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Abstract: Pneumocystis is a fungal pathogen that can cause pneumonia in immunosuppressed hosts
and subclinical infection in immunocompetent hosts. Mucosal-associated invariant T (MAIT) cells
are unconventional lymphocytes with a semi-invariant T-cell receptor that are activated by riboflavin
metabolites that are presented by the MHC-1b molecule MR1. Although Pneumocystis can presumably
synthesize riboflavin metabolites based on whole-genome studies, the role of MAIT cells in controlling
Pneumocystis infection is unknown. We used a co-housing mouse model of Pneumocystis infection,
combined with flow cytometry and qPCR, to characterize the response of MAIT cells to infection in
C57BL/6 mice, and, using MR1−/− mice, which lack MAIT cells, to examine their role in clearing
the infection. MAIT cells accumulated in the lungs of C57BL/6 mice during Pneumocystis infection
and remained at increased levels for many weeks after clearance of infection. In MR1−/− mice,
Pneumocystis infection was cleared with kinetics similar to C57BL/6 mice. Thus, MAIT cells are not
necessary for control of Pneumocystis infection, but the prolonged retention of these cells in the lungs
following clearance of infection may allow a more rapid future response to other pathogens.
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1. Introduction

Pneumocystis is a fungus that can cause inapparent pulmonary infection in immuno-
competent hosts but can cause potentially life-threatening pneumonia (PCP) in immuno-
compromised hosts [1]. Patients with HIV infection, as well as those with malignancies,
transplants, and autoimmune diseases, are at increased risk of developing PCP [2]. Cor-
ticosteroids are a well-defined risk factor for developing PCP in these latter settings, but
other drugs, including newer biologics, can also increase this risk.

An improved understanding of host immune responses to Pneumocystis should pro-
vide insights into the immune defects that allow PCP to develop and may help to better
identify patients at the highest risk of developing PCP. Mucosal-associated invariant T
(MAIT) cells are innate T cells that are highly conserved throughout mammalian evolu-
tion [3]. MAIT cells are alpha beta T cells that have semi-invariant T-cell receptors, which
recognize riboflavin metabolites from pathogens and commensals when presented by major
histocompatibility-related molecule 1 (MR1). Of note, MAIT cells develop early in life upon
exposure to riboflavin metabolites [4]. Other MR1 ligands include folic acid derivatives and
several drug and drug-like molecules [5]. MAIT cells have been associated with several
disease categories [6], including infectious diseases, such as HIV/AIDS [7,8], sepsis, and
tuberculosis, as well as asthma, type 2 diabetes, and obesity [9]. Following activation,
MAIT cells develop effector functions, including secretion of cytokines, primarily IL-17A in
mice [10], as well as cytotoxicity [11]. MAIT cells have also been shown to promote tissue
repair [4,12]. MAIT cells are increasingly being considered for use in immunotherapy for
various cancers and for use in vaccine development [13–16].
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The availability of high-quality Pneumocystis genomes allows us to explore not only
the biology of Pneumocystis but also its potential interactions with host immune defenses.
The set of genes needed for riboflavin biosynthesis have been identified in all Pneumocystis
species except possibly Pneumocystis canis (which appears to be missing a single gene) [17,18],
suggesting that MAIT cells could play a role in controlling Pneumocystis infection. To
explore this hypothesis, we utilized mouse models of Pneumocystis infection to examine the
kinetics of MAIT cells in the lung and whether their absence impacts infection.

2. Materials and Methods
2.1. Animals

C57BL/6 mice were obtained from the National Institutes of Health (NIH, Bethesda,
MD) or The Jackson Laboratory (Bar Harbor, ME). CD40 ligand knockouts (CD40L-KO,
strain B6, 129S-Tnfsf5tm1lmx/J), which are highly susceptible to Pneumocystis infection, were
obtained from The Jackson Laboratory. MR1−/− mice (on a C57BL/6 background), which
lack MAIT cells, were generated by Dr. Susan Gilfillan and colleagues [19] and were kindly
provided by Drs. Michael Constantinides and Yasmine Belkaid; their genotype was verified
by PCR [19]. Mice were subsequently housed in microisolator cages in ventilated racks and
bred at the NIH Clinical Center animal facilities. All animal studies were performed under
an NIH Clinical Center Animal Care and Use Committee-approved protocol.

