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Abstract: Maternal inflammation during pregnancy causes later-in-life alterations of the offspring’s
brain structure and function. These abnormalities increase the risk of developing several psychiatric
and neurological disorders, including schizophrenia, intellectual disability, bipolar disorder, autism
spectrum disorder, microcephaly, and cerebral palsy. Here, we discuss how astrocytes might con-
tribute to postnatal brain dysfunction following maternal inflammation, focusing on the signaling
mediated by two families of plasma membrane channels: hemi-channels and pannexons. [Ca2+]i

imbalance linked to the opening of astrocytic hemichannels and pannexons could disturb essential
functions that sustain astrocytic survival and astrocyte-to-neuron support, including energy and
redox homeostasis, uptake of K+ and glutamate, and the delivery of neurotrophic factors and energy-
rich metabolites. Both phenomena could make neurons more susceptible to the harmful effect of
prenatal inflammation and the experience of a second immune challenge during adulthood. On
the other hand, maternal inflammation could cause excitotoxicity by producing the release of high
amounts of gliotransmitters via astrocytic hemichannels/pannexons, eliciting further neuronal dam-
age. Understanding how hemichannels and pannexons participate in maternal inflammation-induced
brain abnormalities could be critical for developing pharmacological therapies against neurological
disorders observed in the offspring.

Keywords: connexins; pannexins; hemichannels; pannexons; neuroinflammation; lipopolysaccharide;
neuron; astrocyte; microglia; neurodegeneration; excitotoxicity

1. Introduction

Clinical evidence has established that environmental clues acting at specific win-
dows during fetal development affect lifelong trajectories across health and disease [1].
Such “programming” encompasses a physiological and adaptive process that sculpts the
structure and function of different tissues at the stage when they are most plastic due to
the proliferation and differentiation of progenitor cells [2]. Nevertheless, negative gene-
environment interactions linked to perinatal disease, either maternal or fetal, disrupt this
physiological programming, which increases individual susceptibility to develop complex
diseases from birth to adult life [3]. For instance, maternal immune perturbations during
pregnancy, either in response to infections or noninfectious stimuli (e.g., diabetes, stress,
maternal allergic asthma, obesity, or toxin exposures), cause enduring or later-in-life al-
terations of the offspring brain structure and function [4]. The latter increases the risk
of developing several psychiatric and neurological disorders, including schizophrenia,
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intellectual disability, bipolar disorder, autism spectrum disorder (ASD), microcephaly, and
cerebral palsy [5] (Figure 1).

Although the study of Karl A. Menninger and later on the work of Torrey and Peter-
son were pioneering in revealing the association between viral infection and subsequent
psychotic disease [6,7], it was Mednick et al. (1988) who showed that maternal influenza
enhances the incidence of schizophrenia in the offspring [8]. Thenceforth, similar find-
ings have been observed with other viral (e.g., cytomegalovirus, herpes simplex virus
type 2, varicella-zoster and polio), bacterial (e.g., sinusitis, tonsillitis, pneumonia, and
pyelonephritis), and parasite (e.g., toxoplasmosis) infections [9,10]. In the same line, other
studies have connected rubella and cytomegalovirus infection during pregnancy with in-
creased risk of ASD in the offspring [11,12], whereas cerebral palsy in adulthood associates
with maternal infections [13,14]. Although less well understood and studied, intellectual
disability and bipolar disorder correlate with bacterial and Toxoplasma gondii infection,
respectively, during pregnancy [15,16]. Recent studies have hypothesized that prenatal
exposure to SARS-CoV-2, the virus that causes the coronavirus disease 2019 (COVID-19),
could augment the incidence of psychosis, schizophrenia, and schizophrenia spectrum
disorders in the offspring [17].

Although epidemiological research provides a strong link between prenatal life and
adult neurological disease risk, its efficiency in deciphering the concomitant downstream
cellular and molecular mechanisms is limited for ethical or technical reasons. Thus, the
vast amount of knowledge gathered to date about maternal inflammation that results
in offspring brain abnormalities comes from experimental studies in rodents (for a com-
prehensive review, see [18]). Most of them have used the systemic administration of
lipopolysaccharide (LPS) or polyriboinosinic-polyribocytidilic acid [poly (I:C)] during
pregnancy [18]. LPS, the major component of the outer membrane of Gram-negative bac-
teria, is a well-known, established bacterial infection model, which leads principally to
cytokine production, inflammation, fever, complement cascade activation, hypothalamic–
pituitary–adrenal axis activation, and sickness behavior [19]. At the other end, poly (I:C)
is a synthetic analog of double-stranded RNA that efficiently mimics the acute phase
response to viral infection, including the production and release of interleukin (IL)-1β,
IL-6, and tumor necrosis factor (TNF)-α, as well as the induction of the type I interferons
(IFNs): IFN-α and IFN-β [20]. Several studies using these immunogenic approaches have
demonstrated that maternal inflammation impairs normal behavior and social interactions
in adult progeny [21–25] (Figure 1). The latter includes a decline in learning and memory,
increased anxiety-like and repetitive behaviors, motor deficits, and disturbed exploratory
performance [21,25–29].

