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Glioma is the most common primary malignant tumor in the central nervous

system, and directly affects the quality of life and cognitive function of patients.

Ferroptosis, is a new form of regulated cell death characterized by iron-

dependent lipid peroxidation. Ferroptosis is mainly due to redox imbalance

and involves multiple intracellular biology processes, such as iron metabolism,

lipid metabolism, and antioxidants synthesis. Induction of ferroptosis could be a

new target for glioma treatment, and ferroptosis-related processes are

associated with chemoresistance and radioresistance in glioma. In the

present review, we provide the characteristics, key regulators and pathways

of ferroptosis and the crosstalk between ferroptosis and other programmed

cell death in glioma, we also proposed the application and prospect of

ferroptosis in the treatment of glioma.
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1 Introduction

Ferroptosis is an iron-dependent regulated cell death driven by the peroxidation

damage of phospholipid-containing polyunsaturated fatty acyl tails (PUFA-PLs) on the

cell membrane or organelle membrane and subsequent membrane rupture (1). This non-

apoptotic form of cell death triggered by erastin was first named in 2012 (2). Induced

ferroptosis has been shown to be efficacious in eliminating drug-resistant tumor cells in

various studies (3). Glioma is characterized by rapid proliferation and treatment

resistance, and studies have demonstrated that inhibition of ferroptosis promotes

malignant transformation, proliferation and angiogenesis in glioma (4, 5), so induction

of ferroptosis is a promising research direction.

Herein, we summarize the processes of ferroptosis in glioma, the current findings on

ferroptosis in glioma, which include some of the pivotal regulators and pathways relevant to
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ferroptosis and the crosstalk between ferroptosis and other

programmed cell death including apoptosis, autophagic cell

death, necroptosis and pyroptosis. Treatment resistance is an

essential contributor to poor prognosis. Therefore, we focus on

the relationship between ferroptosis-related metabolic processes

and treatment resistance in glioma, and present the role of

ferroptosis as well as its prospects in glioma treatment. The

therapies include systemic therapy (especially temozolomide

chemotherapy), radiotherapy, immunotherapy, and nanotherapy.
2 Regulation of ferroptosis in glioma

Iron metabolism, lipid peroxidation and antioxidant system,

the imbalance among these three is a trigger for ferroptosis

(Figure 1) . A complex regulatory network exists within the cell

to regulate iron metabolism. Research indicates that free iron

abundance promotes lipid peroxidation through the

accumulation of reactive oxygen species (ROS) and the

activation of iron-containing enzymes (6). Antioxidant systems

in cells against ferroptosis mainly include Cysteine (Cys),

glutathione (GSH), and glutathione peroxidase 4 (GPX4) axis

(7) (Figure 1).
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2.1 Iron metabolism

2.1.1 Iron metabolism in ferroptosis
Intracellular iron is strictly regulated. Most iron in cells is

ligated by heme, stored in ferritin, an iron storage protein, or

exists in the form of Fe-S clusters. Nevertheless, a small amount

of labile iron is present in the cells and it is inclined to catalyze

the formation of ROS (8, 9) (Figure 2). Iron mediates non-

enzymatic peroxidation of lipid through Fenton reaction (8).

The process of enzymatic peroxidation is iron-dependent

because it requires the participation of iron-containing

enzymes, such as ALOXs, NOXs, and CYP (10, 11).

Iron binds efficiently to extracellular transferrin, which has

an important role in ferroptosis, and is released from transferrin

when the iron is delivered to acidic endosomes via receptor-

mediated endocytosis (10, 12). Transferrin transports iron into

cells via transferrin receptors (TfR), TfR RNAi significantly

inhibited cell death (12). Endosomal iron can be delivered to

the cytoplasm via DMT1, ZIP8, ZIP13 and ZIP14 (13). Then

PCBP1 delivers cytosolic iron to ferritin (an important iron

storage protein in cells), non-heme iron enzymes and some

other proteins (13, 14). PCBP2 is a DMT1-binding protein that

transfers ferrous iron to the appropriate intracellular site or

solute carrier family 40 member 1 (SLC40A1) (14). Nuclear

receptor coactivator 4 (NCOA4)-mediated ferritinophagy is a

form of selective autophagy that facilitates ferritin degradation

leading to Fe2+ release (15). Transferrin and receptors promote

ferroptosis by increasing intracellular iron content, whereas

SLC40A1-mediated iron export inhibits ferroptosis (16).

Additionally, ferroptosis is regulated by the iron-regulatory

proteins (such as ACO1 and IREB2) at the translational level.

Some mitochondrial proteins, such as cysteine desulfurase

(NFS1), iron–sulfur cluster assembly (ISCU) and frataxin (17),

restrain ferroptosis by increasing the synthesis of Fe-S clusters in

cells (Figure 2).

2.1.2 Iron transport in brain
Iron is an essential cofactor for many metabolic processes in the

central nervous system (CNS), including DNA synthesis in

neurons, oxidative phosphorylation, neurotransmitter production

and oxygen transport (18, 19). However, brain is a very special

organ in the human body, it is hidden behind the blood-brain

barrier (BBB) with very low permeability, which limits its access to

many substances (such as iron). Iron transport relies on the

expression of TfR by vascular endothelial cells in the BBB.

Transferrin binds to TfR expressed at the luminal membrane of

endothelial cells. The transferrin-receptor complex will be

internalized and then transported to the abluminal side of the

endothelium. There, it will be exposed to the local

microenvironment, which leads to the release of iron (18).

Transferrin synthesized by oligodendrocytes combines with most

of the iron that crosses the BBB after iron oxidation (20) (Figure 2).
FIGURE 1

The core mechanisms related to ferroptosis. Free iron promotes
intracellular ROS accumulation through the Fenton reaction,
leading to lipid peroxidation and ferroptosis. The antioxidant
system inhibits the lipid peroxidation process to prevent
ferroptosis. Imbalance of iron metabolism, lipid peroxidation and
antioxidant system leads to the occurrence of ferroptosis.
Abbreviations: TfR, transferrin receptor; ROS, reactive oxygen
species; Cys2, cystine; Cys, Cysteine; GSH, glutathione; GPX4,
glutathione peroxidase 4; PUFA-PL, polyunsaturated fatty acid-
containing phospholipid.
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2.1.3 Iron metabolism in glioma
Compared to normal cells, tumor cells are more dependent

on iron. In glioma, reprogrammed iron metabolism is regarded

as a core factor in tumorigenesis, progression and the tumor

microenvironment (21, 22). Transferrin receptor 1 (TfR1)

controls the rate of iron uptake by glioma cells by regulating

the amount of iron delivered to cells to meet metabolic

requirements. Transferrin receptor 2 (TfR2) is frequently and

highly expressed in gl ioblastoma (GBM) (23, 24) .

