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ABSTRACT
Nutrients not only act as building blocks but also as signaling molecules. Nutrient-availability promotes 
cell growth and proliferation and suppresses catabolic processes, such as macroautophagy/autophagy. 
These effects are mediated by checkpoint kinases such as MTOR (mechanistic target of rapamycin 
kinase), which is activated by amino acids and growth factors, and AMP-activated protein kinase 
(AMPK), which is activated by low levels of glucose or ATP. These kinases have wide-ranging activities 
that can be co-opted by immune cells upon exposure to danger signals, cytokines or pathogens. Here, 
we discuss recent insight into the regulation and repurposing of nutrient-sensing responses by the 
innate immune system during infection. Moreover, we examine how natural mutations and pathogen- 
mediated interventions can alter the balance between anabolic and autophagic pathways leading to 
a breakdown in tissue homeostasis and/or host defense.

Abbreviations: AKT1/PKB: AKT serine/threonine kinase 1; ATG: autophagy related; BECN1: beclin 1; 
CGAS: cyclic GMP-AMP synthase; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; 
ER: endoplasmic reticulum; FFAR: free fatty acid receptor; GABARAP: GABA type A receptor-associated 
protein; IFN: interferon; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3B/LC3B: microtubule 
associated protein 1 light chain 3 beta; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; 
MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NLR: NOD 
(nucleotide-binding oligomerization domain) and leucine-rich repeat containing proteins; PI3K, phos-
phoinositide 3-kinase; PRR: pattern-recognition receptor; PtdIns3K: phosphatidylinositol 3-kinase; RALB: 
RAS like proto-oncogene B; RHEB: Ras homolog, MTORC1 binding; RIPK1: receptor interacting serine/ 
threonine kinase 1; RRAG: Ras related GTP binding; SQSTM1/p62: sequestosome 1; STING1/TMEM173: 
stimulator of interferon response cGAMP interactor 1; STK11/LKB1: serine/threonine kinase 11; TBK1: 
TANK binding kinase 1; TLR: toll like receptor; TNF: tumor necrosis factor; TRAF6: TNF receptor associated 
factor 6; TRIM: tripartite motif protein; ULK1: unc-51 like autophagy activating kinase 1; V-ATPase: 
vacuolar-type H+-proton-translocating ATPase.
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Introduction

Nutrient sensing is the fundamental process of detecting the 
availability of building-blocks ― including amino acids, sugars 
and lipids ― and governs whether cellular processes, such as 
growth and cell division, may proceed. The integration of nutrient 
sensing with growth factor and stress-response pathways is essen-
tial for cellular decision-making. In the presence of nutrients and 
growth factors, cells grow and proliferate. However, nutrients not 
only provide building blocks and energy to fuel cells, but also act 
as messengers that modulate signaling pathways. For instance, 
amino acids and glucose can influence global transcription, pro-
tein translation and organelle biogenesis by acting through reg-
ulatory kinases, such as MTOR (mechanistic target of rapamycin 
kinase) and the AMP-activated protein kinase (AMPK, see 
Glossary). MTOR and AMPK not only cross-regulate each 
other, but also orchestrate complex gene-expression programs 
and metabolic fluxes that shape cellular physiology. The absence 
of nutrients results in the shut-down of protein translation and 
stimulates macroautophagy/autophagy (see Glossary).

In the context of immunity, specialized immune cells must 
simultaneously evaluate nutrient availability, inflammatory 
cues and microbial signals. Recent reviews have focused on 
the metabolic regulation of various immune cell populations 
[1–5] and also on the cellular impact of MTOR, AMPK and 
autophagy in the immune system [5,6]. In this review, we 
provide a combined perspective of how signaling via pattern 
recognition receptor (PRRs) and cytokine receptors recruits 
the nutrient sensing and autophagy machineries to shape the 
immune response to microbes. We provide an overview of the 
signaling roles of nutrients such as amino acids, glucose and 
lipids and their roles in innate immune signaling. An appre-
ciation of the crosstalk between anabolic processes and auto-
phagy pathways helps better understand their re-wiring 
during infection and subversion by microbial pathogens.

Nutrients as signaling molecules

Chemically diverse nutrients can influence immunity and 
inflammation. These processes are often manipulated by 
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pathogens (as discussed below) and mutations in genes 
involved in the MTOR, AMPK and autophagy pathways are 
linked to immune deregulation and disease (Table 1). We first 
describe the mechanisms that detect amino acids, glucose and 
lipids and discuss the signaling outcomes of these processes in 
the next section.

Amino acids

Leucine, arginine, methionine, glutamine and histidine, or 
their metabolites, signal through specific receptors that acti-
vate the MTOR complex 1 (MTORC1 (see Glossary); also see 
Box 1). The following pathways activate MTORC1: 1) leucine 
levels directly detected by SESN2 (sestrin 2) and LARS1 (leu-
cyl-tRNA synthetase 1); 2) acetyl-CoA produced from leucine 
metabolism [7]; 3) arginine detection by CASTOR1 (cytosolic 
arginine sensor for MTORC1 subunit 1) and the lysosomal 
amino acid transporter SLC38A9; 4) S-adenosyl methionine 
(SAM) sensing by BMT2/SAMTOR; 5) alpha-ketoglutarate 
produced through glutaminolysis of glutamine acting via pro-
lyl hydroxylases (PHDs) and ARF1 (ADP ribosylation fac-
tor 1); 6) as yet unknown amino acids and homocysteine via 
the FLCN (folliculin)-FNIP1 complex. In contrast, a lack of 
amino acids results in the accumulation of uncharged tRNAs 
and ribosomal stalling, which activates EIF2AK4/GCN2 
kinase activity [8].

Glucose and glycolysis intermediates

The AMPK complex is activated by STK11/LKB1 in the 
presence of AMP, which signals reduced glucose availability 
and/or reduced ATP production through glycolysis and oxi-
dative phosphorylation [9]. Glucose levels also modulate 
OGT (O-linked GlcNAc transferase), GAPDH (glyceralde-
hyde-3-phosphate dehydrogenase) and MLXIPL/ChREBP 
(MLX interacting protein like). OGT uses UDP- 
N-acetylglucosamine, the end product of the glucose-driven 
hexosamine biosynthesis pathway, to O-glycosylate tran-
scription factors such as REL (a subunit of the NFKB com-
plex) and MYC in macrophages, neutrophils and CD8+ 

T cells [10]. Notably, O-GlcNAc modification is essential 
for MAVS-dependent antiviral signaling [11] and the sup-
pression of inflammatory necroptosis by RIPK3 [12] and 
thus links hexosamine biosynthesis to innate immune signal-
ing. GAPDH, whose multiple functions depend on glycolytic 
flux, can bind to various mRNA, including IL2 (interleu-
kin 2) and IFNG (interferon gamma), and regulate their 
translation [13]. The glycolysis intermediate phosphoenol-
pyruvate regulates the activity of nuclear factors of activated 
T-cells (NFATs) in T cells by suppressing Ca2+ release from 
the ER [14]. Thus, in addition to regulating AMPK through 
ATP levels, glucose also regulates cellular responses through 
O-GlcNac modifications and altered glycolytic flux.

Table 1. Nutrient sensing and/or autophagy-related genes with mutations linked to disease.

Deregulation of: Gene mutated Disease-association Reference(s)

Autophagy/Vesicle transport PLEKHM1 Osteopetrosis [181]
RAB7A Charcot-Marie-Tooth type 2B [182]

Autophagy PLEKHM2 Myocardial disorders [183]
LAMP2 Danon disease (cardiomyopathy) [184]
PRKAG2 Cardiac syndrome [185,186]
ATG5 Ataxia [187]
ATG16L1 IBD/Crohn disease, susceptibility to infection [32,121,188]
CALCOCO2/NDP52 Crohn disease [189]
BECN1 Cancer [190]
PIK3R4/VPS15 Cortical atrophy and epilepsy [191]

Autophagy/inflammasome activation MEFV/TRIM20/Pyrin Familial Mediterranean fever [83]
Autophagy (mitophagy) PINK1/PARK6 Parkinson disease [192–194]

PRKN/Parkin Parkinson disease, cancer, susceptibility to infection [73,195,196]
LRRK2/PARK8 Parkinson disease [197,198]
OPTN1 ALS, Primary open-angle glaucoma [199–201]

Autophagy/MTOR signaling UBQLN2 and 
UBQLN4

Familial ALS with or without FTD [202,203]

SQSTM1 FTD, ALS, Paget disease of the bone, DMRV, cancer, childhood-onset 
neurodegeneration

[57,204–207]

