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Modeling eye movement 
in dynamic interactive tasks 
for maximizing situation awareness 
based on Markov decision process
Shuo Ma1, Jianbin Guo1, Shengkui Zeng1, Haiyang Che2,3* & Xing Pan1

For complex dynamic interactive tasks (such as aviating), operators need to continuously extract 
information from areas of interest (AOIs) through eye movement to maintain high level of situation 
awareness (SA), as failures of SA may cause task performance degradation, even system accident. 
Most of the current eye movement models focus on either static tasks (such as image viewing) 
or simple dynamic tasks (such as video watching), without considering SA. In this study, an eye 
movement model with the goal of maximizing SA is proposed based on Markov decision process 
(MDP), which is designed to describe the dynamic eye movement of experienced operators in dynamic 
interactive tasks. Two top-down factors, expectancy and value, are introduced into this model to 
represent the update probability and the importance of information in AOIs, respectively. In particular, 
the model regards sequence of eye fixations to different AOIs as sequential decisions to maximize the 
SA-related reward (value) in the context of uncertain information update (expectancy). Further, this 
model was validated with a flight simulation experiment. Results show that the predicted probabilities 
of fixation on and shift between AOIs are highly correlated ( R = 0.928 and R = 0.951 , respectively) 
with those of the experiment data.

Acquiring information from human system interfaces (HSIs) and the environment through eye movement 
is the fundamental for operators to maintain correct awareness of the system status and to make appropriate 
responses to the worksite situations1. Eye movement can be differentiated based on its goal as situation aware-
ness (SA) driven and task performance driven, and SA is the underlying driver, especially for safety–critical 
systems2. SA is defined as ‘‘the perception of the elements in the environment within a volume of time and space, 
the comprehension of their meaning and the projection of their status in the near future’’3. Statistics show that 
failures of SA account for 80% of accidents attributable to human-factor causes in safety–critical industries4. 
Thus, modeling SA-driven eye movement can contribute to figuring out how SA would develop under given 
conditions5 and predicting the delay time for the establishment of SA, and then explaining the mechanism of 
accidents in safety–critical systems.

In recent decades, many eye movement modeling methods have been proposed for different purposes, includ-
ing different task type (static or dynamic tasks), different model output (fixation probability distribution or fixa-
tion temporal sequence) and different task goal (explicit goal like maximizing behavior performance or implicit 
goal like maximizing SA).

For static tasks, static images were widely utilized to study eye movement in free viewing6–13 or visual 
search14–16 tasks. Bottom-up features (such as color, luminance and intensity) and top-down factors (such as 
knowledge and reward) were evaluated and combined into a master saliency map to estimate the probability 
of attending to a location in the image9–11. Further, several models have been proposed to generate fixation 
sequence from saliency maps by employing winner-take-all (WTA) algorithm and inhibition-of-return (IOR) 
scheme9,12,13. Although these models are very successful in predicting gaze locations in static images, they can 
hardly generalize to dynamic interactive tasks17.

For dynamic tasks, models to predict probability distribution of eye fixations were firstly developed. One 
representative is the SEEV model proposed by Wickens et al18. The SEEV model postulates the probability of 
attending to different AOIs in a dynamic interactive task is directly related to two bottom-up factors (salience, 
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effort) and two top-down factors (expectancy, value). It has been validated by a series of flight simulation 
experiments19,20.

Additionally, there have been several attempts to predict fixation sequence in dynamic tasks. They can be 
distinguished as models without considering task goal, models with explicit goal like maximizing behavior 
performance, and models with implicit goal like maximizing SA.

In studies without considering task goal, video games and natural videos were widely used to predict fixation 
sequence by approach of machine learning. These studies segmented the video into frames and regarded each 
frame as a static image, with only one fixation in each frame21–25. In one such example, Peters and Itti21 recorded 
the eye fixation data while playing video games and learned a mapping from bottom-up and top-down feature 
vectors to the fixation positions for individual frames. In another example, Deng et al.24 used eye tracking data of 
experienced drivers while viewing traffic driving videos to learn a convolutional-deconvolutional neural network 
(CDNN), with video frames and the corresponding saliency maps constructed by the drivers’ eye tracking data as 
input and output of the model. The most salient region in each saliency map corresponded to the fixation posi-
tion. These machine learning models are task specific, so the model have to be retrained for a new task. What is 
more, they are black boxes, leaving us without any conceptual understanding of how bottom-up and top-down 
features influence eye movement.

In studies with explicit goal, behavior performance is a dominating goal to drive eye movement in dynamic 
interactive tasks. Sprague, Ballard and Robinson26 used Markov decision process to predict human visuomotor 
behavior in a walking task, and demonstrated that the choice of next gaze is to maximize the reward of taking 
a corresponding action. Inspired by this study, Johnson et al.27 introduced task priority into a softmax barrier 
model to predict human gaze deployment in a driving task, suggesting that more attention was biased towards 
high-priority subtask for better task performance. In another study, Tanner and Itti28 incorporated goal relevance, 
defined to measure the degree to which an object is relevant to the task, into a top-down saliency model to predict 
fixation position while playing a video game, and demonstrated that more gaze was directed towards objects 
with higher goal relevance to obtain as much score as possible in the game.

In studies with implicit goal, SA is an underlying goal to drive eye movement. Kim and Seong29 proposed 
an eye movement model for the nuclear power plant (NPP) operators using Bayesian network. This study sug-
gested the next AOI is selectively focused on to gain the greatest information and maximize SA. Lee and Seong1 
incorporated factors such as working memory decay and mental model into the monitoring model in29. Jiang 
et al.30 proposed a Markov monitoring model for operators in NPP, suggesting the next fixation is directed to the 
position at which the probability of capturing attention is maximal. These models predict only a single fixation 
choice at a time and an entire fixation sequence through fixation-by-fixation iterations.

Available fixation sequence prediction models are suitable for simple dynamic interactive tasks but not for 
complex ones. A distinction between simple and complex dynamic interactive tasks can be made in terms of 
task complexity. Task complexity is defined as a function of the amount of information involved in the task, 
with a value from 0 to 131. Faster pace of system dynamics generates a greater amount of information and poses 
a greater demand for the operator to keep following the situational changes and to make sense of the observed 
information. Thus, it can be inferred that a task with greater information bandwidth is more complex. For com-
plex dynamic interactive task, operators need to continuously extract information and the experienced can plan 
ahead multiple-step fixation choices. While for simple ones, operators often consider only a single next gaze shift.