Immunohistochemistry of some GBM tissue samples with TfR

mAbs exhibited a high rate of positivity (25). TfR2 expression in

normal tissues is restricted, but a frequent expression of TfR2 on

cancer lineages of distinct origins can be observed. It suggests

that expression of TfR2 by tumor cells, along with increased

expression of TfR1, may be a strategy for tumor cells to obtain

optimal iron input (23).

Changes in transferrin and receptors can affect cellular iron

content and may lead to the development of ferroptosis. Ferritin,

composed of ferritin heavy chain (FTH1) and ferritin light chain

(FTL), is an iron storage protein in cells. Recent findings strongly

support the hypothesis that glial tumors synthesize and secrete

ferritin (26, 27). Iron requirements are increased in glioblastoma

stem cells, so high levels of cytoplasmic ferritin may protect cells

from ferroptosis by enhancing iron chelation (28).
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2.1.4 Iron metabolism promotes glioma
progression

Growing evidence suggests that iron metabolism-related

processes in glioma cells contribute to tumor progression.

GBM patients have elevated serum ferritin levels, probably due

to the inflammatory state, and high serum ferritin levels are

associated with poor prognosis (27). In glioma, high expression

of TfR mediates intracellular iron accumulation and ROS

formation, and promotes tumor proliferation. It also promotes

an NMDA-receptor-mediated decrease in the number of

neurons (29). Elimination of neurons is necessary for glioma

cells to acquire space for growth. In addition, FTL is

overexpressed in glioma (30). The oncogenic effect of FTL is

mediated through the regulation of AKT/GSK3b/b-catenin
signaling. It is proven that FTL promotes migration, invasion

and chemoresistance in glioma (30).

2.1.5 Iron metabolism and glioma
treatment resistance

Notably, changes in iron metabolism are probably associated

with the malignant transformation of glial cells and the degree of

malignancy of glioma. The higher the grade of glioma, the

correspondingly stronger the treatment resistance effect it has.

Purified ferritin from glioblastoma-derived cell line has marked
FIGURE 2

Iron metabolic processes involved in ferroptosis in glioma. BBB consists of ECs, basement membrane, pericytes, and astrocytic end feet. Iron
transport depends on the TfR of vascular ECs in the BBB. Transferrin carries iron, the transferrin-receptor complex is internalized and then
transported to the abluminal side of the endothelium. Transferrin combines with most of the iron that crosses the BBB, iron is then delivered to
cells. In the cell, iron is released from transferrin in acidic endosomes. Endosomal iron can be delivered to the cytoplasm via DMT1, ZIP8, ZIP13
and ZIP14. Intracellular iron can be transported out of cells by SLC40A1, utilized by mitochondria for the synthesis of heme and Fe-S, and stored
in ferritin. The iron in ferritin can be released by NCOA4-mediated ferritinophagy. Abbreviations: BBB, blood brain barrier; EC, endothelial cell;
TfR, transferrin receptor; SLC40A1, solute carrier family 40 member 1; NCOA4, nuclear receptor coactivator 4.
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apoptosis-stimulating activity and are inhibited by neutralizing

anti-ferritin antibody Ab rH02, however, isoferrin released from

cultured neonatal astrocytes did not show this activity,

suggesting that the transition of astrocytes to a malignant

phenotype is accompanied by alterations in iron metabolic

processes (26). And research demonstrated that the extent of

TfR expression in glioma is positively correlated with tumor

grading (29). FTL expression is also elevated in high-grade

glioma (30). The main result of these changes is increased iron

uptake by glioma cells. While iron may differentially affect the

effectiveness of treatment by activating ROS production and/or

signaling pathways including HIF-1 or IRP-1 recruitment (31).

In recent years, an increasing number of studies have found

that the inevitability of treatment resistance and recurrence in

GBM may be due to the presence of cancer stem-like cells

(CSCs) (32). Owing to the nature of enhanced resistance to

conventional chemo/radiotherapy and metastasis, CSCs have

been proposed as promising targets for cancer eradication (33).

Basuli et al. found that iron uptake by GBM CSCs is 2-3 folds

higher than that of non-stem cell tumor cells (22). This

alteration in iron metabolism is likely to be related to the

treatment resistance of GBM CSCs. Expression of stemness-

related markers has been proven to be affected by iron chelators,

therefore targeting iron metabolic processes in CSCs is

promising for reducing tumor cell therapeutic resistance (32).
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2.2 Lipid metabolism

2.2.1 Lipid metabolism in ferroptosis
In ferroptosis, the most essential process related to lipid

metabolism is lipid peroxidation. Oxidized lipid disrupts and

distorts the bilayer membrane. Oxidized lipid clusters in

membranes destroy their barrier function by formation of

hydrophilic pores, leading to ferroptosis (34).

Polyunsaturated fatty acid (PUFA)-containing membranes

are susceptible to oxidation (6, 13) (Figure 3). Long-chain fatty

acid–CoA ligase 4 (ACSL4) has a preference for long-chain

PUFAs such as arachidonic acid (AA) and adrenic acid (AdA).

In an ATP-dependent manner, ACSL4 catalyzes the binding of

AA or AdA to coenzyme A to form derived AA-CoA or AdA-

CoA (35, 36), which are then esterified under the catalysis of

LPCAT3 and f o rm PUFA-PE by r e a c t i o n w i t h

phosphatidylethanolamine (PE). Then lipoxygenases (LOXs)

are required for ferroptosis to oxidize AA-PE and AdA-PE to

hydroperoxides AA–PE-OOH and AdA–PE-OOH (13, 37). Six

arachidonic acid lipoxygenase (ALOX) genes in humans

(ALOX5, ALOX12, ALOX12B, ALOX15, ALOX15B and

ALOXE3) have distinct expression profiles in different tissues

(37). Other contributors of fatty acids include Acetyl-CoA

carboxylase (ACC)-mediated fatty acid synthesis (38), and

lipophagy-mediated fatty acid releasing (6).
FIGURE 3

Lipid peroxidation and antioxidant processes in ferroptosis. System xc- contains two subunits, SLC7A11 and SLC3A2, which mediate the
transport of Cys2 and Glu. Cys2 is an ingredient for the synthesis of GSH, which together with GPX4 acts as the reductant for the inhibition of
ferroptosis. Cys can also be generated via the transsulfuration pathway. PUFA undergoes a series of oxidation reactions and the product PUFA-
PL-OOH leads to the occurrence of ferroptosis. Fenton reaction contributes to lipid peroxidation. P53 and BECN1 function as inhibitors of
SLC7A11, while Nrf2-Keap1 pathway promotes the expression of this subunit. Abbreviations: Cys2, cystine; Glu, glutamate; GSH, glutathione;
GPX4, glutathione peroxidase 4; Cys, Cysteine; PUFA-PL, polyunsaturated fatty acid- containing phospholipid; Nrf2, nuclear factor erythroid 2-
related factor 2.
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2.2.2 Lipid metabolism in glioma
Increased fatty acid synthesis and increased cholesterol