FLCN Birt-Hogg-Dubé syndrome. [208]
Autophagy/MTOR signaling, innate 

immunity
TBK1 ALS, FTD, herpes simplex virus encephalitis, primary open-angle glaucoma [209–211]

Lysosomal homeostasis, vesicle 
trafficking

ATP6V1A Developmental encephalopathy, cutis laxa [210,212]

MTOR signaling PIK3CA Cancer, PIK3CA-related overgrowth spectrum (PROS), Cowden-like syndrome [213–215]
PIK3R2 megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) [216]
PTEN PTEN hamartoma tumor syndrome (PHTS) [217]
AKT1 Proteus syndrome, Cowden-like syndrome [215,218]
AKT2 Hypoinsulinemic hypoglycemia [219]
AKT3 Hemimegalencephaly (HME), megalencephaly-polymicrogyria-polydactyly- 

hydrocephalus (MPPH)
[216,220]

DEPDC5 Focal epilepsies; HCV-related hepatocellular carcinoma [221–223]
NPRL2, NPRL3 Focal epilepsies [221]
TSC1-TSC2 Tuberous sclerosis [224]
MTOR Hemimegalencephaly (HME), focal cortical dysplasia (FCD), cancer [220,225,226]
STK11/LKB1 Peutz-Jeghers syndrome [227]
CARD11 Atopic dermatitis [228]

Pro-survival signaling, inflammation CASP8 IBD, autoimmune lymphoproliferative syndrome [229,230]
RIPK1 Immunodeficiency and IBD [231]

Abbreviations: ALS: amyotrophic lateral sclerosis; DMRV: distal myopathy with rimmed vacuoles; FTD: frontotemporal dementia; IBD: inflammatory bowel disease. 
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Lipids. Short-chain fatty acids (SCFAs) can be detected by 
G protein-coupled receptors (GPCRs) and histone deacetylases 
[15]; for example, propionate is detected by FFAR3/GPR41 (free 
fatty acid receptor 3) and FFAR2/GPR43, whereas butyrate, an 
anti-inflammatory molecule, is detected by HCAR2/GPR109A 
and histone deacetylases. Long-chain fatty acids (LCFAs), such 
as omega-3 fatty acids, are detected by FFAR1/GPR40 and 
FFAR4/GPR120, which results in ARRB2 (arrestin beta)- 
mediated sequestration of TAB2 and reduced pro- 
inflammatory cytokine production. Several fatty acids also reg-
ulate gene expression through peroxisome proliferator activated 
receptor (PPAR) transcription factors, among others [16].

Triglyceride-rich particles, including low-density lipopro-
teins (LDL), very-low-density lipoproteins (VLDL) and oxi-
dized LDL (oxLDL), are detected by the phagocytic 
scavenger receptor CD36, which signals via non-receptor 
tyrosine kinases [17]. Sterols are sensed by SREBF2/ 
SREBP2, SCAP, the insulin-induced gene complexes 
INSIG1 and INSIG2 and liver X receptors NR1H3/LXR-a 
and NR1H2/LXR-b [18,19]. AMPK and MTORC1 are key 
regulators of SREBF2 activation and integrate lipid metabo-
lism with other pathways. Recent work has identified non- 
metabolic roles of SREBF2-SCAP, FFAR4 and FFAR1 in 
regulating the NLRP3 inflammasome [20–22]. For instance, 
cholesterol trafficking to the ER and SREBF2-SCAP are 
required for NLRP3 activation [20,22]. In contrast, FFAR4 
and FFAR1 activation by omega-3 fatty acids suppresses 
NLRP3 by enhancing its binding to ARRB2 [21].

In the interest of space, we restrict our focus on amino 
acids and glucose/ATP and common themes in nutrient- 
dependent and -independent regulation of MTOR, AMPK 
and autophagy during infection and PRR signaling.

Nutrient sensing and cellular responses

Nutrient sensing kinases MTOR and AMPK control the induc-
tion of key molecules that are co-opted by innate immune 
pathways. MTOR is a ubiquitously expressed, evolutionarily 
conserved eukaryotic serine/threonine kinase that forms two 
functionally distinct complexes, MTORC1 and MTORC2, 
which contain different proteins (see Glossary). MTORC1 
responds to amino acids and growth factors and is activated 
through two analogous pathways that enlist GTPases, their 
GTPase activating proteins (GAPs) and guanine nucleotide 
exchange factors (Figure 1A and Box 1). Active Ras-related 
GTP-binding protein A (RRAGA), RRAGB and RHEB 
GTPases activate MTORC1 kinase activity on lysosomes. 
Normal lysosomal function is therefore essential for 
MTORC1 activation. Growth factor signaling triggers phospha-
tidylinositol-3,4,5-triphosphate (PtdIns[3,4,5]P3) production by 
class I phosphoinositide 3-kinase complex (PI3K-C1) and acti-
vation of MTORC2, which phosphorylates and activates AKT1 
(Box 1). AKT1 inhibits TSC2 and thus indirectly activates 
MTORC1. Notably, amino acids, particularly leucine and glu-
tamine, are essential for lysosomal MTORC1 localization to 
enable its activation by MTORC2-RHEB (for example, by INS 
[insulin]). The localization and activation of MTORC1 help 
integrate distinct signals for growth and proliferation. 
Interestingly, in response to EGF, but not insulin or amino 

acids, TBK1 (TANK binding kinase 1) phosphorylates MTOR 
on a newly identified site (Ser2159) and activates it indepen-
dently of MTORC2–AKT1 [23], pointing to context-specific 
regulation of MTOR even by growth factors.

MTORC1 is the master regulator of anabolic processes, 
including protein, nucleotide and lipid synthesis, and an inhi-
bitor of autophagy and lysosome biogenesis. These processes 
contribute to MTORC1-driven changes in cell volume, 
growth and proliferation and rely on amino acids as signaling 
molecules as well as carbon and nitrogen sources. MTORC1 
controls the cellular proteome by enabling 7-methyl-G(5ʹ)ppp 
(also called 5ʹ-CAP)-dependent translation via EIF4E (eukar-
yotic initiation factor 4E; Box 2). EIF2AK4 activation by 
amino acid starvation leads to the phosphorylation and inhi-
bition of EIF2S1 (eukaryotic initiation factor 2 subunit 1), 
a broad shut-down of protein translation and initiation of 
the integrated stress response. However, translation of the 
transcription factor ATF4 is not impeded, which enables the 
selective expression of genes involved in amino acid biosynth-
esis [24,25]. EIF2AK4 and MTORC1 thus coordinate the 
proteome and transcriptome under contrasting conditions.

AMPK orchestrates increased glycolysis and oxidative 
phosphorylation through glucose transporters SLC2A1/ 
GLUT1 and SLC2A4/GLUT4, and transcriptional changes 
through PPARGC1A (peroxisome proliferator-activated 
receptor gamma, coactivator 1 alpha), HDAC5 (histone 
deacetylase 5) and SIRT1 (sirtuin 1) for increased mito-
chondrial biogenesis and beta-oxidation of fatty acids, all 
of which together increase cellular energy levels. AMPK 
suppresses anabolic processes, including cholesterol and 
lipid biogenesis, by inhibiting SREBF1, ACACA/acetyl- 
coenzyme A carboxylase (acetyl-CoA carboxylase 1 alpha) 
and ACACB among others. A key protein activated by 
AMPK is the serine/threonine kinase ULK1 (unc-51 like 
kinase 1), a principal component of the autophagy initiating 
ULK1 complex (see Glossary), which can also be inhibited 
by phosphorylation by MTORC1. The crosstalk between 
AMPK and MTORC1 is therefore important for homeosta-
sis. Below, we discuss the regulation of autophagy initiation 
by AMPK and MTORC1, which is followed by sections on 
how these pathways are repurposed by innate immunity.