This study aims at proposing a computational model to predict fixation sequence in complex dynamic inter-
active tasks, with a basic premise that the goal of eye movement is to maximize the SA-related reward of an 
entire fixation sequence. Two top-down factors, expectancy and value, are introduced to describe the changing 
characteristics of dynamic task and the reward of acquiring information to maintain SA, respectively. Finally, the 
model is validated by the eye movement data derived from a representative flight simulation experiment carried 
out by Wickens32 and sponsored by a NASA project called “Human Performance Modeling”.

Assumptions of eye movement modeling
Two assumptions are made for modeling eye movement in this paper, the details of which are explained as 
follows.

Assumption 1:  Eye movement in dynamic interactive tasks can be regarded as multi-stage decisions under 
uncertain conditions, namely sequential decisions.

For dynamic interactive tasks, information within relevant AOIs changes uncertainly. This requires operators 
to continuously extract new information from AOIs through eye movement to maintain high level of SA. The 
deployment of fixations can be considered in the context of a sequential perception–action loop33. Perception 
is referred to fixating at one location for information to update SA, and action indicates choosing the next fixa-
tion position and then performing the fixation shift34,35. As the loop repeats, the choices of fixation location at 
different moments forms a set of sequential decisions.

To model eye movement as sequential decisions, it is necessary to analyze the dynamic nature of the interac-
tive tasks. The dynamics reflect as the update of information within relevant AOIs. This study postulates that 
the update probability of information is determined by the expectancy. The expectancy of an AOI is coded by 
bandwidth (BW)32. Empirically, the higher AOI bandwidth is, the higher expectation of the operator to acquire 
new information and the more frequently they attend to that AOI.

Assumption 2:  Experienced operators in dynamic interactive tasks follow an optimal policy to plan multiple 
fixation choices for maximizing the SA-related reward of an entire fixation sequence.
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It has been widely demonstrated that eye movement shows different strategic characteristics in operators with 
different experience levels36–41. Experienced operators have clearer and more consistent scanning mode, greater 
scan frequency and wider scan area than novice36–39. Besides, several studies have demonstrated that sequential 
eye fixations in visual search tasks are planned ahead to maximize the reward in multiple decision steps40,41.

In this assumption, the SA-related reward is represented by the value of AOI. The value of an AOI to a task 
is the product of the task value and the relevance between that AOI and the task. In dynamic interactive tasks, 
multiple concurrent subtasks are usually imposed to operators. For example, pilots are required to keep on the 
desired flightpath and detect any off-normal event while flying. In this case, the value of one such AOI is the sum 
of values of that AOI to all subtasks supported by it18.

Based on the two assumptions, we introduce an MDP to model eye movement of experienced operators in a 
dynamic interactive task. The eye movement model is able to calculate the optimal policy adopted by the expe-
rienced operators for maximizing the SA-related reward. In addition, the optimal policy helps to guide fixation 
choices under uncertain conditions to generate fixation sequences.

The eye movement model for dynamic interactive tasks
The framework of the eye movement model.  In this study, we introduce an MDP to model eye move-
ment of experienced operators in a dynamic interactive task, with the goal of maximizing the SA-related reward. 
The determination of transition probability ( P( st+1|st , at) ) and reward ( r(st , at) ) is of crucial significance to 
model eye movement as an MDP. This study tries to determine these two parameters based on characteristics 
of the dynamic interactive task, including value of task ( Vi ), relevance between task and AOI ( reli−j ), and band-
width of AOI ( BWi ). The framework of the eye movement model is shown in Fig. 1.

For a specific dynamic interactive task, the modeler needs to definite the subtasks and divide the display 
interface into several AOIs. In addition, the modeler should also set task value for each subtask and relevance 
for each subtask-AOI pair according to the task goal. Then, following the framework in Fig. 1, modeling eye 
movement is a two-step procedure.

Firstly, obtain the MDP-based optimal policy π∗ for fixation choices in the dynamic interactive task. π∗ is 
a series of optimal decision rules ( f∗t  ) which map from the current state to the best action at different decision 
moments and maximize the expected reward of an entire fixation sequence. It is heavily dependent on transition 
probability P( st+1|st , at) and reward r(st , at) . The former is defined as probability of transitioning to the next SA 
state ( st+1 ) from the current SA state ( st ) when choosing an action ( at ). It is determined by random information 

Figure 1.   The framework of the eye movement model.
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update ( ui→i+1 ) between the current decision point and the next, specifically, bandwidth ( BWi ) of different AOIs. 
And the latter is referred to value of information acquired by choosing an action when at the current SA state. It 
is determined by values ( Vi ) of subtasks as well as relevance ( reli−j ) between subtasks and that AOI only when 
the current SA state implies that information is unaware, otherwise it is 0. Details about modeling the transition 
probability and reward are described in the next section.

Secondly, use π∗ and AOI information update ui→i+1 to generate the next state st+1 from the current state st , 
and finally to obtain a fixation sequence. A fixation sequence is a series of AOIs chosen to visit when performing 
the dynamic interactive task. At each decision moment, which AOI to visit is determined under guidance of the 
optimal policy. After taking such action, the current state instantly transitions to an intermediate state satt  . Then 
the next SA state is determined by sampling information update ut→t+1 according to the bandwidth of each AOI. 
In this way, a specific task process can be simulated to generate a specific fixation sequence.

