate of global disper-
sion, trended.dispersion represents a curve fit to genewise dispersion similar to DESeq2’s dis-
pFit, and tagwise.dispersion is a gene-specific estimate of dispersion that is modified to reflect
the value in trended.dispersion again similar to DESeq2’s dispersion value. For our work, we
chose the tagwise.dispersion value for each gene.

Estimation of p-values

For each method of acquiring a dispersion estimate, we calculate an estimated variance depen-
dent upon the mean by solving the formula o}, = y; + ¢, given the normalized mean read

PLOS ONE | DOI:10.1371/journal.pone.0157828 June 21,2016 5/18



@’PLOS ‘ ONE

Modeling mRNAseq Data

Step 1: RNA samples
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ki count of transcript i from library |
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Fig 1. Schematic of the General mMRNAseq Process. There are three main steps depicted here, from top to bottom. Firstis
obtaining RNA samples, which contain full length transcripts. Different samples are denoted by different color circles, and
transcripts by straight lines within those circles. We highlight one transcript blue to enable following it through the process. Next,
library preparation converts the transcripts in each sample to a library of fragments that can be sequenced. Finally, the libraries
are sequenced by choosing fragments from the library, and the number of reads that align to particular transcripts are counted for
the readout of expression.

doi:10.1371/journal.pone.0157828.9001

counts y;; and dispersion estimate @; for each gene i in each dataset. Then we conduct a Welch’s
t test for the hypotheses that the UMI CTRL and SOR samples have the same mean for a given
gene and that the Gierlinski WT and Asnf2 mutant samples have the same mean for a given
gene. To do this, we modified the Matlab method ttest2 to accept as input parameters an esti-
mate for the mean and variance for each sample as opposed to the normalized read counts
themselves generating a p value for each gene in each dataset. This is to show how different
estimates of dispersion, and thus different estimates of variance, affect the resulting p values for
each gene tested in each dataset.

Results and Discussion
MRNA Sequencing as a Binomial Experiment

An mRNA sequencing (mRNAseq) experiment consists of three main steps (Fig 1). First is isolating
mRNA from biological samples (sample index j € {1,2,.. .,m}). Second, the mRNA samples are con-
verted into a library that is compatible with the sequencing platform. This often includes fragmenting
the original mRNA molecules, along with one or more PCR steps, into #; total fragments (sometimes
isolation of mRNA from total RNA is part of the library preparation). Let the number of molecules
from a particular transcript 7 in the library j be n; = y;t;, where i is the transcript index, t;; is the origi-

nal number of transcript i molecules in library j, y; > 0 is the amplification factor, and n; = Z ng.

The library is then subjected to the sequencing process, where N; of the #; library molecules are ran-
domly chosen for sequencing. The number of trials N; is often called the sequencing depth.

The probability of choosing a molecule for sequencing from library j that maps to transcript
iis (except in relatively rare cases of capture bias)

b= (1
ij n;

Denote p;; as the probability of success for transcript i in library j. If the total number of
molecules in the library far exceeds the total number of reads (n;>>N)), then “taking” a frag-
ment from the library for sequencing has negligible effect on this probability, making it essen-
tially constant throughout the selection process. For the common Illumina platform, n;~10°
library molecules are loaded onto the instrument (e.g. ~75 pL of a 20 pM library), and a typical
sequencing depth for an mRNAseq experiment is Nj~107 reads, giving n,>>N; and essentially
constant p;; for all but the few most lowly expressed transcripts.