Autophagy and lysosomal degradation

For details on the core autophagy pathway in starved cells, we refer 
readers to recent reviews [26–28] (also see Box 3). Bulk autophagy, 
aggrephagy (removal of protein aggregates), mitophagy (removal 
of mitochondria), pexophagy (removal of peroxisomes) and xeno-
phagy (removal of intracellular microbes) involve the sequential 
activation of protein complexes for the formation of phagophores 
containing phosphatidylinositol-3-phosphate (PtdIns3P), which 
recruits machineries for membrane expansion, cargo capture 
and engulfment into double-membrane autophagosomes and 
their fusion with lysosomes (Box 3, Figure 1B). During starvation, 
the ULK1-ATG101-ATG13-RB1CC1/FIP200 kinase-containing 
complex initiates canonical autophagy by recruiting and activating 
the BECN1 (beclin 1)-PIK3C3/VPS34 (phosphatidylinositol 
3-kinase catalytic subunit type 3)-PIK3R4/VPS15-ATG14 com-
plex, which is a class III phosphatidylinositol 3-kinase complex 
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(PtdIns3K-C3, see Glossary) that generates PtdIns3P. Lipidation 
of proteins of the Atg8 family (LC3 and GABARAP subfamilies, 
see Glossary), through conjugation to phosphatidylethanolamine 
by the Atg8-lipidation machinery, is required for the degradation 
of the inner autophagosomal membrane and the fusion of autop-
hagosomes with lysosomes, but is not essential for autophagosome 
formation and autophagy [29,30] (Box 3). In mammals, ATG 
proteins and the Atg8-family proteins are additionally involved 

in other cellular pathways aside from canonical autophagy. For 
example, ATG16L1 plays an important role in Ca2+-mediated 
plasma membrane repair, independently of LC3, and can also 
regulate LC3 lipidation on single membranes; a process that spe-
cifically requires its WD40 domain [31,32]. Therefore, not all LC3- 
positive membranes are necessarily involved in canonical auto-
phagy. As discussed in the following sections, in innate immune 
cells the recruitment of the LC3-lipidation machinery may involve 
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Figure 1. Nutrient sensing and autophagy. (A) Amino acids transported across the plasma membrane or from lysosomes are detected by various receptors (not 
shown; also see Box 1) that promote the lysosomal localization of MTORC1 and RRAG GTPases. Receptor signaling uses adaptors to activate class I PI3K (PI3K-C1), 
which produces PtdIns(3,4,5)P3 and activates AKT1 through PDPK1 and MTORC2. AKT1 phosphorylates TSC2 and inhibits its GAP activity toward RHEB GTPase. During 
amino acid starvation, uncharged tRNAs bind and activate EIF2AK4/GCN2. Glucose import stimulates enhanced ATP production through glycolysis and oxidative 
phosphorylation (OxPhos). In low-energy conditions, elevated cellular AMP binds AMPK, which results in its phosphorylation and activation by STK11/LKB1. (B) 
Nutrient starvation activates autophagy via the ULK1 complex by preventing its inhibition by MTORC1 and promoting its activation by AMPK. The steps involved in 
autophagy are labeled on the left. The BECN1-PIK3C3-PIK3R4 complex is a class III PtdIns3K (PtdIns3K-C3), which generates PtdIns3P on phagophores to recruit the 
Atg8 (LC3/GABARAP subfamilies) lipidation machinery, expand the membrane and engulf cargo. Ubiquitin-binding SQSTM1-like receptors (SLRs) and vesicle tethering 
and fusion machineries promote cargo-capture, vesicle transport and fusion with lysosomes. See Boxes 1 and 3. PI3K, phosphoinositide 3-kinase; PtdIns3P: 
phosphatidylinositol-3-phosphate; PtdIns(3,4,5)P3: phosphatidylinositol-3,4-5,-triphosphate; PtdIns3K: phosphatidylinositol-3ʹ-phosphate kinase.
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distinct initiation steps and/or PtdIns3K-C3 complexes, and their 
differential regulation.

AMPK and MTORC1 receive nutrient and growth factor cues 
and respectively activate or inhibit the ULK1 complex. ULK1 
phosphorylates and activates other proteins within the complex 
as well as BECN1, PIK3C3 and AMBRA1 [33]. In addition, ULK1 
inhibits MTORC1 by phosphorylating RPTOR/Raptor, which 
illustrates feedback regulation. Autophagy-mediated breakdown 
and release of amino acids, such as glutamine [34], from lysosomes 
reactivates MTORC1 and turns off autophagy by inhibiting ULK1. 
In addition to phosphorylation, the appropriate localization of 
ULK1 and BECN1 complexes is key for selective autophagy. 
Cargo ubiquitination by E3 ubiquitin-ligases and their detection 
by ubiquitin-binding SQSTM1/p62-like receptors (SLRs) [35] 
helps recruit the autophagy machinery to selective cargo. 
Altogether, the core autophagy cascade follows once set in motion 
by the ULK1 and PtdIns3K-C3 complexes (Figure 1B), which also 
function as major regulatory hubs in response to infection [26,27]. 
Below, we discuss recent work on how the differential spatiotem-
poral regulation of these molecules redirects autophagy and nutri-
ent sensing in response to PRR signaling and cytokines. 
Importantly, studies on innate immunity highlight mechanisms 
of dual activation of AMPK-MTORC1 and autophagy for host- 
defense and homeostasis.

Repurposing of nutrient sensing pathways

Various cell types encounter microbes and provide the first 
line of defense. These include phagocytic cells such as macro-
phages, dendritic cells (DCs) and neutrophils, and epithelial 
cells lining the gut, lung and skin. These cells can detect 
infection or microbial products and inform other cells by 
producing inflammatory cytokines and launching cell- 
intrinsic growth-restriction mechanisms. Below, we discuss 
the regulation of nutrient sensing and autophagy by primarily 
focusing our attention on signal transduction mechanisms 
and key regulatory hubs within these pathways during innate 
immune signaling.

Nutrients, STK11 and AMPK

Although STK11/LKB1 phosphorylates and activates AMP- 
bound AMPK [36], STK11 has nutrient and AMPK- 
independent actions in macrophages and DCs. For example, 
STK11 can bind to IKBKB/IKKB (inhibitor of nuclear factor 
kappa B kinase subunit beta) and inhibit NFKB signaling in 
LPS-treated macrophages [37]; however, prolonged signaling 
results in N-nitrosylation and degradation of STK11 [38]. The 
role of AMPK in these settings is currently unknown.

AMPK can also be activated independently of STK11 and 
AMP by calcium flux-activated CAMKK2 and MAP3K7/ 
TAK1 (mitogen-activated protein kinase kinase kinase 7) in 
response to TNFSF10/TRAIL (TNF superfamily member 10) 
and TNFSF11/RANKL (Figure 2A) [39–42]. In agreement 
with MAP3K7-driven AMPK regulation, MAP3K7- 
deficiency in hepatocytes increases MTORC1 activity and 
reduces autophagy, which can be restored by ectopic 
AMPK activation [43]. Infection by Salmonella enterica 
Typhimurium or Helicobacter pylori triggers MAP3K7- 

dependent AMPK activation, which promotes autophagy 
and host defense [44,45]; however, the precise mechanisms 
of AMPK activation remain unclear (Figure 2A). Together, 
these pathways exemplify nutrient-independent deployment 
of AMPK in shaping the cellular environment through ULK1 
activation and MTORC1 inhibition.

Regulation of PI3K-C1, MTORC1 and MTORC2

Fine-tuning of PI3K-C1, MTORC1 and MTORC2 helps shape 
immune responses by PRRs and IFNs, and we highlight key 
themes below.

Class I PI3K complex (PI3K-C1)
Growth factor receptors use the phosphotyrosine-binding Src 
homology 2 (SH2)-domain and SH3 domain-containing adaptor 
GRB2 (growth factor receptor-bound protein 2) or the SH2- 
containing PIK3R1/p85 subunit of PI3K-C1 to recruit and activate 
the lipid kinase complex. The resulting increase in plasma mem-
brane PtdIns(3,4,5)P3 activates MTORC2 by binding to 
MAPKAP1/mSIN1, a specific subunit of MTORC2 [46]. 
Downstream activation of AKT1 inhibits TSC1-TSC2 (see 
Glossary) and thus activates MTORC1, thereby linking receptor- 
stimulation to MTORC1 activation (Box 1). TLR and IFN signal-
ing mirror growth factor receptor activation during nutrient- 
independent activation of PI3K and MTORC2. For example, 
tyrosine phosphorylation of Janus kinases (JAKs) activates 
PI3K-C1 directly and through GRB2. The TLR and IL1R family 
receptors, which do not undergo tyrosine phosphorylation, 
instead use the TIR domain-containing adaptors PIK3AP1/ 
BCAP (phosphoinositide-3-kinase adaptor protein 1) and 
BANK1, which undergo tyrosine phosphorylation, to mediate 
PI3K-C1 regulation [47–51] (Figure 2A). For example, in plasma-
cytoid DCs (pDCs), SRC and LYN tyrosine kinases are constitu-
tively active and can phosphorylate PIK3AP1 for PI3K-C1- 
MTORC1 activation [52]. We speculate that TLR/IFN signaling 
promotes MTORC2-driven responses and that nutrient signals 
acting on MTORC1 enable its lysosomal localization and 
activation.