Obtaining MDP‑based optimal policy.  MDP‑based optimal policy model.  We formalize eye movement 
within the framework of MDP, thus the optimal policy for planning fixation choices can be represented by:

where f∗t  represents the optimal decision rule mapping from the current state to the best action at the decision 
moment t  . The optimal decision rule maximizes the action-value function Qt(st , at) , which can be represented as:

Qt(st , at) is defined as the expected reward of an action sequence 
(

E

[

N
∑

i=t
r(si , ai)

])

 that begins with action a 

taken in state s at current moment t  and follows the optimal policy to generate subsequent actions. It consists 
of two parts: one is certain immediate reward r(st , at) after taking action a at moment t  ; and the other is the sum 
of the action-values of all possible subsequent state-action pairs according to the occurrence probability 
(

∑

st+1∈S
P( st+1|st , at) ∗ Qt+1(st+1, at+1)

)

 . It can be seen that the optimal policy is able to consider how the selec-

tion of the next fixation is influenced by not only the immediate reward but the future rewards.
More detailed parameter definitions are as follows.
t ∈ {0, 1, 2, ...N} is the decision moment. The time interval from one fixation choice at one decision moment 

to the next is called a decision period or a stage. Existing studies assume that the mean fixation interval is 300 
or 500 milliseconds26,42, and the specific value is set by the modeler.

A state s indicates the subject’s SA for the current situation in this study. At any moment, the state s can be 
represented as:

where ik reflects the subject’s cognition of the information within the k′th AOI and n is the total number of AOIs 
in the visual scene. ik is defined as:

Therefore, it can be inferred that the state set contains 2n possible states.
An action a ∈ {a1, a2, ..., ak , ..., an} is one AOI in the visual scene where the gaze will be fixated next in this 

study.
The state transition process, shown in Fig. 2, is depicted as follows: at some decision point t  , the subject 

chooses to fixate at one AOI (taking an action at ) and acquires the relevant information, causing the current SA 
state st to transfer to an intermediate state satt  and receiving a reward r(st , at) ; in the following decision period, 
the information within various AOIs updates randomly, which changes the SA from an intermediate state to 
the destination state st+1 at the next decision point t + 1 . Note that the state st+1 is uncertain due to the random 
information update ut→t+1 from t  to t + 1 , and the probability of transitioning to the next state from the cur-
rent state when an action has been taken is denoted as P( st+1|st , at) . The modeling of the transition probability 
P( st+1|st , at) and the reward r(st , at) is the key of being able to model fixation sequence as an MDP, which is 
introduced in the following section.

Transition probability.  To determine the transition probability P( st+1|st , at) , it is necessary to pinpoint all pos-
sible next states given the current state and the action. The next states are influenced by both the action and the 
update of information in the visual scene, as indicated in Fig. 2.

After taking the action ak at moment t  , the current state st immediately transitions to an intermediate state 
s
ak
t  . The transformation process can be expressed as:

(1)π
∗ = (f∗0 , f

∗
1 , ..., f

∗
t , ..., f

∗
N−1)

(2)

f
∗
t (st) = argmaxQt(st , at) = argmax E

�

N
�

i=t

r(si , ai)

�

= argmax







r(st , at)+
�

st+1∈S

P( st+1|st , at) ∗ Qt+1(st+1, at+1)







(3)s = (i1, i2, ..., ik , ..., in)

(4)ik =

{

0 unconscious of the informationwithin the k′th AOI
1 conscious of the informationwithin the k′th AOI
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which implies the k′th component of the state vector changes from 0 to 1 or maintains the value of 1 when the 
k′th AOI is fixated.

In the following decision period from t  to t + 1 , the information updates randomly, which results in uncertain 
next states. Similar to the state vector, the update of information in this period can be represented as:

where jk,t→t+1 indicates the update of the information within the k′th AOI from t  to t + 1 and n is the total 
number of AOIs in the visual scene. jk,t→t+1 is defined as:

It can thus be seen that there are 2n kinds of information updates. For every kind of information update, it 
alters the intermediate state component by component. Specifically, the m′th component of an information update 
jm,t→t+1 acts on the m′th component of the intermediate state imt . The rule is as follows:

It should be noted that ik,t+1 = 1 whether the information within the k′th AOI is updated or not, in that this 
AOI is continuously monitored throughout the decision period.

The transition probability depends on the information update probability that is determined by the infor-
mation bandwidth of an AOI in this paper. It is hypothesized that the information update for each AOI in any 
decision period is independent of each other and that the information update probability of each AOI is identical 
in all decision periods. Then the occurrence probability for every kind of information update is calculated as:

(5)st = (i1t , i2t , ..., ikt , ..., int)
at=ak
−→ s

ak
t = (i1t , i2t , ..., ikt = 1, ..., int)

(6)ut→t+1 =
(

j1,t→t+1, j2,t→t+1, ..., jk,t→t+1, ..., jn,t→t+1

)

(7)jk,t→t+1 =

{

0 informationwithin the k′th AOI does not update from t to t + 1

1 informationwithin the k′th AOI updates from t to t + 1

(8)imt
jm,t→t+1
−→ im,t+1 =

{

imt jm,t→t+1 = 0, m �= k
0 jm,t→t+1 = 1, m �= k

Figure 2.   An example of the state transition process.
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where P(ut→t+1 : st
at

−→ st+1) represents the probability of one kind of information update and P(jm,t→t+1) 
indicates information update probability of the m′th AOI. One point should be emphasized that several kinds of 
information update may contribute to the same destination state given the current state and action. In this case, 
the transition probability P( st+1|st , at) is defined as:

According to the above definition, bandwidth of an AOI is key of determining information update probability 
and further calculating transition probability. It can be specified as43:

which is typically defined in bits per second. bits
/

event represents the amount of information that an event has 
and can be specified in the language of information theory44. #events

/

unittime represents the number of events 
that occur in per unit of time.

Existing research divided information into discrete and continuous information45, and developed two corre-
sponding methods for calculating bandwidth, respectively. For discrete information, the bandwidth is often sim-
ply expressed as events per second, such as in a driving application, the number of oncoming cars per second46. 
For continuous information, Senders proposed a method for calculating bandwidth of a pointer instrument, 
which is related to the change frequency of the pointer positions and the range of values and reading accuracy 
of the instrument47. Readers are referred to 47 for details about bandwidth calculation.

Reward.  The reward r(st , at) means the value of information acquired by fixating at one AOI at the current 
state. It indicates the degree to which it is conductive of good SA state in this study. Such value is coded by the 
product of the task value that the AOI serves and the relevance of the AOI to the task.