uptake are considered to be features of malignant glioma. The

altered lipid metabolism may mediate the resistance to

chemotherapy and radiotherapy in GBM (39). Lipid

peroxidation also contributes significantly to treatment

resistance (40). Therefore, targeting glioma lipid regulation is

one of the therapeutic strategies. The levels of PUFA are much

higher in glioma than in normal brain tissue (41). However,

glioma cells can appropriately reduce lipid peroxidation during

lipid metabolism to avoid ferroptosis. It is notable that ACSL4

protein expression level was found to be decreased in glioma

cells and BAO et al. found that knockdown of ACSL4 reduces

ferroptosis and stimulates cell proliferation in glioma cells. In

contrast, ACSL4 overexpression decreased the expression of

GPX4, while upregulating the expression of ferroptosis

indicators such as 5-HETE (5). Liu et al. reported a significant

difference in the expression of ALOX5 in glioma and normal

brain tissue (42). The above studies prove that many differences

in lipid metabolism exist between glioma and normal tissues.
2.3 Cys, GSH, and GPX4 axis

2.3.1 Cys, GSH, and GPX4 axis in ferroptosis
The Cys2/Glu antiporter system xc-, which is composed of

two subunits SLC7A11 and SLC3A2, is needed to import cystine

(Cys2) into cells for subsequent GSH synthesis (6). In the cell,

Cys2 is oxidized to Cys, which is then synthesized with glutamate

(Glu) by glutamate-cysteine ligase (GCL) to form GGC, and

subsequently synthesize GSH catalyzed by glutathione

synthetase (GS) (43). A cycle can be envisaged in which Glu

can enter the cell via its transporter protein and be exported via

the xc- reverse transport system, thus supporting the cellular

uptake of Cys2 (44). Cys for GSH synthesis can also be obtained

from protein degradation within the lysosome and

transsulfuration pathway (44). Transsulfuration promotes the

sulfur oxidation of homocysteine/methionine. Methionine is

converted to homocysteine via the transsulfuration pathway,

which is then converted to cystathionine and finally to Cys under

the catalysis of cystathionine-g-lyase (45, 46). GPX4 exhibits

excellent resistance to irreversible peroxidation in the utilization

of GSH to reduce hydrogen peroxide (H2O2) or organic

hydroperoxides to water or the corresponding alcohols, while

GSH is oxidized to glutathione disulfide (GSSG) (47,

48) (Figure 3).

2.3.2 Cys, GSH, and GPX4 axis in glioma
System xc- is vital in the survival of glioma cells. In

glioblastoma cells, most of the Cys is derived from the

reduction of Cys2 imported by the system xc- (46). Cancer cells

exhibit higher ROS levels compared to normal cells (49), and this
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leads to higher expression of NOXs and GPX4. Cancer cells can

use GSH to reduce oxidation products and inhibit cell death,

causing resistance to treatment (50). In GBM cells, high GSH/

GPX4 levels induce epithelial-mesenchymal transition, leading to

tumor progression, metastasis and chemoresistance (50).
3 Current status of ferroptosis
studies in glioma

3.1 Regulators and pathways

3.1.1 SLC7A11/xCT
Several studies have documented that glioma cells

upregulate the expression of SLC7A11 (xCT). Regulation of

SLC7A11 does not alter cel l prol i ferat ion, but its

overexpression increases the growth of anchorage-independent

cells (51). Increased SLC7A11 expression correlates with tumor

invasion and prognosis in patients with GBM. SLC7A11 is an

independent predictive factor in GBM (52).

A number of studies have reported that the system xc- is

related to many properties of glioma cells. For example, system

xc- is the main pathway of the release of glutamate, glutamate

excitotoxicity kills surrounding neurons, thus enhancing tumor

invasion and growth. Glutamate release from glioma is also

considered to be associated with tumor-associated seizures (53).

High expression of SLC7A11 becomes an independent

biomarker of seizures (54). Overexpression of SLC7A11 in

anti-VEGF-treated GBM cells results in elevated extracellular

glutamate. Glutamate promotes regulatory T (Treg) cells

proliferation, activation, and suppressive function (55). This

immunosuppression can be alleviated by reducing Treg cells to

enhance the antitumor effect. In recent years, the relationship

between SLC7A11 and cellular ferroptosis has also been

elucidated. SLC7A11 promotes the absorption of Cys2, which

in turn supports GSH synthesis and inhibits ferroptosis in tumor

cells. This has also resulted in the birth of many drugs. In

addition, although Cys2 uptake is essential for antioxidant

protection of cancer cells against ferroptosis, Cys2 transport

through SLC7A11 can also induce oxidative stress and cell

death in glucose-deprived glioblastoma cells (56). Moreover,

some research reported that cell survival under glucose

deprivation conditions also depends on cell density. High cell

density inactivates mTOR and promotes lysosomal degradation

of SLC7A11, enhancing the viability of GBM cells under glucose-

restricted conditions (57). While EGF contributes to cell death

under glucose-deprived conditions by upregulating SLC7A11 at

the transcriptional and protein levels (58). SLC7A11

overexpressing U251 glioma cells exhibit actin cytoskeletal

changes reminiscent of epithelial-like cells and display an

increased CSC-like phenotype, which might cause tumor drug

resistance and recurrence (59).
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3.1.2 p53
The p53 gene has been identified as the most commonly

mutated tumor suppressor gene in human cancers. It can

transcriptionally regulate a range of genes to modulate DNA

damage repair, cell cycle arrest, senescence, apoptosis and

ferroptosis (60). Previous results showed that almost 50% of

glioma samples have tumor protein p53 (TP53) mutations. This

number is even higher when alterations in the p53 pathway are

taken into consideration. The p53 gene or pathway is more

frequently mutated in astrogliomas and GBM (60, 61). The

regulatory network for p53 expression in glioma cells is very

complex. The latest report has verified that p53 in glioma reduces

MDM2 levels by inducing expression of miR-29a, thus reducing

the degradation of p53 by MDM2, forming a feedback loop (62).