MTORC1 and MTORC2
The metabolic consequences of MTORC1 or AMPK activa-
tion in myeloid cells have been discussed before [53]. 
Therefore, here we focus on signal transduction mechanisms 
and subcellular cues that link MTOR kinase complexes to 
PRRs and IFNs. The endosomal TLRs, TLR3 and TLR7, 
activate MTORC1 on the lysosome, which is essential for 
type I IFN production [54–56]. TLR3 traffics to RAB7A- 
positive lysosomes and TLR7 to ARL5B/ARL8 (ADP ribosyla-
tion factor like GTPase 5B)- and PLEKHM1 (pleckstrin 
homology and RUN domain containing M1)-positive lyso-
somes for MTORC1 activation (Figure 2B). Although not 
formally tested, it is plausible that nutrients license the lyso-
somal transfer of MTORC1 through RRAG GTPases. These 
studies also revealed that MTORC1 is dispensable for NFKB- 
dependent CCL5 and IL12p40 production, suggesting that 
nutrient-input is a dominant checkpoint for IFN responses, 
but not for pro-inflammatory cytokine and chemokine pro-
duction during TLR3 signaling.
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Work from our laboratory showed that TLR3 triggers 
RIPK1 and CASP8 (caspase 8)-dependent cleavage of 
a portion of cellular SQSTM1/p62 into a new MTORC1- 

regulatory molecule called SQSTM1/p62TRM (amino acids 
1–329), whose production correlates with the sustained acti-
vation of MTORC1 and RPS6KB1/p70S6K1 phosphorylation 
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[57] (Figure 2C). Leucine starvation similarly generates 
SQSTM1/p62TRM for MTORC1 activation when leucine 
becomes available. MTORC1 activation by TLR3 and leucine 
requires the scaffolding role of RIPK1 and catalytic activity of 
CASP8 [57]. Interestingly, a complex containing the paracas-
pase MALT1 (mucosa-associated lymphoid tissue lymphoma 
translocation protein 1) and CARD11/CARMA1 (caspase 
activation and recruitment domain containing protein 1) pro-
motes MTORC1 activation independently of BCL10, which is 
normally required for the formation of the tripartite CBM 
signaling complex [58,59]. The requirement for the catalytic 
activity of the paracaspase MALT1 for MTORC1 activation 
mirrors the role of CASP8 in MTORC1 signaling [57]. 
Furthermore, the MTORC1-specific subunit RPTOR contains 
a caspase-like domain [60]. These surprisingly deep evolutio-
narily links between MTORC1 and caspases deserve further 
examination to determine their functional interplay in 
homeostasis.

Cytosolic DNA is sensed by CGAS/cGAS (cyclic GMP- 
AMP synthase), which activates STING1 (stimulator of inter-
feron response cGAMP interactor 1) and TBK1 for type I IFN 
production. Notably, TBK1 can phosphorylate MTOR on 
Ser2159 for enhanced type I IFN production [23]. The role 
of nutrients in targeting MTORC1 to lysosomes during cyto-
solic DNA sensing has not been studied; however, abnormal 
lysosomes disrupt MTORC1 signaling and IFN production. 
For instance, loss of the lysosomal nuclease TREX1 results in 
increased accumulation of undigested DNA, lysosomal dys-
function and inflammatory disease driven by type I IFNs as 
well as hypermetabolic disease due to MTORC1 inactivation 
[61,62]. Fine-tuning of lysosomal MTORC1 activity, normally 
through nutrient input, thus maintains homeostasis during 
cytosolic DNA sensing.

Type I and type II IFNs co-opt both MTORC1 and 
MTORC2 for transcriptional changes. Silencing or genetic 
loss of MTORC2-specific proteins Rictor or Mlst8 inhibits 
interferon-stimulated gene (ISG) expression [63,64]. 
Interestingly, several ISGs (e.g., IDO1 [indoleamine 2,3-diox-
idase] depletes amino acids) promote a state of regulated 
starvation that reduces long-term MTORC1 activity. Indeed, 
polysome analyses of IFNG-stimulated cells suggest inhibition 
of MTORC1 based on global suppression of 5ʹ-terminal oli-
gopyrimidine (TOP) motif-containing mRNA, which includes 
nutrient transporters, leucyl-tRNA and the transcriptional 
repressor HES1 (hes family bHLH transcription factor 1). At 
the same time, IFNG selectively enhances the translation of 
inflammatory cytokines and chemokines. These findings indi-
cate fine-tuning of the proteomic landscape through nutrient- 
signals and MTORC1 during IFNG responses [65]. Reduced 
MTORC1 activity correlates with higher autophagy in IFNG- 
stimulated cells [66], which may promote xenophagy- 
mediated cell-intrinsic immunity. Such responses could be 
further facilitated by IFNG-induced GBPs (guanylate- 
binding proteins) [67] and tripartite motif-containing pro-
teins (TRIMs) [68]. Thus, in addition to upregulating a large 
number of new proteins, IFNG also fine-tunes nutritional 
homeostasis and autophagy through the collective actions of 
these proteins. In summary, the activation of innate immune 

membrane-bound or cytosolic sensors can co-opt AMPK and/ 
or MTORC1 pathways to drive an optimal cellular response.

Repurposing of autophagy-related machinery

In this section, we discuss autophagy-related processes, such 
as LC3-associated phagocytosis (LAP) and unconventional 
protein secretion, that are independent of nutrient control. 
Autophagy-mediated regulation of inflammation, cell death 
and immune cell function are reviewed elsewhere [6,69]. 
Here, we focus on recent work on the differential localization 
and regulation of xenophagy initiation via ULK1-BECN1- 
dependent and -independent mechanisms. As discussed 
below, MTORC1-independent autophagy may simultaneously 
enable nutrient-independent repurposing of autophagy and 
MTORC1-driven transcriptional programs.

Regulation of ULK1 and BECN1-PtdIns3K-C3 complexes

Recent work has revealed that localization of autophagy- 
initiating complexes to intracellular pathogens promotes 
xenophagy and restricts bacterial replication. Damage to 
pathogen-containing vacuoles or lysosomes triggers autopha-
gy through conventional or ULK1-independent routes. 
Galectins are a family of nine beta-galactoside sugar-binding 
proteins in the human, which detect luminal glycans exposed 
to the cytosol as a consequence of damage to endogenous 
vesicles [70]. In response to damage to endosomes or lyso-
somes, galectins stimulate autophagy through MTOR and 
AMPK; for example, LGALS8 (galectin 8) inhibits MTOR, 
and LGALS9 (galectin 9) activates AMPK in response to 
lysosomal damage [71]. However, early during microbial 
infection, nutrients are not limiting and MTORC1 inhibition 
is not a pre-requisite for xenophagy initiation. The ULK1 and 
BECN1-PtdIns3K-C3 complexes can traffic to intracellular 
bacteria upon pathogen-detection by E3 ubiquitin ligases 
[72–77], galectins [78,79] or proteins of the tripartite motif 
family (TRIM proteins) [68,80–83] (Figure 3A). The PtdIns3K 
activity of the PtdIns3K-C3 complex can then recruit 
PtdIns3P-binding proteins such as WIPI2 (WD repeat 
domain, phosphoinositide interacting 2) and the LC3 lipida-
tion machinery for autophagy maturation. An exciting new 
model of xenophagy involves the direct recruitment of 
ATG16L1 to Salmonella-containing vacuole through its inter-
action with the vacuolar V-ATPase [84]. MAP1LC3B (LC3B) 
deposition on Salmonella can therefore also proceed indepen-
dently of ULK1. An unanswered question is whether, in this 
scenario, LC3B is lipidated on single or double membranes, 
the latter being common in canonical xenophagy [84] (Figure 
3A). Similarly, ULK1- and MTORC1-independent mitophagy 
or pexophagy can be engineered by the synthetic localization 
of CALCOCO2/NDP52, an SLR, to these organelles [85]. 
These findings suggest that the wider involvement of ULK1- 
independent LC3 lipidation, which is therefore independent 
of MTORC1, in xenophagy requires further attention. These 
studies have shown that targeting the autophagy initiating 
machinery to microbial vacuoles is critical for xenophagy.
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Recent work also highlights the importance of regulating the 
activities of the ULK1 and BECN1-PtdIns3K-C3 complexes to 
fine-tune xenophagy. Although several TRIM proteins detect 
microbial signals and recruit ULK1-BECN1 and the LC3 lipi-
dation machinery (Figure 3A), others such as TRIM23 promote 
autophagy maturation by promoting SLR phosphorylation [86]. 
The RALB GTPase is another example of a regulatory switch 
that controls ULK1 activity. RALB associates either with 
EXOC2/SEC5 and EXOC8/EXO84, which are two components 
of the EXOCYST (see Glossary) complex [87]. RALB-EXOC8 
interaction promotes ULK1 and PtdIns3K-C3 activity, for 
example, during Salmonella and Sendai virus infection [88] 
(Figure 3B). In contrast, RALB-EXOC2 interaction inhibits 
ULK1, but promotes EXOC2-TBK1-driven antiviral IFN pro-
duction [89] (Figure 3B). RALB, which also controls starvation- 
induced autophagy, is thus co-opted during infection for xeno-
phagy or IFN production.