2.2. P. murina Infection Model

Female mice, typically 6–8 weeks old, were infected by co-housing with female P.
murina infected seeder mice (CD40L-KO) and sacrificed at various time points [20,21].
This model more closely resembles natural infection via inhalation of organisms than an
intratracheal inoculation model and provides predictable kinetics, with a peak of infection
in immunocompetent mice at ~5 to 6 weeks and clearance by ~9 to 11 weeks post initial
exposure. Female mice were utilized because co-housed non-litter males are combative.
Unexposed litter mate controls (male and female) were housed in clean facilities; to min-
imize the number of animals used per experiment, 1–2 unexposed mice per time point
were sacrificed and processed simultaneously with exposed mice, and data from these
unexposed mice were combined as controls.

To compare infection and immune responses, different strains of mice were co-housed
to maintain identical exposure conditions. Blood, lungs, and, in 1 experiment, spleens,
from 2 to 4 animals per strain per time point, were collected. Serum was analyzed for anti-P.
murina antibodies by ELISA; a portion of the lungs was analyzed for P. murina infection by
qPCR; and lung and spleen were processed for flow cytometry.

2.3. Quantitation of P. murina by qPCR

To quantitate P. murina organism burden, DNA was extracted from a piece of lung
using the QIAamp DNA Mini Kit (Qiagen, Germantown, MD, USA), followed by qPCR
targeting the P. murina dihydrofolate reductase gene (dhfr), a single-copy gene, using
the ViiA 7 Real-Time PCR System (Applied Biosystems, Waltham, MA, USA) or CFX384
Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA), as previously
described [20,22]. Results are expressed as log10 dhfr copies/mg lung tissue.

2.4. ELISA

Anti-P. murina antibodies were measured by ELISA using a crude P. murina lysate
as previously described [23]. Briefly, Pneumocystis organisms were partially purified by
Ficoll-Hypaque density gradient centrifugation and disrupted with glass beads, followed
by sonication and centrifugation; the resulting supernatant was utilized to coat the wells.
Wells were incubated with mouse serum (1:100 dilution), followed by secondary antibody
(1:1000 dilution; Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) (Jackson ImmunoRe-
search Laboratories Inc., West Grove, PA, USA), and developed using OPD substrate
(Sigma-Aldrich, Inc., St. Louis, MO, USA).
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2.5. Flow Cytometry

For single-cell suspensions, lung and spleen tissues were digested with Lung Dissocia-
tion Kit, mouse and Spleen Dissociation Kit, mouse (Miltenyi Biotec, Bergisch Gladbach,
Germany), respectively, using the gentleMACS Octo Dissociator with Heaters (Miltenyi
Biotec), per manufacturer’s recommendations.

The following antibodies were used for immunophenotyping: CD19 PE-Vio®770
(clone 6D5), CD4 APC-Vio®770 (GK1.5), (Miltenyi Biotec) CD3e FITC (145-2C11), CD19
PE-CyTM7 (1D3), CD4 APC-H7 (GK1.5), CD8a BV510 (53-6.7), TCR β chain PerCP-CyTM5.5
(H57-597), CD11b PE-CyTM7 or APC (M1/70), IFNγ APC (XMG1.2), IL-4 APC (11B11), IL-5
APC (TRFK5) (BD Biosciences, Franklin Lakes, NJ, USA) and IL-17 APC (TC11-18H10) (Bi-
oLegend, San Diego, CA, USA). MR1 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-
OP-RU) PE-labeled tetramers and MR1 6-formyl pterin (6-FP; control) PE-labeled tetramers
were provided by the NIH Tetramer Facility [24].

For flow cytometry analysis, 1–2 million cells per tube were labeled with Live/Dead
Fixable Violet Dead Cell Stain (Molecular Probes, Eugene, OR, USA), Fc receptors were
blocked, and cells were subsequently labeled with antibodies plus tetramer for 1 h at room
temperature and then fixed with fixation buffer (BD Biosciences). Data were acquired on
a MACSQuant 10 analyzer or Fortessa LSR Flow Cytometer and analyzed using FlowJo
Software (version 10.8.1; BD Life Sciences, Ashland, OR, USA). MAIT cells were present al-
most exclusively in the CD3+TCRβ+CD4−CD8− (double negative (DN)) T-cell populations
and are thus reported as a percent of DN T cells. Figure 1 illustrates the gating strategy for
identifying MAIT cells.
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Figure 1. Flow cytometry gating strategy for the detection of MAIT cells in the lungs of C57BL/6 mice.
CD19+ and CD11b+ cells were excluded from live lymphocytes singlets. CD3+TCR−β+ T cells were
then gated on CD11b−CD19− cells followed by CD4 and CD8. To identify MAIT cells, CD8+, CD4+