The role of p53 has a double-sided regulation mode in cells.

p53, the first gene to be studied for increased susceptibility to

ferroptosis, can inhibit the transcription of SLC7A11, leading to Cys

deprivation. It was demonstrated that p53 downmodulates the level

of histone H2Bmonoubiquitination (H2Bub1), which is involved in

ferroptosis regulation by controlling the expression of the

downstream gene SLC7A11 (63). P53 acts on glutaminase 2

(GLS2) to increase GSH hydrolysis, causing GXP4 inactivation. It

also acts on lipid peroxide synthase to increase cellular susceptibility

to ferroptosis (63, 64). SAT1, as a transcriptional target of p53,

induces lipid peroxidation and allows cells to undergo ferroptosis in

response to ROS-induced stress (65). It has been reported that

TP53-induced glycolysis and apoptosis regulator (TIGAR) are

direct targets of ferroptosis mediated by p53. TIGAR and

cytochrome c oxidase 2 (SCO2) promote the pentose phosphate

pathway (PPP) which is engaged in the production of NADPH, a

reducing agent during ferroptosis. Additionally, PVT1 may mediate

the role of p53 in promoting ferroptosis (63). MDM2 and MDMX,

negative regulators of p53, normally promote ferroptosis (66). TP53

can prevent ferroptosis by inhibiting dipeptidyl-peptidase-4 (DPP4)

activity and relevant findings have suggested that DPP4 is a key co-

ordinator of lipid metabolism in colorectal cancer (67). Nucleotide

synthesis is an essential cellular metabolic process, and a recent

report indicates that the p53 pathway can inhibit the expression of

ribonucleotide reductase, leading to GSH accumulation and the

avoidance of ferroptosis (68). P53 could positively and negatively

regulate ferroptosis (69), the role of p53 in ferroptosis needs to be

further elucidated. Nevertheless, the role of p53 is influenced by

several factors, such as cell type and p53 mutation. In normal

tissues, wild-type p53 exhibits positive regulation of ferroptosis to

prevent the accumulation of genetic mutations but inhibits

ferroptosis to protect cells under stressed conditions (63, 70). In

tumors, other ferroptosis regulators supersede the role of p53, and

the effect of wild-type p53 appears to be limited. Conversely, mutant

p53 renders tumor cells sensitive to ferroptosis (70). In summary,

studies on the ferroptosis-related pathways involved in p53 in

glioma and their distinction from other tumors are not numerous

and deserve further study in the future.
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3.1.3 BECN1/Beclin1
BECN1, a haploinsufficient tumor suppressor gene (71), its

dysfunction is correlated with many diseases, including

carcinoma and neurodegeneration (72). BECN1 is a core

autophagy protein essential for the autophagosome nucleation

phase in mammals. ROS levels are higher in cancer cells

compared to normal cells, and it is widely believed that high

ROS levels induce autophagy. Recent studies have demonstrated

that hTERT in GBM can reduce autophagy levels by inhibiting

BECN1, leading to increased ROS and ultimately cell death (73).

High expression of autophagy-related proteins such as BECN1 is

more pronounced in high-grade glioma than in low-grade, so

BECN1 might be a prognostic marker for glioma patients (74).

The role of BECN1 in ferroptosis has also received attention

in recent years. Experimental data demonstrated that BECN1

does not influence intracellular iron accumulation or expression

related to iron metabolism (75). BECN1 promotes ferroptosis by

the direct blockade of the SLC7A11 subunit of system xc-.

AMPK-mediated phosphorylation of the BECN1 Ser90/93/96

sites is essential for BECN1 to form a complex with

SLC7A11 (76).
3.1.4 SOCS1
Suppressor of cytokine signaling 1 (SOCS1) has been

demonstrated to be a tumor suppressor capable of bridging p53

and ATM at sites of DNA damage, leading to p53

phosphorylation and consequently increasing its transcriptional

activity (77). It has been proven that the expression of SOCS1

decreases the levels of SLC7A11 and GSH in cells, suggesting its

ability to sensitize cells to ferroptosis (78). Ferroptosis-related gene

SOCS1, has become a biomarker for the diagnosis or prognosis of

many diseases, such as tuberculosis (79), AML (80) and head and

neck squamous cell carcinoma (HNSCC) (81).

The effects of SOCS proteins in GBM have recently become a

research hotspot. SOCS inhibits proliferation and angiogenesis

of GBM through the negative regulation of the JAK/STAT3

signaling pathway and SOCS proteins can also control the

invasion and metastasis of GBM through multiple pathways

(82). Evidence indicated that SOCS1 and SOCS3 might be

involved in tumor aggressiveness and radiation tolerance (83).

It has been implicated that SOCS1 tends to be repressed in GBM

as a result of CpG island-mediated epigenetic silencing of the

SOCS1 locus. Reintroduction of SOCS1 can sensitize cells to

radiation (84). Mutation status of p53 may have a regulatory role

in the transcriptional plasticity of the SOCS1 promoter (85).

Increasing SOCS1 expression appears to simultaneously induce

ferroptosis and improve radiotherapy sensitivity, and SOCS1 is a

possible therapeutic target for glioma. However, SOCS1 is

involved in a complex regulatory network, and the role of

SOCS1 in inducing ferroptosis in glioma cells is currently

less known.
frontiersin.org

https://doi.org/10.3389/fonc.2022.993316
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2022.993316
3.1.5 Frataxin
Frataxin, a highly conserved protein, is localized in the

mitochondrial matrix and is involved in the biosynthesis of

Fe-S clusters. Frataxin is a key regulator of ferroptosis via the

regulation of iron homeostasis and mitochondrial function (86).

Frataxin can accelerate the rate of persulfide formation on NFS1,

promoting Fe-S cluster synthesis (87). Suppression of frataxin

significantly inhibits proliferation, disrupts mitochondrial

morphology, blocks Fe-S cluster assembly and exacerbates iron

accumulation (86). Insufficient maintenance of Fe-S clusters

strongly activates the iron starvation response and combines

with inhibition of GSH biosynthesis (88). It has been shown that

frataxin has a tumor suppressive effect, but it has a dual, pro-

proliferative role in astrocytic tumors (89).

3.1.6 Nrf2-Keap1 pathway
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical

transcription factor in the cellular response to oxidative stress.