The value of a task reflects its inherent importance and is represented by an integer (1, 2 3 and upward. In 
application, the modeler must assume some inherent task importance hierarchy. For example, the “ANCS” (Avi-
ate, navigate, communicate, systems management) hierarchy is imposed in aviation, which indicates the task 
importance from highest to lowest48. In driving, it is assumed that lane keeping and roadway hazard detection 
are of greater priority (value of task = 2) than navigating (road sign detection) and in-vehicle tasks (value of 
task = 1)48.

The relevance between a task and an AOI is characterized by a value from 0 to 1. It indicates that sometimes 
an AOI is only partially relevant to a task. This requires the modeler to specify the degree of relevance.

For interactive tasks consisting of multiple subtasks, one AOI can be associated with several subtasks simul-
taneously. Then the reward for fixating at that AOI can be represented by:

where Vsubtask indicates the value of the subtask and relsubtask−AOI indicates the relevance between a subtask and 
an AOI. Note that the reward for fixating at one AOI is related to the current state. It is not 0 only when the cur-
rent SA state implies information within that AOI is unaware of by the operator. It should also be emphasized 
that the reward for fixating at one AOI is independent of decision point, which means that the reward functions 
are the same at different decision points.

Backwards induction algorithm for optimal policy.  After defining the transition probability and the reward, we 
use the backwards induction algorithm to obtain the optimal policy. The flow chart of the algorithm is shown 
in Fig. 3.

In Step 1, the algorithm sets the decision moment as N and the value function Q∗
N (sN , aN ) at that moment 

for each state as 0.
In Step 2, the algorithm needs to determine the current decision moment t  . If t = 0 , it indicates the optimal 

policy has already been obtained and the algorithm can stop; otherwise, t  decreases by 1 and the algorithm goes 
to the next step.

In Step 3, the algorithm calculates the optimal value function Q∗
t (st , at) for each state at the decision moment t  

according to the Bellman equation. The action that maximizes the value function for each state is the best action 
at that state. Note that the Bellman equation evaluates the reward of the current state, r(st , at) , and the expected 
reward in the following states after sequentially taking the actions following the policy.

In Step 4, the algorithm returns to Step 2.

Generating fixation sequence.  Under guidance of the optimal policy, fixation sequences can be gener-
ated by Monte Carlo simulation. The flow chart of generating fixation sequence is shown in Fig. 4.

In Step 1, an initial state s0 at the initial moment t = 0 is set.
In Step 2, the current decision moment t  is estimated. If t > N , it indicates an entire fixation sequence has 

already been obtained and the simulation is finished; otherwise, go to the next step.

(9)P(ut→t+1 : st
at

−→ st+1) =

n
∏

m=1

P(jm,t→t+1)

(10)P(st+1|st , at) =
∑

h

P(uh
t→t+1

: st
at

−→ st+1)

(11)the bandwidth = (bits
/

event)× (#events
/

unit time)

(12)r(st , at) =

{ ∑

subtask

Vsubtask × relsubtask−AOI unaware of informationwithin the k′th AOI

0 aware of informationwithin the k′th AOI
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In Step 3, which AOI to fixate at given the current state st is determined by the optimal decision rule f∗t  at 
moment t .

In Step 4, one kind of information update ut→t+1 in this period is sampled according to the probability dis-
tribution of information update P(ut→t+1 : st

at
−→ st+1) , which depends on bandwidth of each AOI P(jm,t→t+1).

In Step 5, the next state st+1 is determined on the basis of the current state, the action being performed and 
the sampled information update.

In Step 6, the simulation moves on to the next moment t + 1 and returns to Step 2.

Model validation
Task scenario.  To demonstrate the validity of the presented model, we apply it to a flight task, which is a 
representative dynamic interactive task and suitable for verification of the proposed model. The task scenario 
and experiment data used in this paper derive from a representative flight simulation experiment carried out 
by Wickens32 and sponsored by a NASA project called “Human Performance Modeling”. Details are described 
below.

In the flight simulation experiment, eight instrument rated pilots (6 men, 2 women) were recruited from the 
Institute of Aviation at the University of Illinois to fly a series of experimental curved step-down approaches to 
a simulated airport using a flight simulator. Pilots ranged in age from 20 to 26 years (M = 22 years) with a mean 
of 503 total flight hours.

The flight simulator has four versions of display suits, which are presented in a 2× 2 array, as shown in Fig. 5. 
The two versions on the upper row contains a tunnel or “highway in the sky” to guide flightpath, while the two 
versions in the bottom row have no tunnel. The two display suits shown in the left column have the instrument 
panel overlaid on the synthetic vision system (SVS) display, while those on the right have the panel separated 
and positioned in the upper right corner of the suit.

In any version of display suit, there are five AOIs. The SVS display including a depiction of the terrain and 
the traffic visible within its field of view is located at the upper left. The instrument panel (IP) showing heading 
of the aircraft and vertical deviation (and deviation rate) relative to the center of the commanded flightpath is 
overlaid upon the SVS display or positioned at the upper right. The “datalink box” (DL) providing the guidance 
information such as heading and rate of climb or decent is located at the lower left. The navigation display (ND) 
depicting the 2D commanded flightpath and all traffic in the surrounding airspace is positioned at the lower 
right. Additionally, the outside world (OW) is also regarded as an AOI.

Each pilot flew two approaches with each of the four display suits, one under VMC (with the outside world 
visible) and the other under IMC (with the outside world obscured), each of which lasted approximately 8 min. 

Figure 3.   The flow chart of the backwards induction algorithm.
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A head-mounted eye tracker was used to track pilots’ eye movements. Both pupil and corneal reflections were 
sampled at 60 Hz with an accuracy of better than 1°. In each flight, pilots were instructed to conduct three paral-
lel subtasks, including aviating (AV, controlling attitude of the plane), navigating (NAV, maintaining lateral and 
vertical flightpath) and hazard awareness (HAZ, noting appearance and change in terrain and traffic visible on 
the SVS display or the navigation display and detecting a “rogue aircraft” blimp and a runway offset visible in 
the outside world). Aviating has the highest priority ( V = 3 ); navigating is given the second priority ( V = 2 ); 
and hazard awareness is given the third priority ( V = 1).