An mRNAseq experiment with library j can thus be cast as a series of N; trials, with each
trial selecting one library fragment for sequencing. We define a trial to be a success for tran-
script i if a fragment subsequently aligned to it is chosen for sequencing; the probability of suc-
cess is p;;. This scenario, as described, is analogous to a binomial experiment [40]. Therefore,
the probability of selecting k;; fragments from library j that map to transcript i should follow a
binomial distribution,

k; ~ Binomial(N;, p;). @
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Fig 2. Estimated a and B values Plotted Against the Mean for each Gene. Each panel is a log-scale scatter
plot of mean vs a and 3 over all genes for one of the following datasets tested: LINCS UMI (A) and Gierlinski WT
(B). The results for the two remaining datasets are shown in S1 Fig. The x’s reflect a values and the circles reflect 8
values with color dependent upon the density of points in the scatter plot.

doi:10.1371/journal.pone.0157828.9002
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The random variable k;; is often referred to as the number of uniquely mapped reads to tran-
script i, and has mean y = N; - p;; and variance o= N; - pij - (1-p;). In general, p;; << 1 due to
the large number of different expressed transcripts in a cell (typically ~10,000 [41,42] and see
non-zero entries in S1 and S2 Tables). This gives 4 = o” for most transcripts, as one expects
from a Poisson distribution. This is in excellent agreement with data from technical replicates
sequenced from the same library [22], giving direct experimental support for the notion that
the mRNAseq process can be cast as a binomial experiment.

Describing Inter-Library Variability with a Beta-Binomial Distribution

When mRNAseq experiments are performed across biological replicates which have different
libraries, the probability of success for a transcript varies. Dividing the number of mapped
reads for a transcript by the sequencing depth N; gives an estimate of the true (inter-library)
probability of success, p;. Because p; is continuous on the unit interval (0 < p; < 1), a potentially
suitable model is a beta random variable [40], with density

D

_p-p,
) =""50p)

where B denotes a Beta function of the first kind and ¢; and j; are parameters to be estimated

(3)

from biological replicates. The expected value of p; is

%; E[n,]]

O‘i"’ﬂi_ n;

E[Pz] = (4)

We have also used Eq 1 and the fact that the total number of library molecules is essentially
constant across libraries, due to concentration normalization during loading.

When the probability of success for a binomial random variable follows a beta distribution,
the resulting random variable is said to follow a beta-binomial distribution. The mean and vari-
ance of a beta-binomial distribution are, respectively [43]

Nz,
5+ f)

(5)

Ky =

5 ]\]jaiﬁi(l\]j +o+ ﬂ')
0, = 3 (©)
b (o B) (Lo )

Table 1. CV2 and LS fits for the dispersion parameter ¢ for each dataset under raw and normalized conditions. R? values are also included for the

quality of the corresponding fit to the raw data.

Dataset Processing

LINCS MR Raw
Normalized

LINCS UMI Raw
Normalized

Gier WT Raw
Normalized

Gier SNF2 Raw
Normalized

doi:10.1371/journal.pone.0157828.1001

CV2 ¢ Fit CV2R? LS ¢ Fit LS R?
.0700 9218 .0898 .9687
.0101 7084 0118 7229
.0785 .9703 .0867 .9791
.0099 7205 .0098 7205
0815 .9909 .0799 9913
.0271 .8083 0173 .8974
.0684 9794 .0606 .9961
.0159 7982 0118 .9078
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Fig 3. Mean-Variance Relationship for Raw and Normalized mRNAseq Data. Each column of three panels reflects one of the following
datasets tested: LINCS UMI (A-B) and Gierlinski WT (D-F). The two remaining datasets are shown in S2 Fig. For each column of three panels, the
first panel (A,D) shows the CV?2 fit (solid blue line) and Least Squares fit (dashed green line) to the raw data points plotting mean vs variance (black
x's). The second panel (B,E) shows the same fits for the normalized data. The third panel (C,F) shows the respective R? values for the CV2 and
Least Squares (LS) fits for the raw and normalized data.

doi:10.1371/journal.pone.0157828.9003

As described above, predominantly, p; << 1. Given Eq 4, this implies that §; >> ¢; for the
majority of transcripts. Moreover, since the number of molecules in the library ; is much
greater than 1, it is likely that 8; >> 1. Given these considerations, the mean and variance

reduce to
Na,
Hy ™~ (7)
, No, N, 1,
e (5)

This reveals a characteristic scaling prediction between the mean and the variance via a “dis-
persion parameter” 1/e;. Such scaling has indeed been well-described for mRNAseq experi-
ments [27,28,30,31]. The full functional form for the dispersion parameter given a beta-
binomial distribution is given in the Methods section.