Nrf2-dependent transcription is repressed by Keap1 under basal

conditions, when cells are exposed to oxidative stress, Nrf2

escapes repression and activates antioxidant responsive

element (ARE)-dependent gene expression (90). Nrf2 is

overexpressed in GBM cells and associated with poor

prognosis (91). Nrf2-Keap1 pathway is involved in ferroptosis

in glioma. Activation of Nrf2-Keap1 signaling can upregulate

SLC7A11. It was also found that fostering Nrf2 expression and

inhibiting Keap1 both increase the resistance to ferroptosis in

glioma cells.

3.1.7 COPZ1/NCOA4/FTH1
COPZ1 expression is upregulated in GBM cell lines and it

has a tendency to negatively regulate the activity of NCOA4.

Knockdown of COPZ1 leads to an increase of NCOA4,
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contributing to the degradation of ferritin, which leads to

increased intracellular ferrous iron levels and eventually to

ferroptosis. Thus, the COPZ1/NCOA4/FTH1 axis is a novel

therapeutic target for the treatment of GBM (92). Targeting

pathways including NCOA4 may be a promising approach for

the treatment of glioma.
3.2 Crosstalk between ferroptosis,
apoptosis, autophagic cell death,
necroptosis and pyroptosis in glioma

Apoptosis, autophagic cell death, necroptosis, pyroptosis

and ferroptosis represent a group of highly ordered

programmed cell death (PCD) events that can eliminate cells

that are running chaotically or destined to die. In tumor cells,

survival signaling and programmed death resistance (such as

apoptosis resistance) are two complementary aspects. Targeting

increased survival may not be effective without also addressing

cellular PCD resistance (93, 94). Therefore, it is especially

necessary to explain the process of PCD and the crosstalk

between them, which might provide new strategies for

tumor treatment.
3.2.1 Apoptosis
Apoptosis is a relatively early discovery and well-studied

PCD, and here we will present some findings about the

intersections of ferroptosis and apoptosis in glioma (Figure 4).

In GBM cells, ROS controls cellular stability by affecting

different signaling pathways. It is a pivotal participant in the

occurrence of ferroptosis. It has been found that excess ROS can

also induce apoptosis (95). ROS may act as a key substance in the

onset of apoptosis and ferroptosis in GBM cells. As a tumor
FIGURE 4

Crosstalk between ferroptosis, apoptosis, autophagic cell death, necroptosis and pyroptosis in glioma. The dotted lines represent possible
intersections and require more research to elucidate.
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suppressor molecule, p53 increases ferroptosis susceptibility and

can also induce cell cycle arrest and apoptosis. Dysregulated p53

pathway is relevant to apoptosis evasion (96). We have

previously mentioned that system xc- mediates the toxic

secretion of most glutamate from GBM cells, and its inhibition

induces ferroptosis. A recent study revealed that the suppression

of extracellular glutamate release promotes apoptosis and

autophagy in GBM cells (97). Moreover, RSL3 (a GPX4

inhibitor) was found to drive ferroptosis via NF-kB pathway

in GBM cells (98), and NF-kB pathway is also involved in

apoptosis (99, 100). Down-regulation of FANCD2 and CD44

expression by sponging hsa-miR-27a-3p promotes apoptosis

and ferroptosis in glioma cells, the pathways involved might

also be intersections of apoptosis and ferroptosis (101).

Mitochondria are known to be involved in various PCD

processes including apoptosis, and the role of mitochondria in

ferroptosis is gradually being discovered and the connections

deserve further studies (102, 103).

3.2.2 Autophagic cell death
Autophagic cell death, independent of caspase, can be

defined as cell demise with strict requirements for autophagy

(104, 105). In tumors, autophagy has both pro-survival and pro-

death functions (106). Nevertheless, autophagic cell death

exhibits extensive autophagic degradation (104). GBM cells

have lower levels of autophagy-related proteins compared to

low-grade astrocytomas (107). Autophagy is an attractive target

for anti-cancer therapy (108).

Similar to apoptosis, p53 and excess ROS also induce

autophagy in GBM cells (95, 107). NF-kB is released from the

BNIP3 promoter and permits the action of E2F1 to induce

autophagy under hypoxic conditions (107). Epithelial

mesenchymal transition (EMT) promotes aggressive migration,

immunosuppression and drug/radiotherapy resistance of cancer

cells (109). EMT processes might also be linked to both

autophagy and ferroptosis in glioma. An increasing number of

studies have shown links between ferroptosis and EMT in tumor

cells. For instance, increased levels of H2O2 associated with EMT

confers susceptibility to ferroptosis (110). The crosstalk between

autophagy and EMT processes is complex. In the early stages of

metastasis, autophagy primarily inhibits the EMT programme,

and later, metastatic cells may require sustained autophagy for

survival under environmental and metabolic stress conditions

(111) (Figure 4).
3.2.3 Necroptosis
Necroptosis is a newly found PCD that combines necrosis

and apoptosis. It is regulated by caspase-independent pathway

and has morphological characteristics of necrosis (112, 113).

Necroptosis is regulated by receptor-interacting protein (RIP) 1

activation (114).
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Cys plays important roles in ferroptosis and necroptosis. The

three cysteines in RIP1 form intermolecular disulfide bonds,

which induce ROS generation and consequently RIP1

autophosphorylation, promoting necroptosis (114).

Necroptosis can also be induced by high levels of intracellular

ROS (115). Meanwhile, Cys is involved in the synthesis of GSH

to inhibit ferroptosis. Mitochondrial permeability transition

pore (MPTP) opening and heat shock protein 90 (HSP90) also

could be the intersections between ferroptosis and necroptosis

(114) (Figure 4).

3.2.4 Pyroptosis
Pyroptosis is a novel PCD mediated by gasdermin D protein

and triggered by certain inflammasomes (116, 117). Pyroptosis

can affect tumor proliferation, invasion and metastasis (117).

Recent studies have revealed its role in gastrointestinal cancer,

hepatocellular carcinoma, breast cancer and other cancers

(118–121). Pyroptosis is a vital regulator of the immune

microenvironment and a prognostic predictor in glioma (122),

and relevant studies are currently limited.

Lipid also seems to be associated with pyroptosis induction.

Substantial lipid aggregation induces activation of pyroptosis

signaling pathways in the formation of vulnerable

atherosclerotic plaques (123). Lipid peroxidation can drive

pyroptosis in lethal polymicrobial sepsis (124). Lipid levels are

elevated in glioma cells and the metabolism of lipid is critical in

ferroptosis, but it is unclear whether lipid in glioma contributes

to pyroptosis. Nitric oxide (NO) is involved in cell proliferation,

cardiovascular formation and apoptosis in glioma (125, 126).