Parameters calculation for MDP‑based optimal policy model.  Parameters for MDP-based optimal 
policy model are represented by a tuple (T , s, a, P, r) . According to the task scenario described above, the deci-
sion period in this paper is set to 500 milliseconds42, meaning 30 fixation samples of a 60 Hz eye tracker. Each 
flight contains T = 960 decision points. Since there are five AOIs in any version of display suit, SA state can be 
represented as s = (i1, i2, i3, i4, i5) and the action a is chosen from {a1, a2, a3, a4, a5} at any moment. The calcula-
tion of the two key parameters in this task scenario, transition probability P and reward r , is described in detail 
in the following sections.

Calculation of transition probability.  Transition probability is determined by AOI bandwidth. In this task sce-
nario, the bandwidth of each AOI under the eight different experimental conditions is shown in Table 1. The data 
is derived from the original simulation experiment in32. It was estimated by the change frequency of variables 
within the AOI. Note that we set the bandwidth of IP in the four overlay conditions to 0 in this paper, because 
there is no information at the original position of IP.

Based on Table 1, all kinds of information update and the corresponding occurrence probabilities in each 
experimental condition can be obtained. For brevity, the calculation of the occurrence probabilities of every 
kind of information update in the DSV condition is taken as an example, which is listed in Table 2. The total 
number of types of information update is 32. And the sum of occurrence probabilities of each information 
update equals to 1.

The form of possible SA states is identical with that of the information updates, but the implications are 
different. According to Table 2, the three-dimensional transition probability matrix with a size of 32× 32× 5 
in the DSV condition can be acquired. We take the calculation of a row of the transition probability matrix as 
an example, the result of which is shown in Table 3. For brevity, the complete calculation process of the whole 
matrix is not described here.

Figure 4.   The flow chart of generating fixation sequence.
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As presented in Table 3, supposing that the current state is expressed as (0, 1, 1, 0, 1) and the action taken 
from the current state is fixating at the first AOI (SVS), the intermediate state will be (1, 1, 1, 0, 1) . In considera-
tion of all information updates and their occurrence probabilities, the possible next states and the transition 
probabilities can be obtained.

The calculation of the transition probability matrix is identical as that mentioned above in all conditions but 
for the TSV and TSI conditions. In these two conditions, the roles of the instrument panel and the tunnel located 
on the SVS are redundant. It means that the information within IP is also acquired when the SVS is chosen to be 
fixated at, but not vice versa, in that not all information within SVS is available in IP. Consequently, the calculation 
of the transition probability matrix in the TSV and TSI conditions should take such characteristic into account.

Calculation of reward.  Reward for fixating at one AOI is determined by both the value of the task and the rel-
evance of the AOI to the task. In this task scenario, values of the three subtasks, including aviating, navigating 
and maintaining hazard awareness, are V = 3 , V = 2 and V = 1 , respectively. The relevance of each AOI to the 
three subtasks under the eight conditions is illustrated in Table 4. These data are specified by the modeler and 
derived from32. Note that we set the relevance of OW to aviating and navigating in each condition to 0 in this 
paper, because OW is irrelevant with the two subtasks.

Figure 5.   Four display suits defined by the characteristics of overlay versus separate, and tunnel versus no 
tunnel32.

Table 1.   Bandwidth of AOIs across the eight experimental conditions32. Experimental Conditions: T Tunnel, 
D Datalink, O Overlay, S Separate, V VMC, I IMC.

AOI

Experimental conditions

TOV TOI TSV TSI DOV DOI DSV DSI

SVS 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62

IP 0 0 0.81 0.81 0 0 0.81 0.81

ND 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

DL 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

OW 0.5 0 0.5 0 0.5 0 0.5 0
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Based on the relevance in Table 4 and the values of subtasks, the reward for fixating at one AOI can be calcu-
lated according to Eq. (12). Since it is independent of decision point, the result for any moment is the same. For 
lack of space, only partial reward function (for one decision point in the DSV condition) is shown in Table 5. 
As can be seen, the total number of possible states in each decision point is 32. At each possible state, all the five 
actions can be possibly selected and a corresponding reward can be obtained.

Results analysis.  The optimal policy and the fixation sequence. 

Table 2.   The occurrence probabilities for every kind of information update.

The information update The occurrence probability The information update The occurrence probability

(0,0,0,0,0) 0.0281219 (1,0,0,0,0) 0.0458831

(0,0,0,0,1) 0.0281219 (1,0,0,0,1) 0.0458831

(0,0,0,1,0) 0.0014801 (1,0,0,1,0) 0.0024149

(0,0,0,1,1) 0.0014801 (1,0,0,1,1) 0.0024149

(0,0,1,0,0) 0.0061731 (1,0,1,0,0) 0.0100719

(0,0,1,0,1) 0.0061731 (1,0,1,0,1) 0.0100719

(0,0,1,1,0) 0.0003249 (1,0,1,1,0) 0.0005301

(0,0,1,1,1) 0.0003249 (1,0,1,1,1) 0.0005301

(0,1,0,0,0) 0.1198881 (1,1,0,0,0) 0.1956069

(0,1,0,0,1) 0.1198881 (1,1,0,0,1) 0.1956069

(0,1,0,1,0) 0.0063099 (1,1,0,1,0) 0.0102951

(0,1,0,1,1) 0.0063099 (1,1,0,1,1) 0.0102951

(0,1,1,0,0) 0.0263169 (1,1,1,0,0) 0.0429381

(0,1,1,0,1) 0.0263169 (1,1,1,0,1) 0.0429381

(0,1,1,1,0) 0.0013851 (1,1,1,1,0) 0.0022599

(0,1,1,1,1) 0.0013851 (1,1,1,1,1) 0.0022599

Table 3.   One example of the transition probability.

The current state The action The transition probability

(0,1,1,0,1) SVS

(1,0,0,0,0) (1,0,0,0,1) (1,0,1,0,0) (1,0,1,0,1)

0.0729 0.0729 0.3321 0.3321

(1,1,0,0,0) (1,1,0,0,1) (1,1,1,0,0) (1,1,1,0,1)

0.0171 0.0171 0.0779 0.0779

Table 4.   Relevance of AOIs to subtasks32.