Evaluating the Beta-Binomial Model with Data from Multiple Biological
Replicates

Two large mRNAseq datasets were utilized to evaluate the beta-binomial model proposed
above. The first is available via the Library of Integrated Network-Based Cellular Signatures
(LINCS) (see Methods—DToXS LINCS ID Raw-Data-R2015-06-30). The dataset consisted of
14 biological replicate samples (RNA isolated from independent cell batches) of PromoCell
cardiomyocyte-like cells treated under control (DMSO/vehicle) conditions (S1 and S2 Tables).
The sequencing libraries were prepared using unique molecular identifiers (UMI) [23-25],
which allows removal of PCR biases (by experimentally estimating the v;; factor—see Fig 1) via
quantification by UMI counts, on the level of genes. We refer to this metric as “Unique UMI
Counts”. It is also possible to retain quantification by the traditional means of counting the
number of reads that uniquely align to a gene. We refer to this metric as “Unique Mapped
Read Counts”. The beta distribution parameters for each gene were estimated as described in
Methods from the 14 biological replicates.

A second mRNAseq dataset developed by Gierlinski et al is available on the ENA archive
(see Methods - project ID PRJEB5348), consisting of 48 biological replicate samples in two S.
cerevisiae lines: WT and snf2 knock-out mutant [44]. The replicates underwent standard Illu-
mina multiplexed TruSeq library preparation. Each biological replicate consists of seven tech-
nical replicates producing 336 datasets in each cell line resulting in “Unique Mapped Read
Counts” (S3 and S4 Tables). As with the LINCS data, the beta distribution parameters for each
gene were then estimated for each cell line as described in the Methods.

We first sought to understand the space of estimated o and § parameters for the datasets
studied. Given the relationship between the beta distribution parameters and expected value
for the probability of success in Eq 4, one would predict that §; should remain relatively con-
stant across genes, since most transcript types are a very small fraction of the total number of
transcripts in a cell. Furthermore, we would like to evaluate the assumption above that §; >>
;. Fig 2 shows log scale plots of o and B values plotted against the mean for two sets of count
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Fig 4. Comparing Beta-Binomial Dispersion with DESeq2 and EdgeR Dispersion Estimates. Each panel
reflects one of the following datasets tested: LINCS UMI (A) and Gierlinski WT (B). The remaining two datasets
are shown in S3 Fig. Each panel shows a density scatter plot of mean versus dispersion values for each gene in
each sample. The black line represents our fit showing the non-asymptotic relationship between mean and
variance (see Methods). The brown line shows the DESeq2 dispersion fit while the magenta line shows the
EdgeR dispersion fit (see Methods).

doi:10.1371/journal.pone.0157828.9004

data: the LINCS UMI Counts (Fig 2A) and the Gierlinski Yeast WT Mapped Read Counts (Fig
2B). Two further sets of count data are shown in S1 Fig: the LINCS Mapped Read Counts (S1A
Fig) and the Gierlinski Yeast Asnf2 Mapped Read Counts (S1B Fig). In each panel, o values are
represented by x’s and f values are represented by circles. First, we observe that f values are
indeed significantly larger than o values for all genes tested. Second, B is largely invariant across
the transcriptome, consistent with expectations, only slightly decreasing for genes at higher
counts (relative to changes in o values). With more typical mRNAseq datasets where one
might expect to have three or even fewer replicates, this result implies that a global fit of B
across genes may be quite appropriate, similar to “information sharing” approaches of current
softwares [27,28]. This might allow improved estimation of the dispersion parameter for each
gene, particularly for those with low abundance, which is critical for estimation of variance and
downstream differential expression testing [27,28,30,31]. Lastly, it is clear that the mean is
largely determined by o, implying that dispersion is strongly linked to the mean.