Many recent studies have indicated that inhibition of NO

mediates the processes of ferroptosis and pyroptosis (127). It

has also been mentioned that CD8+ T cells can suppress tumor

growth by triggering ferroptosis and pyroptosis (128). The

intersections and shared pathways of ferroptosis and

pyroptosis in gl ioma require more research to be

elucidated (Figure 4).
4 Ferroptosis in therapy of glioma

The applications of ferroptosis in the treatment of glioma are

promising, and the induction of ferroptosis or ferroptosis

inducers in combination with other treatments have proven to

be effective in a variety of glioma cell lines, tissues, and animal

models (Table 1), but the clinical applications currently have yet

to advance.
4.1 Therapeutic resistance in glioma

Glioma comprises 40% of all primary brain tumors and is a

serious threat to human life. In particular, GBM is the most
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common and aggressive primary CNS malignancy, with a

median survival of only 15 months despite various treatments

including surgery, temozolomide (TMZ) chemotherapy, and

radiotherapy (136, 137). The resistance of tumor cells to these

therapies is an important reason for the poor prognosis.

The drivers of chemoresistance in glioma can be simply

attributed to the influence of genetic aspects and the effects of the

external environment. Altered expression of multidrug

resistance (MDR)-related genes correlates with reduced

treatment responsiveness (138). It has been observed that

glioma can exhibit overexpression of ABC transporter

proteins, which decrease therapeutic drug accumulation in

tumor cells and are directly related to the chemoresistance

(139). Further, this resistance is also associated with the DNA

damage response of tumor cells (140), the mismatch repair

system (141, 142), MGMT status (143, 144), and the regulation

of a large number of microRNAs which involves a complex

regulatory network consisting of various intracellular molecular

signaling pathways (145–150). Tumor microenvironment

containing endothelial cells, immune cells, stromal cells,

noncellular factors and special conditions, also supports

chemoresistance of tumor cells especially CSCs (140, 151). BBB

prevents almost all large molecules and more than 95% of small

molecules from entering the brain, resulting in unsatisfactory

chemotherapy for glioma (152).

With some similarities to chemoresistance, the tumor

microenvironment also plays an important role in

radioresistance, and multiple signaling pathways (AKT

pathway, notch pathway, Wnt/b-catenin pathway, STAT3

pathway and other pathways), proteins and microRNAs in

differentiated glioma cells or CSCs have been shown to affect

radiation resistance (153). Tumor cell networks with high cell

density also have a significant resistance function. Research has

revealed that the perivascular niche (the preferential location of

quiescent glioma cells) and the formation of a multicellular

network by tumor microtubules are involved in radiotherapy

and chemotherapy resistance (154). Heterogeneity within GBM
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(regional genetic variance and cellular hierarchies often

regulated by different CSC niches) is accepted as the basis for

resistance to multiple treatments (155, 156). Moreover, the close

association between hypoxia and resistance to radiotherapy in

glioma, especially in GBM, deserves attention. Severe hypoxia is

more common in GBM than in lower-grade glioma (157).

Oxygenation is essential to the effectiveness of radiotherapy.

Hypoxia also stimulates enzymes responsible for cancer survival

under hypoxic stress via upregulation of HIF (158).

GBM is highly immunosuppressive and has multiple

immune evasion mechanisms (159). Due to the special

structure of the brain such as BBB, its immune environment is

unique (160, 161). In brain tumor patients, immunological

dysfunction is a major obstacle to immunotherapy (155). Some

infiltrating immune cells in the tumor microenvironment such

as Treg cells (162), myeloid-derived suppressor cells (163),

etc. are also engaged in immunotherapy resistance. And

the molecular heterogeneity of GBM hinders efforts to

identify high-quality clonal neoantigens (155). In addition,

glioma cells have potent adaptive and acquired resistance

mechanisms, which involve genetic alterations shaped by

immunological pressure (164). Probably the use of combined

immune checkpoint blockade to overcome adaptive resistance is

one solution (165).

Since therapeutic resistance is a major impediment to glioma

treatment, we will focus on the relationship between ferroptosis and

treatment resistance in various therapeutic approaches in the

following introduction. In addition, we will also present the role

and potential applications of ferroptosis in the treatment of glioma.
4.2 Systemic therapy

Chemotherapy and targeted therapy are critical aspects of

malignancy treatment. In glioma, TMZ remains the mainstay of

chemotherapy (166). However, drug resistance in glioma cells is

currently a major challenge. A growing number of studies
TABLE 1 The promising applications of ferroptosis in the treatment of glioma.

Therapy Type Mechanism Reference

Sulfasalazine Glioma SLC7A11 inhibition (129)

Sorafenib Glioma SLC7A11 inhibition (129)

Silibinin Glioma Silibinin downregulates SLC7A11 and depletes Cys in a time-dependent manner (130)

TMZ + Erastin Glioma Erastin sensitizes tumor cells to TMZ by blocking SLC7A11 and reducing cystathionine-g-lyase
function

(129)

TMZ + ALZ003 GBM ALZ003 sensitizes GBM to TMZ by inhibiting GPX4 (131)

TMZ + Sulfasalazine GBM Sulfasalazine enhances the cytotoxicity of TMZ (132)

Lapatinib + Siramesine Glioma Inducing ferroptosis by increasing iron level (133)

Microbeam irradiation + IKE/RSL3/
sorafinib

GBM Enhancement of cytoplasmic lipid peroxidation (134)

Gamma knife radiosurgery + Sulfasalazine GBM Sulfasalazine inhibits SLC7A11 and promotes ferroptosis (135)
fro
TMZ, Temozolomide; IKE, Imidazole ketone erastin.
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suggested that ferroptosis may be related to this resistance and

that the efficacy of many drugs might also be associated with the

ferroptosis induction.
4.2.1 Temozolomide
TMZ was approved by the US Food and Drug

Administration (FDA) for the treatment of adult refractory

anaplastic astrocytoma in 1999 and newly diagnosed

glioblastoma in adults in 2005 (167). TMZ, the most effective

drug for the treatment of glioma, has the advantages of oral

administration, easy penetration of BBB, and acidic

environment stability. DNA methylation is regarded as the

principal mechanism of cytotoxicity of TMZ to malignant cells

(168). But its clinical efficacy is not ideal and glioma resistance to

TMZ is the most important reason for chemotherapy failure.