Experimental conditions

AOI Task TOV TOI TSV TSI DOV DOI DSV DSI

SVS AV 1 1 1 1 1 1 1 1

SVS NAV 1 1 1 1 1 1 0 0

SVS HAZ 1 1 1 1 1 1 1 1

IP AV 0 0 0 0 0 0 0.5 0.5

IP NAV 0 0 0.5 0.5 0 0 1 1

IP HAZ 0 0 0 0 0 0 0 0

ND AV 0 0 0 0 0 0 0 0

ND NAV 0.5 0.5 0.5 0.5 1 1 1 1

ND HAZ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

DL AV 0 0 0 0 0 0 0 0

DL NAV 0 0 0 0 1 1 1 1

DL HAZ 0 0 0 0 0 0 0 0

OW AV 0 0 0 0 0 0 0 0

OW NAV 0 0 0 0 0 0 0 0

OW HAZ 0.5 0 0.5 0 0.5 0 0.5 0
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(1)	 The optimal policy
	   Given the number of decision stages, the transition probability matrix and the reward function, it is 

straightforward to acquire the optimal policy utilizing the backwards induction algorithm. The optimal 
policy in each condition is a matrix with a size of 32⨯960. Each column of the optimal policy matrix rep-
resents an optimal decision rule at one decision moment and optimal decision rules at different decision 
moments are the same.

	   For simplicity, only the optimal decision rule at one moment in the DSV condition is presented in this 
section, as shown in Table 6. The column ‘the current state’ contains 32 possible states. The column ’the 
action’ represents the optimal action that should be taken from the current state.

(2)	 The fixation sequence
	   Based on the optimal policy, multiple fixation sequences can be generated by setting an initial SA state 

and sampling information update in each period according to the bandwidth of each AOI. Each fixation 
sequence in each condition contains 960 choices of fixation position (AOI). An example of fixation sequence 
in the DSV condition is (SVS → IP → DL → SVS → IP → ND → SVS → IP → ND → ...).

On the basis of the fixation sequence, the development of SA state under given information update can be 
figured out. A fragment of the SA development process corresponding to the aforementioned fixation sequence 
in the DSV condition is shown in Fig. 6.

The horizontal axis shows decision moment, while the vertical axis represents SA corresponding to the five 
AOIs. The symbol “○” indicates the information in that AOI is known by the operator, while the symbol “⨯” 

Table 5.   The reward for one decision point in the DSV condition.

The current 
state

The action
The current 
state

The action
The current 
state

The action
The current 
state

The action

SVS IP ND DL OW SVS IP ND DL OW SVS IP ND DL OW SVS IP ND DL OW

(0,0,0,0,0) 4 3.5 2.5 2 0.5 (0,1,0,0,0) 4 0 2.5 2 0.5 (1,0,0,0,0) 0 3.5 2.5 2 0.5 (1,1,0,0,0) 0 0 2.5 2 0.5

(0,0,0,0,1) 4 3.5 2.5 2 0 (0,1,0,0,1) 4 0 2.5 2 0 (1,0,0,0,1) 0 3.5 2.5 2 0 (1,1,0,0,1) 0 0 2.5 2 0

(0,0,0,1,0) 4 3.5 2.5 0 0.5 (0,1,0,1,0) 4 0 2.5 0 0.5 (1,0,0,1,0) 0 3.5 2.5 0 0.5 (1,1,0,1,0) 0 0 2.5 0 0.5

(0,0,0,1,1) 4 3.5 2.5 0 0 (0,1,0,1,1) 4 0 2.5 0 0 (1,0,0,1,1) 0 3.5 2.5 0 0 (1,1,0,1,1) 0 0 2.5 0 0

(0,0,1,0,0) 4 3.5 0 2 0.5 (0,1,1,0,0) 4 0 0 2 0.5 (1,0,1,0,0) 0 3.5 0 2 0.5 (1,1,1,0,0) 0 0 0 2 0.5

(0,0,1,0,1) 4 3.5 0 2 0 (0,1,1,0,1) 4 0 0 2 0 (1,0,1,0,1) 0 3.5 0 2 0 (1,1,1,0,1) 0 0 0 2 0

(0,0,1,1,0) 4 3.5 0 0 0.5 (0,1,1,1,0) 4 0 0 0 0.5 (1,0,1,1,0) 0 3.5 0 0 0.5 (1,1,1,1,0) 0 0 0 0 0.5

(0,0,1,1,1) 4 3.5 0 0 0 (0,1,1,1,1) 4 0 0 0 0 (1,0,1,1,1) 0 3.5 0 0 0 (1,1,1,1,1) 0 0 0 0 0

Table 6.   The optimal decision rule at one decision moment in the DSV condition.

The current state The action The current state The action The current state The action The current state The action

(0,0,0,0,0) SVS (0,1,0,0,0) SVS (1,0,0,0,0) IP (1,1,0,0,0) ND

(0,0,0,0,1) SVS (0,1,0,0,1) SVS (1,0,0,0,1) IP (1,1,0,0,1) ND

(0,0,0,1,0) SVS (0,1,0,1,0) SVS (1,0,0,1,0) IP (1,1,0,1,0) ND

(0,0,0,1,1) SVS (0,1,0,1,1) SVS (1,0,0,1,1) IP (1,1,0,1,1) ND

(0,0,1,0,0) SVS (0,1,1,0,0) SVS (1,0,1,0,0) IP (1,1,1,0,0) DL

(0,0,1,0,1) SVS (0,1,1,0,1) SVS (1,0,1,0,1) IP (1,1,1,0,1) DL

(0,0,1,1,0) IP (0,1,1,1,0) SVS (1,0,1,1,0) IP (1,1,1,1,0) OW

(0,0,1,1,1) SVS (0,1,1,1,1) SVS (1,0,1,1,1) IP (1,1,1,1,1) SVS

0 1 2 3 4 5 6 7 8 9 10

OW

DL

ND

IP

SVS

decision moment

I
O

A

 

Figure 6.   A fragment of the SA development process in the DSV condition.
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indicates not. The red symbol means the information in that AOI has updated, while the black symbol means 
not. The delay time for establishing SA corresponding to one AOI can be predicted by the number of consecutive 
“⨯”. Taking the sub-fragment framed in blue in Fig. 6 as an example, it indicates information in ND updated in 
the third stage, together with information in SVS, IP and OW. The fixation choice was not to ND until the sixth 
decision moment, implying the delay time for noticing the updated information in ND is 1.5 s.