There is a certain consensus that a common pathogenic pathway linked to cytokine-
mediated inflammation disrupts fetal brain development and adult central nervous system
(CNS) maturation following maternal disease [4,30,31]. Coherent with this notion, human
epidemiological evidence indicates that high gestational levels of IL-1α, IL-6, IL-8, IFN-γ,
TNF-α, granulocyte macrophage colony-stimulating factor, and C-reactive protein augment
the incidence of schizophrenia and ASD in the progeny [32–34] (Figure 1). This evidence
harmonizes with the critical role of IL-1β and IL-17 A on adult brain abnormalities ob-
served following maternal immune activation in rodents [35,36]. In fact, in the absence of a
pathogenic agent, the administration of IL-6 during pregnancy is sufficient to promote mul-
tiple behavioral and cognitive abnormalities in the offspring [37]. Despite the significant
similarities between the inflammatory responses induced by several models of maternal
inflammation [38–40], they also have differential immune signatures and specific patho-
physiological responses that impact brain development, structure, and function [4,18,26].
For instance, unlike LPS, poly (I:C) is a potent activator of type I IFNs (e.g., IFN-β) and
consequent antiviral immune responses [20], whereas LPS is more proficient in inducing
the production and release of TNF-α from macrophages [41]. This predilection of LPS for
TNF-α instead type I IFN signaling could explain why this endotoxin is more robust than
poly (I:C) in provoking anorexia, lethargy, and fever [42].
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The myriad of inflammatory factors produced by infections or noninfectious patholog-
ical stimuli during gestation induces diverse pathophysiological processes in the maternal,
placental, and fetal compartments [4]. Part of these mediators can cross the blood-placental
barrier, triggering systemic fetal inflammation and oxidative stress [43] and affecting the
brain, with potentially damaging consequences for neuronal and glial cell function, synap-
tic transmission and plasticity, and behavior [44]. In the CNS, the innate immune system
integrates these complex immune responses, whose central member is the microglia. These
cells are the first line of defense against internal or external agents that resist or resolve
harmful threats to restore homeostasis [45]. The role of microglia in fetal programming and
postnatal brain abnormalities has been extensively studied [46–50]; however, the implica-
tion of other crucial glial populations involved in neuroinflammation remains elusive: the
astrocyte [51]. Here, we discuss how astrocytes might contribute to postnatal brain dys-
function following maternal inflammation, focusing on the signaling pathways mediated
by two families of plasma membrane channels: hemichannels and pannexons.
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Figure 1. Schematics showing general aspects of maternal infection and its contribution to offspring
brain abnormalities. Diverse infectious agents such as viruses (e.g., influenza), bacteria (e.g., E. coli),
or protozoa (e.g., Toxoplasma gondii) can induce systemic or intrauterine maternal inflammation.
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The latter occurs in parallel with the activation of placental cytokine receptors and immune cell
infiltration, with both phenomena being crucial for pre and perinatal fetal brain inflammation.
Cytokine-mediated inflammation at this stage causes severe consequences for fetal brain develop-
ment and potentially elicits diverse postnatal CNS alterations, including neuronal damage [52,53],
reactive astrogliosis and microgliosis [48,51], and impaired oligodendrogenesis and oligodendroglial
loss [54,55]. Certainly, fetal brain injury caused by the pathogens above increases the postnatal risk of
developing motor deficits, microcephaly, and cognitive and behavioral impairment. In addition, mul-
tiple neurological disorders associate with prenatal inflammation: schizophrenia, autism spectrum
disorder, bipolar disorder, and cerebral palsy.

2. Astrocytes: Emerging Stars in the Healthy and Diseased Brain

Mounting evidence in the last decades has refuted the notion that astrocytes act as
simple fostering and buffering elements in the CNS [56]. Intracellular Ca2+ ([Ca2+]i) waves
within and among astrocytes encompass a time-scale mechanism for allowing rapid intra-
and inter-cellular signaling at different hierarchies [57–60]. These processes begin with the
extracellular influx of Ca2+ via ion channels and through Ca2+ release from intracellular
stores, causing [Ca2+]i transients that vary in frequency, kinetic and spatial spread accord-
ing to the astrocyte anatomical zone [61]. Braced with this equipment and in the companion
of pre- and postsynaptic neurons, astrocytes constitute the “tripartite synapse”—the angu-
lar stone of the chemical synaptic transmission—where they monitor neurotransmission
and react to it by the [Ca2+]i-dependent release of signals that control neuronal activity
termed “gliotransmitters” (i.e., glutamate, D-serine, and ATP) [62]. Accordingly, astro-
cytes seem crucial for synaptic transmission and plasticity, and learning and memory
consolidation [63].