Ferroptosis has been shown to be linked to drug resistance of

TMZ, and clarifying this relationship facilitates the application

of ferroptosis to the clinical practice of glioma treatment.

Decreased GSH levels and GPX4 levels and inhibition of

SLC7A11 can induce ferroptosis through the production

of excess ROS. Chen et al. demonstrated that down-regulation

of GSH levels could sensitize GBM cells to TMZ. TMZ

significantly induces the expression of Nrf2 and ATF4

(Figure 5). Transcription factor Nrf2 can mediate TMZ

resistance via the synthesis and utilization of GSH, and

inhibition of Nrf2 increases the TMZ sensitivity of glioma cells

(169, 170). ATF4 promotes the expression of GSH and SLC7A11

to avoid ferroptosis in glioma cells, inhibition of ATF4 can

reduce the resistance of glioma cells to TMZ (171–173).

SLC7A11 expression is enhanced by TMZ via Nrf2 and ATF4
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activation pathway, and erastin-inhibited SLC7A11 enhances

TMZ toxicity (173). It has also been observed that anti-treatment

cells are GPX4-dependent and that loss of GPX4 function causes

ferroptosis (174). Cystathionine g-lyase (an enzyme involved in

the transsulfuration pathway) is induced by TMZ to increase the

supply of Cys (175). Overproduction of ROS is likely to be

important in enhancing TMZ sensitivity (Figure 5), sorafenib

alters TMZ sensitivity via autophagy and the JAK2/STAT3-AIF

axis, and this alteration can be reversed by ROS clearance (176).

It was also reported that the effectiveness of TMZ treatment is

related to p53 status (177).

Some agents that function as iron chelators to suppress

ferroptosis have been demonstrated to be associated with the

reversal of TMZ resistance. Deferiprone (also known as

ferriprox) is an orally active, brain-permeable drug. TMZ and

deferiprone combination therapy significantly reduces cell

viability in glioma cells (178). Curcumin, a component of the

Indian spice turmeric, is able to sensitize GBM cells to TMZ

treatment. The effect is achieved by enhancing apoptosis. The

combination treatment of curcumin and TMZ was observed to

have a synergistic effect in generating ROS, which may

contribute to therapeutic sensitization (131, 179).

TMZ resistance is also associated with iron metabolic

processes in glioma cells. In GBM patients treated with

radiotherapy and temozolomide, a highly significant correlation

was found between the level of TfR2 and overall survival (OS).

One of the reasons is that TfR2-positive cells are more sensitive to

TMZ (180, 181). Fluorescence density of PAMAM-PEG-Tf/TMZ

in TfR+ glioma stem cells (GSCs) was significantly higher than

that of matched non-stem cells and active apoptosis of tumor cells

could be observed after the uptake of PAMAM-PEG-Tf/TMZ,
FIGURE 5

The association between drugs such as temozolomide (TMZ) and ferroptosis in glioma cells and some factors influencing TMZ sensitivity. TMZ
increases the levels of Nrf2 and ATF4 and thus induces the expression of SLC7A11 and GSH via multiple mechanisms. Silibinin and sulfasalazine
inhibit the SLC7A11 subunit. TMZ facilitates Cys synthesis through the transsulfuration pathway. SLC7A11, GSH, and GPX4 suppress ROS
formation, while ROS promotes ferroptosis. ROS overproduction is likely to be important in enhancing TMZ sensitivity. Sorafenib, deferiprone,
and curcumin also increase the sensitivity of glioma cells to TMZ.
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suggesting that targeting transferrin receptors to deliver TMZ is a

potential GSC-mediated treatment method (182).

4.2.2 Sulfasalazine
Sulfasalazine is a drug widely used to treat a number of chronic

inflammatory conditions (183). It is also an established inhibitor of

system xc- (Figure 5). Sulfasalazine impacts on ferroptotic cell death

of tumors and has also been proven to alleviate glioma-related brain

edema and epileptic events (129, 183).

Sulfasalazine did not show significant benefit in a small,

discontinued phase I study, but it was not concluded to be

ineffective given the patients’ health status, etc. Sulfasalazine

might be used as an adjuvant treatment for malignant glioma

(183). The combination of TMZ and sulfasalazine was shown to

be cytotoxic to T98G and A172 cells, and sulfasalazine was found

to enhance the cytotoxicity of TMZ to human GBM cells (132).

Sulfasalazine and valproic acid drive GBM cell death through an

imbalance in the intracellular oxidative response, making this

drug combination a hopeful therapeutic strategy (184).

Many derivatives of sulfasalazine have been synthesized, and

further studies on the molecular structure of system xc- and its

combination mode with inhibitors may help guide the design of

potential inhibitors. SLC7A11 ligand models can be further

optimized to find powerful lead molecules for the discovery of

new drugs (185).

4.2.3 Silibinin
Silibinin has been shown to be effective in removing tumor cells

from breast cancer, colorectal cancer, glioma, etc. Silibinin is

believed to result in glioma cell death through the induction of

lethal autophagy, which is through the induction of oxidative stress-

mediated BNIP3-dependent AIF nuclear translocation (186).

Recent studies have found that silibinin leads to downregulation

of SLC7A11 and also depletes Cys in a time-dependent manner,

resulting in depletion of GSH and accumulation of ROS. BNIP3

plays an essential role in the functional performance of silibinin.

Reduction of ROS with the antioxidant GSH significantly prevents

silibinin-induced DNA double-strand breaks and glioma cell death

(130). Growing evidence suggests that silibinin-induced cell death is

likely to be associated with ferroptosis, but more studies are needed

to prove it.
4.3 Radiotherapy

Radiotherapy is a highly effective and targeted treatment for

cancers (181). The main molecular target of ionizing radiation

(IR) is DNA, leading to a whole range of DNA damage,

including double-strand breaks, cross-links and complex

chromosomal rearrangements (187). It also leads to an

increase in intracellular ROS by eliciting radiolysis of water

(187, 188). IR induces apoptosis, senescence, methuosis and
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other cellular outcomes (189). IR-induced DNA damage is

initially recognized by ataxia telangiectasia mutated (ATM),

and after a complex signaling cascade, this damage may

eventually be corrected by DNA repair mechanisms (190,

191). Tumor cells also inhibit apoptosis, and these

mechanisms also contribute to radiotherapy resistance (134).

Sensitizing cancer cells to radiation through alternative cell

death pathways (such as ferroptosis) is a promising way to

improve radiotherapy outcomes.