Comparison of probability of fixation on AOIs.  The fixation sequence is a random series and varies with sub-
jects and trials. Comparison of fixation sequences predicted by the model with raw eye movement data makes 
no sense. However, it is suggested that a random fixation sequence is dominantly constrained by the relative 
frequencies of fixation on AOIs47. That is to say, for random fixation sequences, the relative number of fixations 
on each AOI will converge over a sufficiently long time interval and large number of trials and can be used to 
validate the proposed method.

Through multiple simulations, the model can generate a set of fixation sequences. The number of fixations 
at each AOI was normalized within those simulated fixation sequences to estimate the probability of fixation on 
that AOI. The comparison of proportion of fixation on AOIs predicted by our model with experimental measur-
ing is presented in Table 7.

Within the first section in Table 7, the predicted fixation probability of each AOI across the eight conditions 
are presented. Within the second section, the experimental observed data from32 is presented. To demonstrate 
the effectiveness of the constructed model, the predicted fixation probability of each AOI was correlated against 
that from experiment data, as represented by the scatter plot in Fig. 7.

Table 7.   Predicted and experimentally observed fixation probabilities of each AOI in the eight experimental 
conditions.

Experimental conditions

TOV TOI TSV TSI DOV DOI DSV DSI

Predicted values

SVS 0.54 0.80 0.47 0.75 0.54 0.80 0.37 0.44

IP 0.00 0.00 0.07 0.05 0.00 0.00 0.42 0.42

ND 0.14 0.15 0.15 0.15 0.15 0.15 0.11 0.10

DL 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04

OW 0.17 0.00 0.26 0.00 0.26 0.00 0.06 0.00

Observed values

SVS 0.66 0.80 0.68 0.71 0.65 0.68 0.29 0.33

IP 0.00 0.00 0.05 0.07 0.00 0.00 0.28 0.27

ND 0.18 0.14 0.15 0.12 0.17 0.18 0.24 0.26

DL 0.03 0.04 0.04 0.04 0.09 0.11 0.11 0.09

OW 0.12 0.02 0.07 0.06 0.10 0.03 0.07 0.06
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Figure 7.   Scatter plot of predicted versus obtained fixation probability of each AOI for all conditions.
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In Fig. 7, all 40 data points in the eight experimental conditions were correlated, with each point represent-
ing a unique combination of an AOI and a condition. As can be seen, there is a strong degree of linearity in the 
relation between predicted and experiment data, suggesting validation of the model. The correlation coefficient 
is R = 0.928 , indicating that the model accounts for R2 = 86.1% of the variance in the data.

Additionally, correlation coefficients of fixation proportion on AOIs were computed within each condition, 
each now based upon 5 data points. The separate correlation coefficients R and the R − squared values were 
exhibited in Table 8.

As is shown in Table 8, there is a strong linear correlation between the predicted and observed fixation prob-
abilities in all conditions. It is noteworthy that the four overlay display conditions have high correlation coef-
ficients, greater than 0.9, while the correlation coefficients of the four separate display conditions are, with only 
one exception, less than 0.9. This is consistent with the conclusion in32 that a larger distribution of information 
sources in different AOIs benefits a greater opportunity for individual differences in scanning strategy, hence 
lowering the consistency of results across pilots (lower reliability of scan data) and therefore lowering the valida-
tion correlations with model predictions.

Comparison of probability of fixation shift between AOIs.  The probability of fixation shift between AOIs is 
another secondary characteristic of random fixation sequences, which tightly relates to fixation probability of 
AOIs47. To further validate this study, this statistical characteristic predicted by the proposed model is compared 
with experimental measuring in each condition, as shown in Table 9.

Within the left section in Table 9, the predicted shift probabilities between each pair of AOIs in each condi-
tion are presented. Based on the multiple fixation sequences generated in “The optimal policy and the fixation 
sequence”, proportion of fixation shift between AOIs in all the sequences was estimated to represent the shift 
probability between AOIs.

Within the right section in Table 9, the observed probabilities of fixation shift between AOIs are presented, 
which were calculated on the basis of the fixation probabilities of AOIs. An approach in the literature47 to calculate 
the probability of shift between AOI i and AOI j, Pij, is

where Pi and Pj represent the probabilities of fixation on AOI i and AOI j, respectively. In particular, the prob-
ability of shift from AOI i to AOI i is Pi

2.
Additionally, the predicted shift probabilities between AOIs were correlated against those calculated from 

experimental data. Correlation coefficients between the two sets of shift probabilities in each experimental 

(13)Pij = 2PiPj

Table 8.   Correlation coefficients between the predicted and the observed fixation proportion on AOIs for each 
experimental condition.

TOV TOI TSV TSI DOV DOI DSV DSI

R 0.939 0.999 0.894 0.994 0.927 0.995 0.845 0.847

R
2 0.882 0.999 0.798 0.989 0.859 0.990 0.714 0.717

Table 9.   Predicted and experimentally observed shift probabilities between AOIs in the eight experimental 
conditions.

Predicted values Observed values

TOV TOI TSV TSI DOV DOI DSV DSI TOV TOI TSV TSI DOV DOI DSV DSI

SVS-SVS 0.467 0.611 0.460 0.584 0.464 0.611 0.111 0.178 0.436 0.640 0.462 0.504 0.423 0.462 0.084 0.109

SVS-IP 0.002 0.002 0.043 0.038 0.002 0.001 0.339 0.360 0.000 0.000 0.068 0.099 0.000 0.000 0.162 0.178

SVS-ND 0.261 0.291 0.179 0.232 0.270 0.291 0.268 0.307 0.238 0.224 0.204 0.170 0.221 0.245 0.139 0.172

SVS-DL 0.083 0.087 0.079 0.063 0.082 0.087 0.057 0.060 0.040 0.064 0.054 0.057 0.117 0.150 0.064 0.059

SVS-OW 0.157 0.000 0.114 0.000 0.150 0.000 0.088 0.000 0.158 0.032 0.095 0.085 0.130 0.041 0.041 0.040

IP-IP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.005 0.000 0.000 0.078 0.073