Furthermore, during high neuronal activity, astrocytes produce [Ca2+]i signals that
spread locally in networks in the form of [Ca2+]i waves that reach specialized astrocytic
terminal processes or “endfeet” that contact the vasculature [64]. There, vasoactive mes-
sengers are released, allowing astrocytes to regulate the cerebral blood flow and exchange
of energy-rich metabolites, with potentially significant consequences for neuronal firing,
synaptic plasticity and higher brain functions [65]. In particular, astrocytic endfeet takes
up glucose and distributes it among astrocytes through intercellular connections termed
gap junctions [66]. Depending on neuronal energy demand, glucose can be stored in
the form of glycogen or used by the astrocyte in glycolysis, being the resulting pyruvate
converted to lactate and then released into the extracellular space [67]. Then, neurons can
take up this lactate, convert it into pyruvate, and utilize it in aerobic respiration within
the mitochondria [68] or take up directly glucose from the interstitial space and generate
ATP from glycolysis and oxidative metabolism [69]. In addition, astrocytes participate
in the innate immune response and govern the homeostasis of the brain interstitial fluid,
supplying neurons with precursors for biosynthesis, controlling pH and K+ homeostasis
and recycling glutamate, oxidized scavengers, and other waste products [70].

Given that neurons are particularly susceptible to the action of free radicals and
reactive oxygen species (ROS) [71,72], astrocytes protect them from this not only by pro-
viding an extensive array of antioxidant molecules and ROS-detoxifying enzymes (e.g.,
glutathione, superoxide dismutase, and glutathione peroxidase) but also through the
direct transference of their healthy mitochondria, as well as the degradation of axonal
mitochondria [73,74]. Astrocytes require an efficient [Ca2+]i regulation mechanism to
fulfill their synaptic, metabolic, and homeostatic roles [60]. In this matter, the function
of astrocyte mitochondria seems to be pivotal [75]. Along with serving as a source of
ATP to fuel several Ca2+ pumps that keep low the [Ca2+]i, mitochondria can also actively
import Ca2+. The membrane potential associated with the proton electrochemical gradient
across the inner mitochondrial membrane (~180–200 mV) facilitates the import of Ca2+

into the mitochondria against its concentration gradient via a Ca2+ uniporter protein [76].
Moreover, mitochondria can release Ca2+ from its matrix towards the cytosol via the mi-
tochondrial Na+/Ca2+ exchanger [77] and the opening of the mitochondrial permeability
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transition pore [78]. Mitochondria serve as both sink and source of Ca2+ in astrocytes,
thereby regulating the frequency, amplitude, and half-life of Ca2+ transient events in their
cytoplasmic processes with significant potential consequences for astroglial signaling and
function [75,79,80].

Under pathological conditions, astrocytes experience a long-lasting morphological,
molecular, and functional change referred to as “reactive astrogliosis”, which is charac-
terized by cytoskeletal rearrangements, hypertrophy, increased expression of the glial
fibrillary acidic protein (GFAP), loss of structural complexity, metabolic alterations, and
release of inflammatory mediators [81]. While this process is an adaptive mechanism
necessary for limiting acute injury and favoring wound repair, when persistent, it can turn
into a detrimental response if astrocytes neglect their supportive role toward neurons [82].
Reactive astrogliosis becomes dysfunctional when damage is intense and chronic and usu-
ally negatively impacts different astrocyte aspects such as gliotransmission, Ca2+ signaling,
mitochondrial function, antioxidant defense, and inflammatory response and survival [83].

3. Maternal Inflammation and Its Impact on Astrocytes

Clinical and animal studies have revealed that maternal inflammation causes different
morphological and functional alterations on astrocytes. For instance, necrosis observed in
periventricular leukomalacia, a brain injury that induces cerebral palsy, likely via maternal
infection [84], correlates with increased GFAP and IFN-γ expression in astrocytes, as
well as nitrosative and oxidative damage [85,86]. Consistent with this, maternal LPS
administration accentuates offspring astrogliosis in the hippocampus, cortex, amygdala,
hypothalamus, thalamus, and white matter, associated with hypomyelination [87–91].
Likewise, long-lasting astrogliosis takes place in the hippocampus of mice prenatally
exposed to the human influenza virus [92], and similar findings have been observed
following poly (I:C)-induced maternal immune activation [93–96]. Despite the latter, other
studies have described that prenatal poly (I:C) exposure does not affect the astroglial
number and expression of GFAP in the offspring [97–100]. These apparent discrepancies
between the studies mentioned above make sense in the light of at least two crucial factors.
Firstly, astrogliosis is biologically complex and cannot be reduced to the expression of one
marker, which is significant, considering that GFAP+ astrocytes represent just a fraction of
the total astroglial population with a substantial regional (and probably developmental)
heterogeneity [101]. In addition, counting GFAP+ astrocytes illustrates presumably GFAP
expression alterations rather than valid changes in astrocyte number. At the other end,
the experimental design of poly (I:C)-induced maternal inflammation differs considerably
among studies, with different doses, administration routes, and gestational time points of
exposure. These factors undoubtedly change the fetal nıche to different degrees, affecting
the outcome of astroglial function and reactivity significantly.