It was found that the antitumor efficacy of radiation may be

driven by triggering ferroptosis in some contexts, and that

ferroptosis inducers may effectively lead to radiosensitization

(134). Iron-containing water prior to radiotherapy has been

proven to stimulate glioma cell death through apoptosis and

ferroptosis, thereby increasing treatment efficiency (192). In U87

cell line of glioma, synergistic effects of erastin and RSL3 with

radiation promote clonogenic ferroptosis (134). A recent study

found that IR promotes the expression of ACSL4 in addition to

inducing ROS, suggesting a strong induction of ferroptosis by IR.

The researchers suggested that IR also induces adaptive responses

involving SLC7A11 or GPX4 induction to promote tumor cell

survival during radiotherapy, which is one of the reasons for

radioresistance. Inhibition of SLC7A11 or GPX4 induces

resensitization of radiation-resistant cancer cells to IR-induced

ferroptosis, leading to radiosensitization (193). The specific

mechanisms of these alterations need to be explored. Further,

the effect of in vivo radiation therapy is thought to be dependent

on the presence of CD8+ T cells, andWang et al. found that CD8+

T cells regulate tumor ferroptosis via IFNg (194, 195).
4.4 Immunotherapy

Current immunotherapy trials in glioma are focused on

immune checkpoint inhibitors, vaccines designed to induce

immune responses by increasing the recruitment of antigen-

specific effector T cells to tumor sites, chimeric antigen receptor

(CAR)-T cells, and oncolytic viruses (196). These approaches

have had some achievements, although there are currently many

obstacles to immunotherapy in glioma. In GBM, the

upregulation of immunosuppressive factors and recruitment of

Treg cells can be detected after CART-EGFRvIII infusion (197).

This suggests that multiple immune escape mechanisms in GBM

are challenging to overcome. We consider that identifying the

intersections of immunotherapy and ferroptosis in glioma may

be expected to improve therapeutic effectiveness.

Some association exists between immunotherapy and

ferroptosis. IFNg derived from CD8+ T cells activated by

immunotherapy and ATM activated by radiotherapy

synergistically inhibit SLC7A11, inducing ferroptosis in tumor

cells (194). Recent studies have shown that the ferroptosis

suppressors CD44, HSPB1, and SLC40A1 are significantly

associated with prognosis in GBM and correlated with
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immunosuppression. Acetaminophen might have an antitumor

function in GBM by regulating CD44, HSPB1, and SLC40A1 to

induce ferroptosis (198). Since most tumors including glioma

are much more immunoreactive to TfR1 than normal brain

tissue, this component may have the necessary properties to be a

target for brain tumor immunotherapy (23). In glioma

microenvironment, enhanced ferroptosis was shown to induce

immune cell activation and infiltration, but weakened anti-

tumor cytotoxic killing (199).
4.5 Nanotherapy

Technological advances promote new nanoscale diagnostic

and therapeutic approaches in cancer medicine. We have

mentioned above that the BBB is one of the reasons for

resistance to drug treatment such as chemotherapy, while

nanomaterials rely on their favorable physicochemical

properties to be excellent transport vehicles capable of crossing

the BBB (200). Several methods using nanocarriers, such as

liposomes, micelles, metal ions, and nanoparticles, have been

investigated for intracerebral drug delivery (201–203).

Nanotechnology can be used to improve direct local treatment

of glioma by extending the half-life of encapsulated drugs or

providing a sustained release system (201). Nanotechnology may

improve the efficacy of ferroptosis inducers, which is expected to

develop a promising new approach for the treatment of glioma.

Gold nanocages (AuNCs) as carriers loaded with doxorubicin

(DOX) and L-buthionine sulfoximine (BSO) evoke ferroptosis

and immune responses in cancer therapy. DOX increases ROS

levels, BSO restrains GSH levels, and the ROS production is

further amplified by the photothermal effect mediated by

AuNCs under laser irradiation (204). In glioma therapy, a

recent paper reported a new nanoparticle-mediated drug

delivery system that patches heparin-based nanoparticles loaded

with DOX to the surface of natural grapefruit extracellular vesicles

(205), however, it didn’t mention whether this system could

trigger ferroptosis in glioma cells. Nevertheless, the design and

successful application of these nanoparticle-dependent delivery

systems show us the prospect of nanotechnology in the delivery of

ferroptosis inducers for the therapy of glioma.
5 Conclusions and perspectives

In this review, we discuss the mechanisms and metabolic

features associated with ferroptosis in glioma, and summarize

other advances including regulatory targets and pathways and

the intersections between ferroptosis and different forms of

programmed cell death. We also provide perspectives on the

application of ferroptosis in different therapeutic modalities.

However, ferroptosis, as a new form of cell death, has not

been extensively studied in glioma.
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Many questions remain to be explored in depth. Ferroptosis is

iron-dependent, iron can be involved in the Fenton reaction and

also act as a cofactor to promote oxidative enzymes to engage in

reactive oxygen species generation, but the role of executive

factors downstream of lipid oxidation has not been elucidated

by current studies (206). Moreover, what other genes and

metabolic processes are involved in the occurrence of ferroptosis

in glioma cells, and if there are other key regulators? Although we

have concluded the crosstalk between ferroptosis and other forms

of death in glioma, more discoveries are needed to address the

question of how to combine different types of cell death with

ferroptosis to improve killing of cancer cells.

Several studies show a remarkable potential of ferroptosis in

eliminating aggressive malignancies resistant to traditional

therapies. Erastin, a ferroptosis inducer, has been used to

sensitize GBM cells to TMZ by blocking SLC7A11 and

reducing cystathionine-g-lyase activity. It has been shown that

certain human gliomas may be sensitive to the combination

therapy of a ferroptosis inducer and radiation (134).

Furthermore, how to target ferroptosis induction to eliminate

drug-resistant glioma cells while minimizing the impact on

normal tissues is a critical therapeutic issue. And the treatment

of CNS tumors such as glioma differs from other tumors, the use

of ferroptosis inducers requires consideration of BBB

penetration for optimal drug concentrations. Possibly

nanotherapy be an ideal approach, with the development of

nanomaterial technology, the combination inducing ferroptosis

with nanotechnology enhances the stability, biosecurity,

targeting, and controlled release of drugs to glioma cells.

Research on ferroptosis provides new biomarkers and

prospective targets for glioma treatment, the potential clinical

application remains to be further investigated. In the future,

many issues need to be clarified in more epigenetic molecules

and detailed mechanistic insights to design the effective cancer

therapy strategies based on ferroptosis.
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