and CD4−CD8− (DN) T cells were analyzed for binding of 5-OP-RU MR1 tetramer. 5-FP MR1 control
tetramer was used as a negative control to gate MAIT cells, which were primarily found in the DN
T-cell population.

2.6. Statistics

Cell populations at individual time points were compared to baseline values using
unpaired, two-sided Student’s t-test, using Prism (version 9, GraphPad Software, LLC, San
Diego, CA, USA) or Excel (version 16.59, Microsoft, Redmond, WA, USA).
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3. Results
3.1. MAIT Cells Accumulate in the Lungs of C57BL/6 Mice during P. murina Infection

Given the potential role of MAIT cells in immunity to bacterial and fungal pathogens,
we undertook studies to examine their role in mouse models of Pneumocystis infection. To
determine whether acute Pneumocystis infection induces accumulation of MAIT cells in the
lungs of immunocompetent mice, C57BL/6 mice were euthanized at 2, 3, 5, and 7 weeks
following the start of co-housing with an infected seeder, and lungs and spleens were har-
vested. Low numbers of P. murina organisms were detected by qPCR in the lungs at 2 weeks
(mean 310 copies/mg tissue), with a gradual increase over time (Figure 2A). As previously
reported [25], CD4+ T cells as a percent of CD3+ T cells increased in the lungs during infection,
while CD8+ T cells decreased (Figure 2B), and anti-Pneumocystis antibodies developed by week
7 (Figure 2C). MAIT cells (MR1 5OP-RU tetramer positive) were identified almost exclusively
in the DN T-cell population, which accounted for <10% of T cells (Figures 1 and 2B). MAIT
cells were present at low frequencies in the lungs of unexposed C57BL/6 mice (~1.7% of DN
T cells) but accumulated in the lungs of Pneumocystis-infected mice after 2 weeks (mean, 2.9%
of DN T cells), peaking at 7 weeks’ (9.7% DN T cells) exposure (Figure 2D). The trends were
similar when MAIT cells were characterized as a percent of total CD3+ T cells rather than DN
T cells. During this same time frame, MAIT cells accounted for <1.0% of DN T cells in the
spleen through week 5, with a small increase to 1.3% at week 7 (data not shown).
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Figure 2. MAIT cells accumulate in the lungs of P. murina infected C57BL/6 mice. (A) Quantitation
by qPCR of Pneumocystis organism load in the lungs of C57BL/6 mice exposed to P. murina infected
seeder mice for 2, 3, 5, and 7 weeks and in unexposed controls. Results are shown as log10 dhfr
copies/mg lung tissue. The dotted line represents the lower limit of detection of the assay. (B) Flow
cytometry characterization of T-cell populations in the lungs of C57BL/6 mice during P. murina
infection. CD4+ T cells, CD8+ T cells, and CD4−CD8− (DN) T cells are shown as percent of CD3+ T
cells. (C) ELISA results (presented as the optical density 450 nm) measuring anti-P. murina serum
antibodies using a crude antigen preparation of partially purified P. murina organisms. (D) Flow
cytometry results demonstrating MAIT cells detected in the lungs of C57BL/6 mice using 5-OP-RU
loaded MR1 tetramer, shown as percent of CD4−CD8− (DN) T cells. Data points represent the mean
value at each time point, error bars represent standard deviations and p-values < 0.05 when compared
to baseline values in panels (B,D) are indicated by *. For panel (B) the color of the asterisks indicates
which cell population it refers to. For all panels, for exposed mice n = 3 each for weeks 2, 3, and 5,
and n = 2 for week 7, and for unexposed controls, n = 4.
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3.2. MAIT Cells Are Not Required for Control of P. murina Infection