Alterations to morphology and number of astrocytes occur in the offspring of animals
exposed to other stressors or challenges during pregnancy, including (but not exclusively)
IL-6 [53], perfluorooctane sulfonate [102], stress [103,104], ischemia [105], dexametha-
sone [106], ethanol [107], carbon black nanoparticles [108], and high-fat diet [109,110].
Some studies have shed light on possible mechanisms explaining how astrocytes may
contribute to prenatal life-induced programming of the brain. For example, Zhang and col-
leagues demonstrated that prenatal LPS exposure produces prolonged glutamate elevation
in periventricular white matter in the progeny associated with astroglial hypertrophy and
decreased glial L-glutamate transporter 1 [46]. On the other hand, prenatal stress increases
astroglial death and GFAP expression, accompanied by elevated production of fractalkine
and nitric oxide (NO) [104]. Both studies harmonize with previous data indicating that
glutamate and NO released by astrocytes impair neuronal function and survival [111–113].
More recently, two studies have suggested that maternal inflammation-induced brain ab-
normalities in adulthood depend on the persistent activation of two families of large-pore
plasma membrane channels in astrocytes: hemichannels and pannexons.
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4. Hemichannel and Pannexons: Protagonists on Astroglial Physiology and
Pathophysiology

In the last decade, other research groups and we have described that hemichannels
and pannexons, two families of plasma membrane channels, may alter different aspects of
astroglial function with potentially significant consequences for neuronal function during
pathological conditions [111,112,114–122]. Hemichannels result from the oligomerization
of six protein subunits called connexins around a central pore [123] (Figure 2). Connexins
encompass a highly conserved protein family encoded by 21 genes in humans and 20 in
mice, with orthologs in other vertebrate species [124]. For a considerable time, the essential
function ascribed to hemichannels was to constitute the basic components of the gap junc-
tions, these being aggregates of intercellular channels that provide the direct but selective
molecular and ionic exchange between the cytoplasm of contacting cells [125] (Figure 2).
Notwithstanding, in the 90 s, groundbreaking findings by Paul and colleagues revealed
the presence of functional and solitary hemichannels in “non-junctional” membranes [126].
Nowadays, it is well-established that these channels act like permeable pores, providing a
diffusional route for the release of relevant quantities of autocrine and paracrine signaling
molecules (e.g., ATP, glutamate, D-serine, NAD+, and PGE2) as well as the influx of other
substances (i.e., Ca2+, cADPR, and glucose) [123] (Figure 2).
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membrane topology with four α-helical transmembrane domains connected by two extracellular loops and one cytoplasmic
loop; both the amino- and carboxy-termini are intracellular (left panel). The relative positions of the extracellular loop
cysteines (blue light balls) and glycosylated asparagine (green branches) are also showed. Hemichannels (also known
as connexons) are formed by the oligomerization of six subunit connexins around a central pore, whereas pannexons
are constituted of seven pannexin subunits (middle panel). Both channels underpin the ionic and molecular interchange
between the intra- and extracellular milieu. In addition, hemichannels dock each other to build intercellular channels
termed gap junction channels (right panel). These channels aggregate in anatomical structures called gap junctions to
support the intercellular cytoplasmic exchange of metabolites, second messengers, and ions.

Two decades ago, a novel family of three membrane proteins called pannexins (Panxs
1–3) was discovered, with the ability to constitute single membrane channels (also known as
pannexons) that connect the cytosol with the interstitial space [127]. Even though hemichan-
nels and pannexons belong to a broad family of large-pore channels [128], they diverge in
terms of permeability and conductance, as well as gating and posttranslational mechanisms
that modulate them [129,130]. Consistent with this idea, both channels remain fully func-
tional under resting membrane potentials [131,132], displaying large membrane currents
after depolarization [126,131]. Unlike hemichannels, pannexons produce peak current
amplitudes with fast kinetics and show larger unitary conductance, weak voltage-gating,
and diverse subconductance states [126,131,133–136]. Similarly, hemichannel activity is sig-
nificantly modulated by the extracellular concentration of divalent cations [137], whereas
gating properties of pannexons remain insensitive to external Ca2+ [133,138].
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Connexin 43 (Cx43) constitutes the most ubiquitous connexin expressed by astro-
cytes [139]. Astrocytes also exhibit appropriate levels of Panx1, and both Cx43 and Panx1
form functional astroglial hemichannels and pannexons, respectively, on in vitro and ex
vivo preparations [118,140–143]. Cellular signaling and gliotransmitter release via the
opening of astrocytic hemichannels and pannexons underpin relevant biological processes
at the nervous system, including neuronal oscillations [144], astroglial migration [145], food
intake [146], synaptic transmission, and plasticity [132,147–149], as well as memory consol-
idation and behavior [150,151] (Figure 3). Despite the above, the uncontrolled activation
of these channels in astrocytes associate with the pathogenesis and progression of homeo-
static imbalance in various neuropathological diseases [111,112,114–122]. The nature of the
pathological agents linked to the opening of astroglial hemichannels/pannexons is multi-
ple, including cytokines [152], amyloid-β-peptide [111], α-synuclein [121], ethanol [122],
anticonvulsants drugs [153], ultrafine carbon black particles [154], and oxidant stress [155].
At least three mechanisms have linked the persistent opening of hemichannels and pan-
nexons with cell dysfunction and damage. At one end, the uncontrolled entry of Na+ and
Cl− through hemichannels may result in osmotic and ionic imbalances linked to further
cell swelling and plasma membrane breakdown [126,156] (Figure 3). Relevantly, hemichan-
nels are permeable to Ca2+ [157,158], which could allow its influx to the cytosol during
pathological conditions. In the same line, Panx1 channels release ATP to the interstitial
space, which activates purinergic receptors, causing the entry of extracellular Ca2+ or its
release from intracellular stores [159]. The direct or indirect increase in [Ca2+]i mediated by
hemichannels/pannexons could lead to Ca2+ overload and consequent induction of differ-
ent proteases, phospholipases, and other hydrolytic enzymes, as well as oxidative stress
and caspase activation [119,160]. Last but not least, exacerbated hemichannel/pannexon ac-
tivity may trigger the release of high amounts of molecules potentially toxic for neighboring
cells, such as glutamate, in the case of the CNS [111,112] (Figure 3).
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Figure 3. Physiological and pathophysiological roles of astrocytic Cx43 hemichannels and Panx1
channels in the CNS. The top left panel represents a healthy astrocyte (in green) under physiological
conditions. In this context, the physiological release of gliotransmitters (glutamate, D-serine,
and ATP) via astrocytic Cx43 hemichannels and Panx1 channels, along with [Ca2+]i and purinergic
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receptor signaling, contributes to diverse biological brain processes (bottom left panel), including
synaptic plasticity [132,147–149], neuronal oscillations [144], food intake [146], astroglial migra-
tion [145], fear memory consolidation [151], and behavior [150]. The top right panel shows a reactive
astrocyte (in gray) in a pathophysiological scenario. Here, reactive astrogliosis depicted by hy-
pertrophy of cellular processes is accompanied by persistent and exacerbated opening of Cx43
hemichannels and Panx1 channels in astrocytes (bottom right panel). The latter likely leads to cellular
damage and dysfunction by different mechanisms. For example, Ca2+ influx via Cx43 hemichannels
might activate phospholipase A2 and subsequently elicit the production of arachidonic acid and
stimulation of the cyclooxygenase/lipoxygenase pathway. This response could then increase levels of
free radicals, lipid peroxidation, and plasma membrane damage. In addition, Na+ and Cl− entry via
Cx43 hemichannels/Panx1 channels could trigger cellular swelling due to a boosted influx of H2O via
aquaporins. At the other end, the massive release of gliotransmitters via astrocytic Cx43 hemichan-
nels and Panx1 channels might reduce the viability and function of healthy neighboring neurons.
Indeed, a substantial body of evidence indicates that these channels contribute to the development of
multiple CNS disorders and diseases, including Alzheimer’s disease [119,161], epilepsy [162,163],
meningitis [116], Parkinson’ disease [121], HIV-induced dementia [164,165], stroke [166,167], intrac-
erebral hemorrhage [168], and spinal cord injury [117,169]. Solid lines depict fluxes of molecules
through channels, whereas dashed lines indicate activation or induction.