A third protein that regulates autophagy initiation 
through BECN1 is TRAF6, a ubiquitin E3 ligase. TRAF6 
mediates K63-linked ubiquitination of BECN1 and pro-
motes autophagy [90–92] by suppressing BECN1 binding 
to its inhibitor BCL2 [90,93]. Surprisingly, TRAF6 also 
modifies MTORC1 with K63-linked ubiquitination in 
response to amino acids, promoting its activation. TRAF6 
may therefore integrate immune signaling and metabolic 
cues to stimulate autophagy or MTORC1 in a context- 
dependent manner [94].

Taken together, localization and regulation of ULK1 and 
BECN1-PtdIns3K-C3 complexes through SLRs, TRIMs, RALB 
and TRAF6, and possibly other yet to be discovered proteins, are 
key to the dual control of autophagy and MTORC1. As 

discussed next, cytosolic DNA sensing has emerged as 
a pathway that bypasses ULK1 and BECN1 for autophagy 
initiation independently of MTORC1 as a gatekeeper.

Multiple roles of STING1 and TBK1 in autophagy

STING1 has an evolutionarily conserved role in initiating au-
tophagy, from the sea anemone Nematostella vectensis to mam-
mals, whereas mammalian STING1 also activates type I IFN 
production through TBK1 [95–97]. STING1 is activated by 
binding to 2ʹ,3ʹ-cGAMP (cGAMP), a cyclic dinucleotide 
(CDN) second messenger produced upon cytosolic DNA sen-
sing by CGAS. For example, M. tuberculosis infection results in 
CGAS-STING1-dependent xenophagy [98–101] and DRAM1- 
driven autophagosome-lysosome fusion [102]. The TBK1- 
driven type I IFN stimulatory function of STING1 is genetically 
separable from STING1-driven autophagy initiation through 
an ATG5-ATG16L1-dependent, ULK1- and BECN1- 
independent pathway [95,96] (Figure 4A). STING1-dependent 
autophagy can thus proceed independently of nutrient-derived 
signals and without MTORC1 inactivation. It is therefore plau-
sible that MTORC1-dependent anabolic pathways may not be 
turned off even though autophagic flux and LC3-lipidation are 
turned on. These findings further suggest that therapeutic 
interventions, for example, through small molecule activators 
of STING1, to promote selective autophagy, without dampen-
ing anabolic responses through MTORC1, may be possible.

It is also noteworthy that in contrast to the above studies, 
AMPK-STK11 and ULK1-BECN1-dependent canonical au-
tophagy activation by CGAS-STING1 has also been reported. 
For instance, CGAS-STING1 activation results in STING1 
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turnover through increased TBK1-dependent SQSTM1 
phosphorylation and autophagy maturation [103,104] and/ 
or cGAMP-dependent activation of AMPK-STK11 and 
ULK1-driven autophagy [105] (Figure 4B). Some Gram- 
positive bacteria, such as Listeria innocua and 
Staphylococcus aureus, may activate STING1 through the 
related bacterial CDN, bis-(3ʹ-5ʹ)-cyclic dimeric adenosine 
monophosphate (c-di-AMP), which is a weaker agonist of 
human STING1 [106]. In this scenario, STING1-dependent 

triggering of the unfolded-protein response (UPR) results in 
translational shut-down and preferential translation of ATF4 
due to the phosphorylation of EIF2S1 [106] (Figure 4B). It is 
plausible that increased translation of ATF4, which mediates 
the expression of MTORC1 inhibitors DDIT4/REDD1 and 
SESN2, is responsible for MTORC1 inhibition and subse-
quent stimulation of autophagy (Box 1); however, this was 
not tested in this study. Several questions need to be 
addressed to reconcile ULK1-dependent and -independent 
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autophagy via STING1. How does cGAMP stimulate AMPK- 
STK11? Does weaker activation of STING1 by c-di-AMP 
activate UPR? Further work should determine whether 
STING1 can indeed stimulate both ULK1- and BECN1- 
independent and -dependent autophagy in different contexts 
or whether different experimental conditions (e.g., different 
cell lines, species-specific effects, treatment regimens such as 
purified DNA or synthetic cGAMP or bacterial infection) 
have led to disparate findings.

Non-canonical roles of autophagy proteins

We now turn our attention to autophagy-independent roles of 
core autophagy proteins that are independent of MTORC1 or 
AMPK [107,108]. A prominent non-canonical role of autophagy 
proteins is the endocytic/phagocytic pathway called LC3- 
associated phagocytosis (LAP) in myeloid cells (Figure 4C). 
Signaling via several TLRs, CLEC7A/Dectin-1, FCGR (Fc 
gamma receptors) and TIMD4/TIM4 triggers LAP in response 
to the diverse ligands of these receptors, including microbial 
components, opsonized particles or dead cells [107,109]. LAP 
is characterized by LC3 incorporation on single-membraned 
compartments that contrasts LC3 deposition on double-bilayer 
-containing “canonical” autophagosomes. LAP proceeds inde-
pendently of nutrient-signals, the ULK1 complex, and compo-
nents of the PtdIns3K-C3 complex, such as AMBRA1 and 
ATG14. However, LAP requires the BECN1-interacting protein 
RUBCN/Rubicon (RUN domain and cysteine-rich domain con-
taining, Beclin 1-interacting protein) to assemble a distinct 
PtdIns3K-C3 complex with UVRAG [108]. As during canonical 
autophagy, the ATG12–ATG5-ATG16L1 scaffold mediates LC3- 
lipidation on “LAPosomes”. Interestingly, the WD40 domain of 
ATG16L1 is necessary for LC3 recruitment during LAP, but 
dispensable for canonical autophagy and may allow its selective 
involvement in the two processes [31]. PtdIns3P accumulation 
also enables membrane binding of the NADPH oxidase subunit 
NCF4/p40phox, leading to ROS production required for LAP. 
RUBCN emerges as a key scaffold in the process by interacting 
with BECN1, PIK3C3 and CYBA/p22phox (cytochrome b-245 
alpha chain) [108]. LAPosomes also permit differential TLR 
signaling; for instance, TLR9 on LAPosomes selectively leads to 
type I IFN production by interacting with CHUK/IKKA (com-
ponent of inhibitor of nuclear factor kappa B kinase complex) 
and LC3 for TRAF3 and IRF7 activation [110]. Additionally, 
LAP can suppress inflammation, promote immune tolerance 
and protect against microbial infection [111].

Most Atg genes are essential and whole-body knockouts 
are embryonic lethal in mice [112]; studies therefore use cell 
type-specific loss or hypomorphic alleles. Mice lacking Atg5 in 
all myeloid cells (Lyz2/LysM-Cre Atg5fx/fx mice) are extremely 
susceptible to M. tuberculosis infection; however, mice lacking 
Atg16l1, Atg7, Atg3, Atg14 or Atg12 in similar cells are not 
[113]. Polymorphonuclear (PMN) cell-specific loss of Atg5 
revealed that neutrophil ATG5 activity is essential to prevent 
their pathological recruitment to lungs and limit tissue 
damage. Therefore, even though autophagy plays a role in 
restricting M. tuberculosis replication in isolated macrophages, 
ATG5 has unique autophagy-independent role(s) in neutro-
phils that are protective against M. tuberculosis. Further 

studies are needed to better understand this function and its 
broader involvement in protecting against other infections 
characterized by neutrophil influx.