We next evaluated whether the beta-binomial model captured the mean-variance structure
of the mRNAseq data, which is critical for determining differential expression. Here, we focus
on a global gene-independent dispersion parameter, and explore gene-specific dispersion
parameters subsequently. We calculated the mean and variance for each gene in each of the
datasets studied and compared this to the Eq 8 prediction given a beta-binomial model and
one of two global estimates for the dispersion parameter. The first estimate for dispersion is
based on previous approaches: CV* [27]. The second estimate utilizes least squares (LS) regres-
sion. We made this comparison for each dataset both before and after a simple scaling normali-
zation procedure (see Methods) to account for differences in sequencing depth between
samples. Table 1, Fig 3 and S2 Fig show the dispersion estimates based upon the two proce-
dures and their respective R” values. Genome-wide estimated dispersion values are very close
for the LS and CV? fits. However, R values are only high when fitting to the raw and not read-
depth normalized data. This observation, along with Eq 8, suggests that the dispersion parame-
ter strongly depends on the mean.

Relationship Between Dispersion and Mean

Previous work allows for gene-specific estimation of dispersion [27,28], which imposes a rela-
tionship where the gene-specific dispersion parameter asymptotes to a lower bound as mean
increases. This relationship derives from the widely accepted quadratic function between vari-
ance and mean. This fixed lower bound of dispersion is sometimes called the biological squared
coefficient of variation [27], and typically reaches this lower limit at moderate read counts.

The beta-binomial model makes a different prediction about the dependence of dispersion
with the mean. Namely, because increases in mean are predominantly driven by increases in o
(B is mostly constant across genes), and the dispersion parameter is essentially inversely pro-
portional to o (Eq 8), then we expected the dispersion parameter to be smaller than that
imposed by the currently used formalisms in DESeq2 and EdgeR. We compared the beta-bino-
mial dispersion trends with those calculated by DESeq2 and EdgeR (Fig 4 and S3 Fig) for both
datasets analyzed above, along with direct estimates of dispersion based on the data themselves.
The results indeed displayed evidence that current estimation methods were overestimating
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Fig 5. Differential p-values for Negative Binomial vs. Beta-Binomial Dispersion Methods. Each panel reflects a comparison of p-values for
beta binomial-based dispersion or negative binomial-based dispersion generated from the UMI count data, CTRL vs SOR (A-C), or the Gierlinski
data, WT vs Asnf2 (D-F). Each panel is a scatter plot of the base-10 logarithm of the maximum normalized mean (maximum of the CTRL mean or
SOR mean for UMI or the WT mean or Asnf2 mean for Gierlinski) against the difference in base-10 logarithm of the corresponding p-values being
compared for each gene. Color indicates density of points. The top row compares the beta binomial formulation versus DESeqg2 (A,D). The
second row compares beta binomial versus EdgeR (B,E). The third row compares EdgeR and DESeq2 (C,F).

doi:10.1371/journal.pone.0157828.9005

dispersion at read counts starting at ~100 (5-10% of the genes). We conclude that a beta-bino-
mial representation of mRNAseq data might allow for more precise estimation of gene-specific
dispersion, and further that current methods might overestimate dispersion and therefore vari-
ance for moderately to highly expressed genes. This may have implications for downstream
DEG analysis, since a larger variance would lead to a higher false negative rate.