5. Connecting Maternal Inflammation with the Activation of Hemichannels and
Pannexons in Offspring Astrocytes

Avendaño and collaborators were pioneers in demonstrating that LPS administration
during pregnancy augments the activity of Cx43 hemichannels and Panx1 channels in
neonatal astrocytes cultures [170]. How could LPS trigger the opening of these channels in
the context of fetal programming? As mentioned above, maternal administration of LPS
causes an acute phase of systemic inflammation that goes hand in hand with the production
of placental inflammatory mediators, which occurs at crucial developmental stages of the
fetal brain [43]. Although LPS induces the activation of Cx43 hemichannels in cultured
astrocytes and C6 glioma cells [152,171], the ability of prenatal LPS exposure to promote
the opening of these channels likely relies on downstream interactions of cytokines with
placental receptors, which significantly and permanently affect the structure and func-
tional capacity of the fetal brain. Accordingly, prenatal LPS-induced activation of Cx43
hemichannels and Panx1 channels is mitigated by the inhibition of IL-1β/TNF-α signaling
and accompanied by high autocrine production of astroglial IL-1β/TNF-α [170]. The latter
agrees with the fact that both cytokines directly: (i) enhance ion currents mediated by
astrocytic Cx43 hemichannels [152] and (ii) modulate the uptake of cationic molecules via
these channels [172]. Relevantly, the cytokine-mediated cell influx of small molecules is
dependent on the properties of the permeant species (e.g., ethidium, 2-NBDG, DAPI) [172].
Altogether this evidence suggests that maternal exposure to LPS modifies the in utero fetal
brain environment, and thus, it shapes the function of astroglial hemichannels and pan-
nexons in the offspring. Although certainly connexins are controlled by epigenetics [173],
the involvement of DNA methylation, histone acetylation, or microRNA regulation in the
above phenomenon remains largely ignored.