Unconventional protein secretion and autophagy

Autophagy-like routes of vesicle trafficking can be adopted for 
the secretion of proteins that lack a signal peptide, such as IL1B 
(interleukin 1 beta), IL18 and lysozyme. These proteins become 
enclosed within autophagosome-like LC3-positive vesicles that 
fuse with the plasma membrane for secretory autophagy. 
Starvation or lysosomal damage trigger CASP1-dependent pro-
cessing of pro-IL1B into mature IL1B in macrophages, leading to 
IL1B release that partially relies on autophagy proteins [114]. 
Two models have been proposed for IL1B incorporation within 
LC3-positive vesicles. In macrophages, IL1B is captured into 
vesicles by TRIM16 in a process that involves LGALS8, 
HSP90AA1/HSP90 (heat shock protein 90 alpha family class 
A member 1) and the SNARE SEC22B [83,114] (Figure 4D). 
On the other hand, overexpression of CASP1 and pro-IL1B in 
fibroblasts results in IL1B release through multi-vesicular body 
(MVB)-like intermediates through the actions of HSP90AA1, 
GORASP2/GRASP55 (golgi reassembly stacking protein 2), 
GORASP1/GRASP65 and TSG101 (tumor susceptibility gene 
101) [114,115]. Notably, although LC3 is involved, proteins 
essential for autophagosome formation, e.g., ATG2, RB1CC1 
and ATG5, are dispensable. GORASP2 is regulated by glucose 
levels and O-GlcNAcylation and can thus respond to nutrient 
signals [116,117]. The involvement of HSP90AA1 and MVBs in 
IL1B release from reconstituted fibroblasts suggests a chaperone- 
mediated autophagy (CMA, see Glossary)-like process (Figure 
4D). Mutation of sequence motifs in IL1B (127LRDEQ131, 132 
QKSLV136) related to KFERQ motifs found in CMA-substrates 
reduces IL1B release [115]. However, as K133 is also the site for 
K63-ubiquitination of IL1B, leading to its maturation and release 
from macrophages [118], further work is necessary to validate 
CMA involvement. Furthermore, the involvement of GSDMD 
(gasdermin D), which is essential for IL1B release from myeloid 
cells [119], in unconventional secretion also needs to be 
addressed.

Studies on the secretion of lysozyme have also suggested 
unconventional mechanisms. Paneth cells are specialized cells 
in the crypts of the small intestine that produce antimicrobial 
peptides and have large vacuoles containing lysozyme, which 
can hydrolyze bacterial peptidoglycan. These lysozyme- 
containing vacuoles are LC3-positive during Salmonella infec-
tion, reminiscent of unconventional secretion. Notably, such 
vacuoles are absent in Atg16l1T300A knock-in mice expressing 
ATG16L1 with a T300A mutation that reduces its stability 
and mimics the human Crohn disease-linked variant 
[120,121], which points to an involvement of the LC3- 
lipidation machinery. The lack of suitable Paneth cell lines 
has hindered further molecular characterization of the role of 
autophagy in lysozyme secretion, which requires IL22 and 
innate lymphoid cell 3 (ILC3) function and DC-intrinsic 
MYD88 signaling in vivo.

Why does the cargo does not fuse with lysosomes? Is LC3- 
enclosed IL1B released from living macrophages [122]? How 
does autophagy promote IL1B release on the one hand and turn- 
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over inflammasome signaling proteins on the other? Future 
work on secretion of IL18, which is naturally expressed in 
many non-myeloid cells, may provide new insights. Taken 
together, autophagy proteins moonlight in unconventional secre-
tion; however, several questions remain to be addressed in the 
future.

Mutations in nutrient sensing and autophagy genes

The importance of MTOR signaling and autophagy in main-
taining cellular homeostasis is underscored by disease asso-
ciation of mutations in genes in these pathways. The 
PI3K-AKT1-MTOR pathway is often linked to abnormal 
tissue growth, tumors and cancer [123]. Mutations in the 
autophagy-related genes are more frequently associated with 
susceptibility to infection, inflammatory disease (for exam-
ple, inflammatory bowel disease) and neurodegenerative dis-
eases (Table 1) [124]. Even though most of these genes have 
broad expression patterns – for example, SQSTM1, ATG16L1 
and RPTOR are expressed in many tissues and cell types – 
diseases linked to them are often tissue-specific. Our under-
standing of the precise mechanisms of disease progression 
and context-specific alteration in their function is currently 
incomplete. Mutations in multifunctional genes, such as 
SQSTM1, RIPK1, CASP8, TBK1, among others, may com-
promise the crosstalk between autophagy and MTORC1. 
This suggests that a better understanding of context- 
specific regulation of these pathways will assist in the design 
of selective therapeutics in the future.

Modulation of nutrient sensing and autophagy by 
pathogens

Bacteria, viruses and parasites attempt to exploit host tran-
scription and translation controlled by MTORC1 or AMPK, 
and at the same time, prevent autophagy-mediated lysosomal 
targeting. We discuss recent work on direct manipulation of 
MTOR, AMPK and autophagy that illustrates how both path-
ways could be operating simultaneously, especially when 
pathogens are able to manipulate their antimicrobial effects 
(Figure 5A and 5B).

Manipulation of nutrient sensing pathways

Most pathogens regulate MTORC1 temporally, either directly 
through a state of starvation or indirectly through PI3K-C1, 
AKT1 or MTORC2. The overall goal appears to shape 
a favorable gene expression and metabolic niche. 
A particularly effective inhibitor mechanism involves the pro-
teolysis of MTOR by Leishmania major GB63 protein [125]. 
Amino acid starvation during Shigella flexneri inactivates 
MTORC1 and activates EIF2AK4, which results in an ATF3- 
dependent transcriptional signature e.g., increased CHAC1 
and CHOP/DDIT3 [126]. Starvation can also result from 
pore-forming toxins that affect cellular ionic gradients and 
amino acid import [127–129]. Salmonella infection activates 
AMPK, which the bacterium rapidly targets for lysosomal 
degradation [44,130,131] to suppress autophagy initiation. In 
contrast, the protozoan pathogen Leishmania infantum 

activates the AMPK-STK11 axis to enhance host metabolism 
and its own growth [132]. Further studies should focus on 
mechanisms of pathogen-induced acute nutrient and energy 
starvation that activate EIF2AK4 and AMPK (Figure 5A).

Free amino acids accumulate after a block in protein 
translation resulting from the modification and inhibition of 
EEF1A1 by the glucosyltransferases Lgt1-Lgt3 from Legionella 
pneumophila [133]. However, concurrent ubiquitination and 
inhibition of RRAGB and RRAGD by SdeA-C/SidE ubiquitin 
ligases effectively “blinds” MTORC1 to the presence of amino 
acids, which we presume become available to the pathogen 
[133]. Late MTORC1 activation during infection promotes 
lipid biosynthesis to support growing microbial vacuoles, as 
exemplified by L. pneumophila and the protozoan pathogen 
Toxoplasma gondii [134–137] (Figure 5A). Therefore, tem-
poral control of these pathways is key for intracellular 
pathogens.

Shigella flexneri-encoded effector OspB can also activate 
MTORC1 via the scaffolding protein IQGAP1, leading to 
increased cell proliferation at the site of infection. This allows 
replacement of dying cells and therefore provides additional 
intracellular niches for the infecting bacteria [138]. Indirect 
MTORC1 regulation is exemplified by PI3K-C1 activation by 
Helicobacter pylori [139] and L. pneumophila [134,135], and 
inhibition by M. tuberculosis [140], AKT1 activation by 
Salmonella [141] and influenza virus [142–144], TSC2 inhibi-
tion by HSV1 and HCMV1 [145,146], and regulation of both 
MTOR complexes by a poxvirus protein that acts on RPTOR 
and RICTOR [147,148] (Figure 5A). Typically, RNA viruses 
inhibit MTORC1 as they use 5ʹ-CAP-independent translation, 
whereas DNA viruses promote MTORC1 activation [149].

In summary, although the hijacking of most steps in these 
pathways is known, manipulation of nutrient sensing is context- 
and pathogen-specific because pathogens have unique niches 
and energy requirements. As discussed in the next section, 
pathogens employ various mechanisms to evade autophagy acti-
vated in response to their interference in nutrient sensing.

Manipulation of autophagy

Various steps of autophagy, including initiation, capture of 
cargo within phagophores and maturation of autophagosomes 
and their fusion with lysosomes, can be targeted during infec-
tion. We refer to previous reviews on these topics [150–152] 
and discuss more recent studies below. Shigella, Listeria 
monocytogenes and Vaccinia virus evade capture within 
autophagosomes by using actin-based motility [153,154]. 
Antimicrobial responses against Shigella can be mobilized by 
IFN-inducible GBPs, which in turn are ubiquitination by 
bacterial IpaH9.8 resulting in their degradation [155–157]. 
Deubiquitination of microbial vacuoles prevents detection by 
SLRs and helps Salmonella and Legionella evade autophagy 
[158] (Figure 5B).

Direct inhibition of the ULK1 or BECN1-PtdIns3K-C3 
complexes by parasites, bacteria and viruses suppresses auto-
phagy initiation (Figure 5B). T. gondii can indirectly suppress 
autophagy by stimulating EGFR signaling, which activates 
MTORC1; however, the host can turn on autophagy upon 
exposure to CD40 and TNF [159] or through immunity- 
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related GTPases (IRGs) and GBPs after IFNG stimulation 
[159]. Host-derived signals can thus overcome microbial viru-
lence strategies.