Since MAIT cells accumulated in the lung of C57BL/6 mice during Pneumocystis infec-
tion, we next sought to determine whether MAIT cells impact clearance of infection and
whether the absence of MAIT cells would affect anti-P. murina antibody responses. To ad-
dress this question, we co-housed MR1−/− mice, which lack MAIT cells, and C57BL/6 mice
with P. murina infected seeder mice. We found that after 5 weeks, MR1−/− mice had similar
P. murina organism loads as C57BL/6 mice and that both groups had cleared infection
by week 11, demonstrating that MAIT cells are not required to control or clear P. murina
infection (Figure 3A). Similar levels of anti-P. murina antibodies were present in serum by
week 5 in both MR1−/− and C57BL/6 mice (mean O.D. 0.29 for both) with increases by
week 11 (mean O.D. MR1 KO 1.14 and WT 0.90) (Figure 3B). MAIT cells were detected
by flow cytometry at week 5 in C57BL/6 mice but not in MR1−/− mice, verifying the
phenotype of the latter strain (Figure 3C).
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Figure 3. The absence of MAIT cells does not delay or prevent clearance of P. murina infection.
(A) Quantitation by qPCR of Pneumocystis organism load in the lungs of MR1−/− mice and
C57BL/6 mice following exposure to P. murina infected seeder mice for 5, 11, and 23 weeks. Unexposed
MR1−/− and C57BL/6 control mice were uninfected. Results are shown as log10 dhfr copies/mg lung
tissue. The dotted line represents the lower limit of detection of the assay. (B) ELISA results (presented
as optical density 450 nm) measuring anti-P. murina serum antibody levels. (C) Representative flow
cytometry plots analyzing binding of 5-OP-RU MR1 tetramers to identify MAIT cells from day 35 for
MR1−/− (left) and C57BL/6 (right) mice; gating was on DN T cells, as described in Figure 1. For (A,B),
data points represent the mean value at each time point, and error bars represent standard deviations.
MR1−/− and C57BL/6 mice showed no significant difference in organism burden, kinetics/clearance
of infection or development of anti-Pneumocystis antibodies. For both panels, for exposed mice n = 3
each for weeks 5 and 11, and n = 4 for week 23 for each strain, and for unexposed controls, n = 3 for
MR1−/− and n = 6 for C57BL/6 mice. All mice were genotyped to confirm they were the correct strain.
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3.3. MAIT Cells Remain Elevated in Lungs after Clearance of P. murina Infection

Given that MAIT cells may play a role in protecting against other respiratory pathogens,
including bacteria and viruses, such as influenza, we wanted to determine whether MAIT
cells remained in the lungs of mice for a prolonged period of time following clearance of
P. murina infection. Immunocompetent C57BL/6 mice typically clear infection by week
9–11 post-exposure. To determine whether MAIT cells were still increased in the lungs fol-
lowing clearance, we looked at MAIT cells in the lungs of C57BL/6 mice for up to 22 weeks
after initial exposure. C57BL/6 mice were infected by week 5 (mean 1986 copies/mg tissue)
and had cleared infection by week 9, as expected; changes in lymphocyte populations and
anti-P. murina antibodies were consistent with prior studies (Figure 4A–C) [25]. MAIT cells
were elevated above controls from weeks 9 to 22, though only statistically significantly
elevated at week 16 (5.7% of DN T cells, Figure 4D). When expressed as a percent of CD3+
T cells, MAIT cells were above control values at weeks 16 and 22, though neither was
statistically significant. Similarly, in mice that were exposed to a seeder for only 1 week
rather than continuously, MAIT cells accounted for 6.3% of DN T cells at week 20.
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and 22 weeks’ exposure to P. murina infected seeder mice, and in unexposed controls. Results are
shown as log10 dhfr copies/mg lung tissue. The dotted line represents the lower limit of detection of
the assay. (B) Flow cytometry results demonstrating T-cell populations in the lungs of C57BL/6 mice
infected with P. murina, including CD4+ T cells, CD8+ T cells, and CD4−CD8− (DN) T cells, shown
as a percent of CD3+ T cells. (C) ELISA results (presented as the optical density 450 nm) measuring
anti-P. murina serum antibodies. (D) Flow cytometry results demonstrating MAIT cells detected in
the lungs of C57BL/6 mice using 5-OP-RU loaded MR1 tetramer, shown as a percent of CD4−CD8−