Is there another source, besides astrocytes, for the production of IL-1β/TNF-α fol-
lowing maternal inflammation? Recently, it was revealed that microglia via the above
cytokines elicit the prenatal LPS-mediated activation of astrocyte Cx43 hemichannels and
Panx1 channels [174]. This evidence comes from experiments showing the ameliorative
effect of minocycline, a molecule that mitigates microglial activation, or inhibition of
IL-1β/TNF-α signaling, in the long-lasting opening of these channels in offspring hip-
pocampal astrocytes [174]. These data are coherent with previous studies revealing that
the LPS-mediated release of IL-1β and TNF-α from microglia promotes the activation of
astroglial Cx43 hemichannels in vitro and ex vivo [114,152]. IL-1β/TNF-α signaling in
astrocytes activates p38 mitogen-activated protein kinase (p38 MAPK), resulting in the
expression of the inducible NO synthase (iNOS) and further NO production [175,176].
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In agreement with this, blockade of p38 MAPK or iNOS strongly prevents the enhanced
astrocyte hemichannel/pannexon activity observed in neonatal cultures or adult brain
slices from prenatally LPS-exposed offspring [170,174]. The NO-mediated S-nitrosylation
of Cx43, a posttranslational modification that opens Cx43 hemichannels [155], might play
a fundamental role in this phenomenon as iNOS expression and production of NO show
increments in astrocytes from the offspring of LPS-exposed dams [170,174] (Figure 4). This
evidence also agrees with the higher production of IL-1β, TNF-α, and NO found in the
brain of prenatally LPS-exposed offspring [18,177,178].
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Given that NO reduces the opening of Panx1 channels either by S-nitrosylation [179]
or PKG-dependent phosphorylation [180], their activation evoked by prenatal LPS possibly
materialize due to alternative mechanisms. A significant component in opening Panx1
channels arises from ATP signaling and subsequent activation of purinergic receptors [181].
Panx1 co-immunoprecipitates with P2X7 receptors (P2X7Rs) [182,183] and seems to estab-
lish protein-to-protein interactions with them through the proline 451 in the C-terminal
tail of P2X7R [184,185]. Interestingly, prenatal LPS exposure induces the release of ATP
from astrocytes in vitro and ex vivo by a mechanism involving the activation of both
Panx1 channels and P2X7 receptors [170,174] (Figure 4). This result is consistent with
other findings showing that ATP induces its release through a positive loop that implicates
the opening of Panx1 channels and subsequent activation of P2X7Rs [117,141]. As in the
case of IL-1β and TNF-α, both microglia and/or astrocytes could act as sources for ATP
signaling in the prenatally LPS-exposed adult offspring, thereby activating distant glial
cells via P2X7Rs. If so, the activation of P2X7Rs switches off due to the decrease of ATP
by its diffusion to distant interstitial areas as its degradation by extracellular exonucleases.
Alternatively, ATP could impede its release by directly blocking Panx1 channels [186].
Intriguingly, prenatal LPS enhances the expression of NLRP3 inflammasome and levels of
IL-1β [187], while P2X7R-mediated opening of Panx1 channels causes IL-1β secretion via
activation of the inflammasome in different cell types, including astrocytes [182,188–191].
Whether or not the inflammasome contributes to the opening of astrocyte Panx1 channels
following maternal LPS exposure has not been clarified and requires further study.

Is it Ca2+ signaling involved in prenatal LPS-induced hemichannel/pannexon opening
in astrocytes? Both Cx43 hemichannels and Panx1 channels augment their activity upon
a moderate rise in [Ca2+]i [147,159,192,193]. Of note, astrocytes from prenatally LPS-
exposed offspring display increased spontaneous [Ca2+]i oscillations with large amplitude,
which was found decisive for the activation of Cx43 hemichannels in these cells [170,174]
(Figure 4). More critical, this response causes the Cx43 hemichannel-dependent release of
glutamate and subsequent rise of basal [Ca2+]i via intracellular stores, a response being
underpinned by activation of metabotropic glutamate receptor subtype 5 (mGluR5) and
further downstream action of PLC and IP3 receptors [174]. These findings harmonize with
the increased release of glutamate observed in the hippocampus of prenatally LPS-exposed
offspring [194] and with the fact that mGluR5 controls [Ca2+]i responses in astrocytes [195].

6. Repercussions of Hemichannel and Pannexon Activation in the Offspring Brain
following Maternal Inflammation

During pathological conditions, long-lasting activation of hemichannels and pan-
nexons alters multiple aspects of astroglial function such as [Ca2+]i homeostasis, glio-
transmission, inflammasome activation, cytokine secretion, redox potential, mitochondrial
dynamics and survival [114,119–121,163,191,196–198]. How might these channels con-
tribute to maternal LPS-induced astroglial dysfunction in the offspring? The inflammatory
profile and homeostatic function of astrocytes require a delicate regulation of diverse
[Ca2+]i parameters, such as frequency, amplitude, the half-life of Ca2+ transient events,
and relaxation states [60,75,199]. Because hemichannels and pannexons, directly or in-
directly, cause the influx of Ca2+ [157,158,200–202] and their opening is modulated by
[Ca2+]i [147,159,192,193], they could significantly impact the function, reactivity, and fate of
astrocytes. Supporting this line of thought, in vivo postnatal administration of TAT-gap19,
a specific Cx43 hemichannel blocker that crosses the blood-brain barrier [203], prevents the
prenatal LPS-evoked branch arborization and hypertrophy exhibited by adult hippocampal
astrocytes [174], a well-recognized feature of reactive astrogliosis [82]. Similarly, the rise in
GFAP expression observed in the hippocampus of prenatally-LPS exposed adult offspring
was suppressed by the administration of TAT-gap19 [174]. These findings are consistent
with other studies demonstrating that TAT-gap19 decreases reactive astrogliosis and mi-
crogliosis, as well as inflammatory cytokine levels in models of intracerebral hemorrhage
injury and midbrain dopamine neurodegeneration [168,204]. Of note, specific blockade of
Cx43 hemichannels augments the Yes-associated protein nuclear translocation, resulting
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in subsequent inhibition of TLR4-NFκB and JAK2-STAT3 pathways [168], the latter being
crucial reactive astrogliosis [82].