ULK1-independent autophagy initiation can also be 
blocked, for example, by Salmonella SopF, a phosphoinositide 
binding ADP-ribosylase that modifies the V-ATPase and 

inhibits the recruitment of ATG16L1 and LC3-lipidation 
machinery [84,160]. Absence of SopF expression dampens 
Salmonella virulence in vivo, underscoring the important anti-
microbial role of this ULK1-independent pathway. Whether 
the V-ATPase in involved in sensing infection by other intra-
cellular bacteria, likely through disruption of vacuolar 
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compartments, remains to be seen. In addition, the ULK1- 
independent process of LAP is inhibited by M. tuberculosis 
through CpsA, which blocks the NADPH oxidase [161] 
(Figure 5B).

Manipulating nutrient sensing necessitates mechanisms to 
avoid xenophagic lysosomal degradation, and indeed many 
pathogens suppress autophagy maturation. Salmonella modi-
fies the potency of lysosomes by manipulating endosomal 
trafficking, for example, through the actions of the effector 
SifA, which interacts with PLEKHM1 and PLEKHM2/SKIP 
which, along with RUBCNL/PACER, are proteins with 
a RUBCN-like C-terminal domain (Rubicon homology 
domain) [162,163]. L. pneumophila uses RavZ to delipidate 
LC3 and the Lpg1137 protease to cleave STX17 (syntaxin 17) 
and avoid lysosomal fusion [164,165]. The parainfluenza virus 
phosphoprotein P blocks autophagosome-lysosome fusion by 
inhibiting the interaction between STX17 and SNAP29 [166] 
(Figure 5B).

Conversely, some pathogens may enhance autophagy to 
create a replicative niche, evade cytosolic immune detection, 
promote egress from cells or to exhaust antimicrobial effector 
mechanisms. For instance, L. monocytogenes listeriolysin 
O (LLO) promotes NLRX1-driven mitophagy, which reduces 
cellular ROS and enhances bacterial survival [167]. This also 
indicates that elevated selective autophagy of a key host orga-
nelle can benefit pathogens and that drugs that nonspecifically 
increase bulk autophagy may not be beneficial in such scenar-
ios. Surprisingly, the M. tuberculosis surface protein Rv1468c 
binds ubiquitin and recruits SQSTM1, which could dampen 
inflammation [168]. Coxiella burnetii survives within large 
acidic LC3-positive vacuoles and uses the autophagosome- 
lysosome STX17 for vesicle fusion and the CvpB/Cig2 effector 
to manipulate PtdIns3P levels (Figure 5B) [169–171]. 
A similar strategy is used by Plasmodium through its UIS3 
protein [172,173]. In summary, pathogens selectively block or 
activate steps within the autophagy pathway to optimize their 
intracellular stay.

Summary and outlook

During starvation, autophagy helps scavenge and recycle 
nutrients. Nutrient sensing and starvation-induced autophagy 
therefore cross-regulate each other. Here, we have presented 
an integrated view of these processes and their concurrent use 
in innate immunity, where nutrients may not necessarily be 
limiting and may serve as second messengers. Innate immune 
responses deploy MTORC1 and MTORC2 to optimize tran-
scription and translation, and autophagy for antimicrobial 
defense. Studies indicate that during host-pathogen interac-
tions, the stringent feedback regulation of ULK1 and 
MTORC1 may be supplanted by novel regulatory hubs that 
permit both pathways to be turned on simultaneously. 
Differential activation of autophagy and MTORC1 by 
SQSTM1/p62TRM, TBK1, TRAF6 and RALB, which are 
among the prominent molecules involved in both pathways, 
needs to be studied further in disease and/or infection- 
relevant settings.

Work from both fields has revealed signaling mechanisms 
in the host whose subversion by microbial virulence factors 

underscores their immune roles. The PI3K-C1-MTORC2 axis 
is activated by PRRs and IFNs, and temporally manipulated 
by pathogens. Optimal MTORC1 signaling requires healthy 
lysosomes, for example, during signaling by endosomal TLRs. 
Not surprisingly, bacterial effectors that act on endosomal 
trafficking, lysosomes or RRAG GTPases have also been iden-
tified. The host can initiate xenophagy by targeting ULK1 to 
pathogen-containing vacuoles, which in turn evade outcomes 
of xenophagy by interfering with autophagy initiation or 
maturation. Importantly, ULK1-independent, and therefore 
nutrient and MTORC1-independent, xenophagy can be trig-
gered by STING1 and V-ATPase by directly recruiting the 
LC3 lipidation machinery.

It is plausible that dual activation of MTORC1 and AMPK 
is more widespread, and the underlying mechanisms have not 
yet been identified. The diseases linked to mutations in genes 
in these pathways further suggest their broad yet context- 
specific roles in homeostasis, immunity and inflammation. 
Future studies should focus on deciphering the precise mole-
cular regulatory mechanisms with a view to understanding 
them better and designing effective therapies for inflamma-
tory and infectious diseases.

Box 1

Activation of MTORC1 by amino acids and growth factors. 
Amino acids are sensed by proteins that can transduce the 
signals to the RRAGA/RRAGB-RRAGC/RRAGD complex, 
which is a heterodimer of GTP-bound RRAGA or RRAGB 
and GDP-bound RRAGC or RRAGD in its active form. 
RRAGs then interact with the MTORC1 subunit RPTOR/ 
Raptor and promote its localization to lysosomes, which is 
essential for MTOR kinase autophosphorylation and activa-
tion. In the absence of RRAGA and RRAGB, the amino acid 
glutamine can also stimulate MTORC1 localization to lyso-
somes through ARF1 [174]. The RAGULATOR (see 
Glossary) complex, which has guanine nucleotide exchange 
factor activity toward RRAGA/RRAGB, and the FLCN (folli-
culin)-FNIP1/2 complex, which has GAP activity for RRAGC/ 
RRAGD, positively regulate MTORC1. GAP activity toward 
the RRAG GTPases 1 (GATOR1, see Glossary) complex inhi-
bits MTORC1 and is itself inhibited by GATOR2 (see 
Glossary). The KICSTOR (see Glossary) complex interacts 
with and positively regulates GATOR1 at lysosomes and 
thus inhibits MTORC1. At the lysosomal surface, MTORC1 
interacts with the V-ATPase and the amino acid-transporter 
SLC38A9. Normal lysosomal function is therefore essential for 
MTORC1 activity. As shown in the figure, different proteins 
can detect specific amino acids and stimulate MTORC1 
[175,176]. Localization of MTORC1 to the lysosomes pro-
motes its interaction with RHEB, a lysosome-localized 
GTPase that is activated by growth factors (e.g., insulin, 
EGF), TLRs and cytokine receptors. RHEB is inhibited by its 
GAP TSC1-TSC2 (tuberous sclerosis 1/2) [175]. Plasma mem-
brane receptor signaling to MTORC1 is coupled via the 
MTORC2-AKT1-TSC1-TSC2 signaling axis (Figure 1A). 
Active RHEB and RRAGs are both needed for MTORC1 
activation in response to growth factors. AKT1 phosphoryla-
tion also inhibits AKT1S1/PRAS40, a negative regulator that 
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binds RPTOR [123,176]. In addition to AKT1, MAPK1/ERK2, 
MAPK3/ERK1 and RPS6KA1/RSK1 inhibit TSC2, thus acti-
vating MTORC1, whereas AMPK, DDIT4/REDD1 and 
GSK3B/GSK3β activate TSC2 [176].