(DN) T cells. Data points represent the mean value at each time point, error bars represent standard
deviations, and p-values < 0.05 when compared to baseline values in panels (B,D) are indicated by *.
For panel (B) the color of the asterisks indicates which cell population it refers to. For all panels, for
exposed mice n = 2 for week 5, and n = 3 each for weeks 9, 16, and 22, and for unexposed controls,
n = 4.
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4. Discussion

In the current study, we showed that MAIT cells, which recognize riboflavin metabo-
lites, accumulate in the lungs of immunocompetent C57BL/6 mice during Pneumocystis
infection, but the absence of MAIT cells does not delay or prevent clearance. Moreover,
MAIT cells are retained in the lungs following Pneumocystis infection well beyond the time
that organisms can be detected.

MAIT cells require riboflavin (vitamin B2) metabolites for development and are primar-
ily activated when these metabolites are presented to their semi-invariant T-cell receptor by
MR1, an MHC class 1b molecule; they can also be activated through TLRs and directly by
cytokines [3,4]. The influx of MAIT cells into the lungs of immunocompetent mice infected
with Pneumocystis provides support for the inference from genome sequencing studies
that most Pneumocystis species have the necessary enzymes to synthesize riboflavin [17,18],
although it remains possible that they are activated by an alternative mechanism, as
noted above.

While Pneumocystis infection leads to an accumulation of MAIT cells in the lung, the
similar kinetics of infection and antibody responses in C57BL/6 and MR1−/− mice clearly
demonstrate that MAIT cells are not needed for control of infection. However, it is possible
that MAIT cells play a minor role in altering the kinetics of infection; we did not conduct
more detailed kinetics, as our primary goal was to determine if Pneumocystis infection could
be cleared in the absence of MAIT cells.

In mice, activated MAIT cells primarily produce IL-17A, a cytokine important for
control of some fungal infections, but not Pneumocystis, as IL-17A knockout mice can
control the infection similarly to C57BL/6 mice [26]. We attempted to characterize the
cytokine profile of lung MAIT cells during infection. While IL-17 seemed to be the main
cytokine produced, the loss of a high proportion of MAIT cells following in vitro activation,
possibly due to MAIT cell death or downregulation of the T-cell receptor, did not allow
firm conclusions in this regard.

We also found that CD40 KO and CD40L KO mice, both of which are highly susceptible
to Pneumocystis infection, had measurable levels of MAIT cells similar to those found in
C57BL/6 mice (data not shown), suggesting that MAIT cells are insufficient to control
infection in the setting of a defective adaptive immune response.

MAIT cells were retained in the lungs for many weeks following clearance of Pneu-
mocystis, similar to what has been reported for other infections, such as Salmonella ty-
phimurium [10], where MAIT cells accumulated rapidly following intranasal inoculation
and remained elevated through 7 weeks. Since humans and other host species are exposed
to Pneumocystis at a very young age, this retention of MAIT cells following infection may
provide a benefit to the host, as MAIT cells would be on site to respond more rapidly to
other infections in which they may play a more important role.

It is important to note that MAIT cells are much more abundant in humans than
mice [27], and thus, the conclusions of this study may not be applicable to humans. In
transgenic models with larger numbers of MAIT cells, the importance of these cells in
controlling infection with, e.g., E. coli, has been easier to demonstrate [28]. However, MAIT
cells are much less numerous in infants under 2 years of age compared to older humans [27],
and nearly all humans appear to be infected with Pneumocystis prior to age 1 [29], suggesting
that at least for primary infection, the results may be applicable to humans.

We did not have lung weights available and thus could not express changes in MAIT
cells per mg lung tissue; it is possible that these changes represent relative and not absolute
increases in lung MAIT cells. However, we noted an increase in the percent of CD3+ T cells
in co-housed mice compared to controls (data not shown), and we have previously shown
by immunohistochemistry that there was an increase in lymphocytes, primarily CD4+ T
cells and B cells, as well as macrophages, in C57BL/6 mice infected with Pneumocystis [25].
When MAIT cells were expressed as a percent of CD3+ T cells, similar trends were seen as
when they were expressed as a percent of DN T cells.
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In summary, MAIT cells accumulate in the lungs in response to murine Pneumocystis
infection but do not appear to have a role in controlling or clearing infection. MAIT cells
are retained in the lungs for many weeks after infection, which may have a beneficial role
in controlling future pulmonary infections.
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