Although it is unknown whether maternal inflammation affects the survival of as-
trocytes, the potential impact of hemichannels/pannexons in this phenomenon deserves
analysis and might occur through different mechanisms. The hemichannel/pannexon-
mediated [Ca2+]i overload could produce free radicals, lipid peroxidation, and plasma
membrane damage [205]. Cytosolic Ca2+ might also translocate into the mitochondrial ma-
trix, where it triggers the collapse of mitochondrial membrane potential, causing not only
loss of ATP production and generation of reactive oxygen species (ROS) but also cell death
via the release of cytochrome C through the mitochondrial transition pore and activation
of caspase-3 [206,207]. In addition, multiple lines of work indicate that osmotic and ionic
imbalances evoked by the increased influx of Na+ and Cl− via hemichannels or pannexons
could lead to subsequent cell swelling and plasma membrane breakdown [121,126,156,208].
Ultimately, as mentioned before, ATP released through Panx1 channels could be pivotal for
the activation of the inflammasome, resulting in the secretion of mature IL-1β and IL-18,
and the induction of pyroptosis, a lytic cell death accompanied by rapid cell-membrane
rupture [188,191,209,210]. How could the transient activation of hemichannels/pannexons
have a long-lasting effect on astroglial function? A possible explanation could be based on
the hemichannel/pannexon-mediated [Ca2+]i imbalance and subsequent activation of astro-
cytes. Ca2+ is known to regulate the function of diverse transcription factor pathways [211];
most of them (e.g., NFκB, JAK/STAT, FOX proteins, peroxisome proliferator-activated re-
ceptors, and activator protein-1) have been involved in sculpting gene-expression programs
implicated in astrocyte activation [212]. With this in mind, once astrocytic [Ca2+]i imbal-
ance occurs after the activation of hemichannels/pannexons, there are various pathways
through which cytosolic Ca2+ could sustain the reactive phenotype of astrocytes.

Maternal inflammation impairs hippocampal-mediated cognitive behavior [21,22,24,28]
and long-term potentiation [213]. Both phenomena associate with dendritic retraction of
pyramidal neurons and loss of synapses in diverse neurological conditions [214,215], includ-
ing maternal LPS exposure [216]. Notably, blockade of Cx43 hemichannels with TAT-gap19
completely prevents the prenatal LPS-induced reduction of hippocampal neurite arboriza-
tion and length, as well as the decline in dendritic spine density [174]. Most significantly,
the increased death of CA1 pyramidal neurons observed in offspring hippocampus was
completely prevented by inhibiting Cx43 hemichannels in this pathological model. This
evidence indicates that by altering the functions of astrocytes and/or releasing excitotoxic
amounts of gliotransmitters, Cx43 hemichannels would be crucial protagonists in neuronal
damage and synaptic dysfunction induced by maternal inflammation. The latter idea
is strengthened in light of other antecedents showing that LPS-induced impairment of
excitatory synaptic activity depends on the opening of astroglial Cx43 hemichannels [114].

How might prenatal LPS-induced opening of astrocytic hemichannels and pannexons
impair neuronal function and survival? At one end, it is plausible to hypothesize that
[Ca2+]i imbalance linked to the opening of astrocytic hemichannels and pannexons could
disturb essential functions that sustain not only astrocytic survival but also astrocyte-to-
neuron support, including energy and redox homeostasis, uptake of K+ and glutamate,
and the delivery of neurotrophic factors and energy-rich metabolites. Both phenomena,
either the dysfunction of astrocytes or a reduction in their number triggered by maternal
inflammation, could make neurons more susceptible to the deleterious effect of prenatal
LPS exposure itself and/or the experience of a second immune challenge during adulthood
(see the “two-hit” explanation for the schizophrenia etiology [217]). At the other end, it is
possible to conjecture that prenatal LPS exposure could cause excitotoxicity by producing
the release of high amounts of gliotransmitters via hemichannels/pannexons, eliciting
further neuronal damage. In agreement with the latter idea, prenatal LPS exposure prompts
the Cx43 hemichannel/Panx1 channel-dependent release of glutamate and ATP from
astrocytes, making neurons in cultures or brain slices toxic [170,174] (Figure 5). Even more
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critical, the use of astroglial conditioned media revealed that ATP and further activation of
neuronal Panx1 channels contribute to neuronal loss caused by prenatal LPS exposure [170].
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via astroglial Cx43 hemichannels increases levels of astroglial basal [Ca2+]i following ma-
ternal inflammation [174], it remains unknown whether this gliotransmitter influences 
neuronal survival. If so, the activation of neuronal Panx1 channels might arise as a possi-
ble mechanism in the downstream signaling of glutamate-induced neuronal loss linked 
to N-methyl-D-aspartate receptors (NMDARs) and Src family kinase (SFK) [222]. In this 
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Panx1 channels via phosphorylation of Panx1 C-terminus, producing sustained neuronal 
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Figure 5. Possible detrimental roles on synaptic transmission of astroglial Cx43 hemichannels and Panx1 channels in
prenatally LPS-exposed offspring. Prenatal LPS exposure raises postnatal cytokine brain levels, causing the opening of
Cx43 hemichannels and Panx1 channels in astrocytes. The latter underpins the release of astrocytic ATP and glutamate
towards the synaptic cleft. ATP could stimulate P2X7Rs, whereas glutamate might activate NMDARs and AMPARs in
postsynaptic terminals of glutamatergic circuits. The downstream signaling of these receptors triggers the increase of
[Ca2+]i, a phenomenon that the activation of neuronal Panx1 channels could exacerbate. This responsecould occur at least
by two mechanisms: (i) via protein–protein interactions between Panx1 and P2X7Rs or (ii) due to the phosphorylation of
Panx1 as a result of Src kinase (SFK) action mediated by the metabotropic function of NMDARs. The persistent activation of
hemichannels/pannexons at the synaptic cleft might create a self-perpetuating loop of [Ca2+]i imbalance with substantial
and detrimental consequences for proper synaptic transmission and neuronal survival. Solid lines depict fluxes of molecules
through channels, whereas dashed lines indicate activation or induction.