Statistical Significance of Moderately to Highly Expressed Genes

To demonstrate explicitly how overestimating dispersion could lead to identification of new
DEGs, we explored a comparison of treated vs. control data for the UMI data set (DMSO vs.
sorafenib) and the Gierlinski dataset (WT vs. Asnf2). We expected that for genes with moderate
to high mean read counts, we would have on average higher statistical significance than current
negative binomial based methods. As representative of negative binomial methods we used
DESeq2 and EdgeR. Fig 5 shows precisely this prediction; as mean read counts increase, the p-
values calculated for dispersion estimates of a beta-binomial model are much lower than that
from typical negative binomial models. This is evidenced by a preponderance of data below
zero on the difference of p-value scatter plots above 100 counts for UMI, and 200 for Gierlinski
(Fig 5). This leads to several new genes being called as DEGs, which gives rise to potential new
biology being uncovered. Specifically, 597 genes from the Gierlinski dataset and 1023 genes
from the LINCS dataset (S5 and S6 Tables). Thus, not only does the beta binomial distribution
better capture the statistical dispersion properties of mRNAseq data, but it also has biologically
meaningful implications.

Conclusions

Use of mRNAseq to measure transcriptomes is expected to increase, and derivation of DEGs is
essential for extracting knowledge from such data. There is no uniform agreement on what
probabilistic assumptions and models to use and as such various mRNAseq analysis softwares
produce different (sometimes markedly) DEGs. This paper proposes that the mRNAseq pro-
cess is inherently a binomial process, and a beta-binomial model is an appropriate choice for
describing mRNAseq data. We found that current methods may be overestimating dispersion
and therefore variance for moderately to highly genes, and that the beta-binomial description
can correct this to achieve better sensitivity for medium to highly expressed genes. Standardiz-
ing modeling approaches can help to harmonize the DEG outputs from different softwares and
thus help to increase knowledge extracted from these increasing amounts of data.

Supporting Information

S1 Fig. Estimated « and B values Plotted Against the Mean for each Gene. Continuation of
Fig 2 on the two remaining datasets: LINCS Mapped Reads (A) and and Gierlinski Asnf2 (B).
The x’s reflect o values and the circles reflect  values with color dependent upon the density of
points in the scatter plot.

(TTF)
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S2 Fig. Measuring Quality of Fit for the Beta-Binomial Model to Raw and Normalized
mRNAseq Data. Continuation of Fig 3 on the two remaining datasets: LINCS Mapped Reads
(A-C) and Gierlinski Asnf2 (D-F). For each column of three panels, the first panel (A,D) shows
the CV?* fit (solid blue line) and Least Squares fit (dashed green line) to the raw data points
plotting mean vs variance (black x’s). The second panel (B,E) shows the same fits for the nor-
malized data. The third panel (C,F) shows the respective R values for the CV* and Least
Squares (LS) fits for the raw and normalized data.

(TIF)

$3 Fig. Comparing Beta-Binomial dispersion derivation with DESeq2 and EdgeR disper-
sion estimates. Each panel reflects one of the following datasets tested: LINCS Mapped Reads
(A) and Gierlinski Asnf2 (B). The black line represents our fit showing the non-asymptotic
relationship between mean and variance. The brown line shows the DESeq2 dispersion fit
while the magenta line shows the EdgeR dispersion fit.

(TIF)

S1 Table. Raw Data and Beta Distribution Parameter Estimates for LINCS Mapped Read
Data.
(XLSX)

S2 Table. Raw Data and Beta Distribution Parameter Estimates for LINCS UMI Data.
(XLSX)

S$3 Table. Raw Data and Beta Distribution Parameter Estimates for Gierlinski WT Data.
(XLSX)

S$4 Table. Raw Data and Beta Distribution Parameter Estimates for Gierlinski Asnf2 Data.
(XLSX)

S5 Table. Base-10 Logarithm p-value Differences for Predicting Differential Gene Expres-
sion in Gierlinski Count Data.
(XLSX)

S6 Table. Base-10 Logarithm p-value Differences for Predicting Differential Gene Expres-
sion in LINCS UMI Count Data.
(XLSX)
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