Box 2

Signaling outcomes of MTORC1 and MTORC2 kinase com-
plexes. Among the best-known substrates of MTORC1 are 
RPS6KB1 (ribosomal protein S6 kinase B1) and EIF4EBP1/ 
4E-BP1 (eukaryotic translation initiation factor 4E binding 
protein 1). MTOR autophosphorylates on Ser2481, which 
can be found in both MTORC1 and MTORC2. In addition, 
RPS6KB1 phosphorylates MTOR on Ser2448, which reflects 
active MTORC1 and nutrient availability [177]. MTORC1 is 
also phosphorylated on Ser1261 in the presence of amino 
acids. p-RPS6KB1 stimulates protein translation through ribo-
somal subunit RPS6 phosphorylation and p-EIF4EBP1 fails to 

block EIF4E-dependent 5ʹ-CAP mRNA translation; both pro-
cesses lead to increased protein translation. MTORC1 acti-
vates SREBF1 (sterol regulatory element binding transcription 
factor 1) and SREBF2 for lipid and cholesterol biogenesis, 
HIF1A (hypoxia inducible factor 1 subunit alpha) for glucose 
metabolism and glycolysis, ATF4 (activating transcription 
factor 4) and CAD (carbamoyl-phosphate synthetase 2, aspar-
tate transcarbamylase, and dihydroorotase) for nucleotide 
synthesis, and PPARGC1A (PPARG coactivator 1 alpha) for 
mitochondrial function [123,176]. GSK3B (glycogen synthase 
kinase 3 beta), an inhibitor of SREBF1 and HIF1A, is inhib-
ited by MTORC1 [177]. Phosphorylation of TFEB (transcrip-
tion factor EB) retains it in the cytoplasm and prevents the 
expression of lysosomal and autophagy genes [26,175]. Cell 
proliferative actions of MTORC1 and AKT1 proceed through 
increased CCND1 (cyclin D1) transcription and suppression 
of FOXO transcription factors, CDKN1A/p21 and CDKN1B/ 
p27 [177]. In addition to reducing the expression of 
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autophagy and lysosomal genes, MTORC1 inhibits autophagy 
by phosphorylating and inhibiting ULK1 and AMBRA1, 
which is a component of the BECN1-PtdIns3K-C3 complex 
(see Box 3 and Figure 1A) [178]. MTORC1 phosphorylates 
and inhibits AMPK, which also results in the suppression of 
autophagy because ULK1/2 and BECN1-PtdIns3K-C3 com-
plexes are activated by AMPK. The crosstalk between AMPK 
and MTORC1 also includes AMPK-mediated inhibitory phos-
phorylation of RPTOR and the activating phosphorylation of 
TSC2 [26,178]. MTORC2 predominantly contains Ser2481- 
phospohrylated MTOR. MTORC2 phosphorylates AKT1 
(Ser473, an indicator of active MTORC2), which promotes 
cell survival and proliferation, protein kinase C (PKC) that 
regulates cell migration, and the serum SGK1 (glucocorticoid- 
regulated kinase), which promotes cell survival and ion trans-
port [97,123,176].

Box 3

Starvation-induced autophagy. Starvation-induced autophagy 
relies on several multiprotein complexes defined by their key 
components (Figure 1B): (1) the ULK1/2 complex that con-
tains ULK1 (or ULK2), RB1CC1, ATG13 and ATG101; ULK1 
is activated by AMPK and inhibited by MTORC1; (2) 
BECN1-PIK3C3-PIK3R4 complex with AMBRA1 and 
ATG14; PIK3C3 is a PtdIns3K lipid kinase of catalytic class 
III (PtdIns3K-C3) that generates phosphoinositol-3-phos-
phate (PtdIns3P) and is activated by BECN1; (3) ATG9 
resides in vesicles that likely mark sites for phagophore initia-
tion and/or expansion, WIPI1/2 and ZFYVE1 PtdIns3P- 
binding membrane scaffolds, along with ATG2A/2B, facilitate 
the recruitment of the ATG16L1 complex; (4) ATG16L1 and 
ATG12–ATG5 (formed through the actions of ATG10-ATG7) 
complex promotes phagophore expansion and lipidation of 
the Atg8/MAP1LC3 (microtubule-associated proteins 1A/1B 
light chain 3)-family proteins; (5) ATG4A/B protease activity 
enables ATG3-ATG7 proteins to catalyze phosphatidyletha-
nolamine crosslinking to the C-terminus of LC3-family pro-
teins (LC3A, LC3B, LC3B2, LC3C, GABARAP and 
GABARAPL1/2); ATG4A/B action is reversible and can lead 
to LC3 delipidation; (6) selective cargo-receptors such as 
SQSTM1/p62-like receptors (SLRs) that can bind cargo, LC3 
proteins and/or other autophagy complexes [85,179,180]. The 
fusion of autophagosomes to endosomes and lysosomes 
requires proteins that participate in endocytic trafficking, 
such as UVRAG (UV Radiation Resistance Associated), 
homotypic fusion and protein sorting complex (HOPS) and 
soluble NSF-attachment protein (SNAP)-receptor (SNARE) 
[26,27]. RAB7A-dependent activation of the HOPS complex 
promotes trafficking and tethering of autophagosomes and 
fusion via SNARE STX17 on autophagosomes and SNAP29 
and VAMP8 on lysosomes [162].

Glossary (in alphabetical order)

AMPK: AMPK is a trimeric complex of the catalytic subunit 
alpha and regulatory subunits beta and gamma. AMP (or ADP) 
can bind to the gamma subunit resulting in a conformational 

change that make AMPK a better substrate for phosphorylation 
by the constitutively active kinase STK11/LKB1.

Atg8/LC3 family proteins: a family of seven human pro-
teins (GABARAP, GABARAPL1, GABARAPL2, MAP1LC3A, 
MAP1LC3B, MAP1LC3B2, and MAP1LC3C) that contain 
a ubiquitin-like fold and undergo covalent modification with 
phosphatidylethanolamine on a C-terminal glycine residue.

Chaperone-mediated autophagy: Delivery of proteins con-
taining sequence motifs recognized by HSPA8 and co- 
chaperones to lysosomal LAMP2, leading to their translocation 
and degradation within lysosomes.

EXOCYST complex: An octameric complex that mediates the 
tethering of secretory vesicles prior to their fusion to plasma 
membrane. In humans it consists of EXOC1-8 proteins and is 
regulated by RALA, RHO and RAB GTPases and MAPKs.

GATOR1: A trimeric complex comprising of DEPDC5, 
NPRL2, and NPRL3 with GAP activity for RRAGA and 
RRAGB, thus a negative regulator of MTORC1.

GATOR2: A complex consisting of MIOS, WDR24, 
WDR59, SEH1L, and SEC13 that inhibits GATOR1.

KICSTOR: A complex containing of KPTN, ITFG2, 
C12ORF66, and SZT2 that tethers GATOR1 to the lysosomal 
surface and serves as a negative regulator of MTORC1.

Macroautophagy: is the major form of autophagy and 
involves the engulfment of cytoplasmic contents, organelles 
or pathogens within double-membraned vacuoles that fuse 
with lysosomes.

MTORC1: A complex containing the MTOR serine/threo-
nine kinase and the following subunits: RPTOR/Raptor (reg-
ulatory associated protein of MTOR complex 1) and MLST8, 
AKT1S1/PRAS40 (AKT1 substrate 1) and DEPTOR (DEP 
domain containing MTOR interacting protein). RPTOR pro-
motes substrate recognition and lysosomal localization, 
MLST8 promotes phosphorylation, AKT1S1 and DEPTOR 
negatively regulate MTORC1.

MTORC2: A complex containing MTOR and the following 
proteins: RICTOR (RPTOR independent companion of 
MTOR complex 2), DEPTOR, MLST8, PRR5/Protor-1, 
PRR5L/Protor-2) and MAPKAP1/SIN1 (MAPK associated 
protein 1). RICTOR promotes substrate recruitment and 
MAPKAP1, PRR5 and PRR5L are regulatory subunits.

PtdIns3K class III complex: A class III PtdIns3K complex 
consisting of PIK3C3/VPS34 (contains PtdIns3K activity), 
PIK3R4/VPS15, BECN1 and either ATG14 for autophagic 
roles or UVRAG when involved in endocytic trafficking. 
Several accessory proteins regulate these complexes (e.g., 
AMBRA1). These complexes generate phosphatidylinositol- 
3-phosphate (PtdIns3P) for membrane expansion.

RAGULATOR: a GTP-exchange factor for the RRAGA/ 
RRAGB GTPases and consists of LAMTOR1-5. 
RAGULATOR tethers RRAGs to lysosomal membranes in 
the proximity of the lysosomal V-ATPase complex and acti-
vates MTORC1.

TSC1-TSC2: Heterotrimeric complex comprising of TSC1, 
TSC2, and TBC1D7 with GAP activity toward RHEB GTPase 
that negatively regulates MTORC1.

SLRs: sequestosome 1-like receptors, such as SQSTM1/p62, 
NBR1, CALCOCO2/NDP52 and TAX1BP1, are proteins that 
recognize ubiquitinated cargo via their ubiquitin-binding 
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domain (UBA) and contain an LC3 interacting region (LIR) 
that enables targeting of cargo to autophagy.

ULK1 complex: The canonical autophagy initiation complex, 
comprising of ULK1, ATG13, RB1CC1 and ATG101. It nucle-
ates the phagophore by phosphorylating and activating compo-
nents of the BECN1-class III PtdIns3K (PtdIns3K-C3) complex.
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