IP-ND 0.000 0.000 0.043 0.048 0.000 0.000 0.065 0.070 0.000 0.000 0.015 0.017 0.000 0.000 0.134 0.140

IP-DL 0.000 0.000 0.007 0.011 0.000 0.000 0.015 0.011 0.000 0.000 0.004 0.006 0.000 0.000 0.062 0.049

IP-OW 0.000 0.000 0.018 0.000 0.000 0.000 0.019 0.000 0.000 0.000 0.007 0.008 0.000 0.000 0.039 0.032

ND–ND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.020 0.023 0.014 0.029 0.032 0.058 0.068

ND-DL 0.008 0.009 0.016 0.023 0.009 0.009 0.013 0.014 0.011 0.011 0.012 0.010 0.031 0.040 0.053 0.047

ND-OW 0.017 0.000 0.029 0.000 0.018 0.000 0.021 0.000 0.043 0.006 0.021 0.014 0.034 0.011 0.034 0.031

DL-DL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.002 0.008 0.012 0.012 0.008

DL-OW 0.006 0.000 0.013 0.000 0.004 0.000 0.004 0.000 0.007 0.002 0.006 0.005 0.018 0.007 0.015 0.011

OW-OW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.005 0.004 0.010 0.001 0.005 0.004
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condition are shown in Table 10. It can be seen that there is a strong correlation between the predicted and 
observed shift probabilities in all conditions, further validating the effectiveness of the proposed method.

Comparison with the existing models.  To further validate our model, we compare the proportion of fixations 
on AOIs predicted by our multi-step planning model with a class of step-by-step prediction model underlain by 
a greedy algorithm1,29,30.

The model proposed in this study is capable of predicting more than the next single eye movement. It suggests 
that an optimal policy is followed to plan multiple fixation choices for maximizing the SA-related reward of an 
entire fixation sequence. The optimal policy considers how the selection of the next fixation is influenced by not 
only the immediate reward but the future rewards.

In contrast to our model capable of predicting multiple fixation choices, the step-by-step prediction model 
suggests that the next fixation is directed to the AOI at which the expected amount of information or the prob-
ability of capturing attention is maximal, underlain by a greedy algorithm. That is, these models predict only a 
single fixation choice at a time and an entire fixation sequence through fixation-by-fixation iterations. Based on 
the idea of the step-by-step prediction model, fixation sequences under the eight experimental conditions in32 
were predicted. Statistical results about the proportion of fixation on AOIs were estimated within the simulated 
fixation sequences and can be seen in Table 11.

Two sets of correlation coefficients of fixation proportion on AOIs are compared, as shown in Table 12. The 
first set is between data experimentally observed and predicted by our model, as same as in Table 8. And the 
second set is between data experimentally observed and predicted by the step-by-step prediction model.

Comparative result shows that our method generally outperforms the step-by-step prediction models of eye 
movement in a flight task. It demonstrates that our method is suitable for modeling experienced operators’ eye 
movement for maximizing SA in complex dynamic interactive tasks. Meanwhile, this provides quantitative sup-
port for previous empirical studies that suggest fixation sequences of experienced operators in a complex task 
are multi-step planning and following an optimal policy.

Conclusions
Different from previous eye movement models focusing on static tasks or simple dynamic interactive tasks, this 
study suggests experienced operators are capable of planning ahead multiple fixation choices in complex dynamic 
interactive tasks. On this basis, a MDP model is proposed to model experienced operators’ monitoring behavior 
for maximizing the SA-related reward, with the deployment of fixation being regarded as sequential decisions. 
Two top-down factors are considered, one is expectancy coded by bandwidth to describe the update probability 
of the information and the other is value related to the importance of the task to represent the SA-related reward.

Table 10.   Correlation coefficients between the predicted and the experimental fixation shift probabilities 
between AOIs for each experimental condition.

TOV TOI TSV TSI DOV DOI DSV DSI

R 0.992 0.991 0.991 0.975 0.992 0.983 0.807 0.876

Table 11.   Fixation probabilities of each AOI in each experimental condition predicted by the step-by-step 
prediction model.

AOI

Experimental conditions

TOV TOI TSV TSI DOV DOI DSV DSI

SVS 0.51 0.98 0.48 0.95 0.48 0.92 0.46 0.45

IP 0.00 0.00 0.04 0.01 0.00 0.00 0.45 0.42

ND 0.01 0.02 0.02 0.03 0.03 0.04 0.06 0.08

DL 0.00 0.00 0.01 0.01 0.03 0.02 0.01 0.05

OW 0.48 0.00 0.45 0.00 0.46 0.00 0.02 0.00

Table 12.   Two sets of correlation coefficients of proportion of fixations on AOIs for each experimental 
condition.

TOV TOI TSV TSI DOV DOI DSV DSI

R(predicted by our model) 0.939 0.999 0.894 0.994 0.927 0.995 0.845 0.847

R(predicted by the step-by-step prediction model) 0.685 0.990 0.625 0.997 0.644 0.977 0.827 0.823
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We applied the constructed model to a series of flight simulation tasks with eight different display suits. Sta-
tistical characteristics including probability of fixation on AOIs and probability of fixation shift between AOIs 
were estimated. High correlation coefficients between each statistical characteristic predicted by the model and 
obtained through simulation experiments verify the accuracy of the model.

Despite promising results, there are some open questions. Current study assumes SA remains constant 
between two fixations. Actually, limited by the capacity of memory, SA decays toward the initial state during 
the course of time if no more information is observed. A more plausible future extension would be taking the 
effect of SA decay into account to improve the eye movement model. In addition, predicting SA errors in human 
reliability analysis on the basis of the proposed model in this study is an another challenging topic for future 
research. Finally, more algorithms to predict multiple-step fixation choices can be studied to optimize time 
execution performance.

For possible application, the proposed method can be generalized to modeling experienced operators’ moni-
toring behavior for maintaining high-level SA in complex dynamic interactive tasks. Except for aviating task, the 
proposed method can be applied to modeling human eye movement in a car-driving task, modeling monitoring 
of nuclear power plant or chemical plant operators, and so on. What is more, the eye movement predicted by 
the model can contribute to figuring out how situation awareness would develop under given certain conditions 
and predicting the delay time for the establishment of SA.

Data availability
The data that supports the findings of this study is available from Ref 32. Request for complete result data should 
be addressed to Haiyang Che.
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