Neurons express functional Panx1 channels [218,219], whereas their ability to consti-
tute connexons or hemichannels is still a matter of investigation [220,221]. In other systems,
it has been proposed that ATP could trigger the opening of neuronal Panx1 channels via
the above-mentioned protein–protein interactions between these channels and P2X7Rs
or via stimulation of P2Y receptors and further raising of [Ca2+]i [111,112]. In the case of
maternal inflammation, it seems that P2X7Rs rather than P2Y1Rs contribute to the astroglial
ATP-mediated neuronal death in prenatally LPS-exposed offspring [170] (Figure 5). Alter-
natively, Panx1 channels could be opened by a rise in [Ca2+]i and further phosphorylation
of the Panx1 amino acid residue S394 by activated CaMKII, as recently demonstrated in
cells subjected to membrane stretch [193]. Although glutamate released via astroglial Cx43
hemichannels increases levels of astroglial basal [Ca2+]i following maternal inflamma-
tion [174], it remains unknown whether this gliotransmitter influences neuronal survival.
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If so, the activation of neuronal Panx1 channels might arise as a possible mechanism in the
downstream signaling of glutamate-induced neuronal loss linked to N-methyl-D-aspartate
receptors (NMDARs) and Src family kinase (SFK) [222]. In this multiprotein complex, the
metabotropic activation of NMDARs recruits SFK to open Panx1 channels via phosphory-
lation of Panx1 C-terminus, producing sustained neuronal depolarizations and consequent
excitotoxicity during anoxia/ischemia [222–224].

7. Conclusions

The CNS needs protection from endogenous and exogenous threats. The notion of the
brain being a privileged organ with a poor immune capacity does not conciliate with recent
evidence indicating that it performs complex immune responses primarily based on its innate
immune system, a “first line” of defense ensuring brain homeostasis [225–227]. Along with
microglia, astrocytes are cornerstones in this process as they restrain infection and eliminate
pathogens, cell debris, and misfolded proteins. Astrocytes also sense neuronal activity
and respond locally to it through the release of gliotransmitters that further modulate
synaptic function and transmission. The findings discussed in this review support the idea
that activation of astrocyte Cx43 hemichannels and Panx1 channels could contribute to
offspring brain abnormalities observed following maternal inflammation. In particular, the
opening of these channels could be the hidden link between brain innate immune activation
occurring at early phases of fetal development and postnatal decline in synaptic function
and transmission. Further studies will clarify whether astroglial hemichannel/pannexon
opening evoked by prenatal inflammation takes place just at postnatal stages or during
fetal development as well.

An aspect that remains puzzling is whether maternal inflammation activates astroglial
hemichannels/pannexons in manners that differ in intensity and temporal kinetics depend-
ing on the nature of the immune stimuli (e.g., viruses, bacteria, and protozoa). In such a
case, the outcomes in synaptic function and neuronal survival could be considerably differ-
ent. It seems clear that prenatal inflammation plays a central role in opening these channels
as it occurs following other maternal stressors not necessarily linked to infections. For
instance, the combination of prenatal nicotine exposure and postnatal high-fat/cholesterol
diet produces the activation of hemichannels/pannexons in astrocytes, microglia, and neu-
rons, a response associated with cytokine production that does not occur when animals are
exposed to these stressors separately [228]. In the same direction, maternal exposure to high
doses of dexamethasone activates the NLRP3 inflammasome, which results in the opening
of oligodendrocyte hemichannels in a P2X7R-dependent manner [229]. Understanding how
hemichannels and pannexons participate in the impairment of astrocyte-neuron crosstalk
during and after maternal inflammation could be critical for developing pharmacological
therapies against neurological disorders observed in the offspring.
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Abbreviations

ASD autism spectrum disorder
CNS Central nervous system
COVID-19 coronavirus disease 2019
Cx43 Connexin 43
Etd Ethidium
GFAP glial fibrillary acidic protein
IL-1β Interleukin-1β
iNOS inducible NO synthase
[Ca2+]i Intracellular Ca2+

LPS lipopolysaccharide
NAD+ Nicotinamide adenine dinucleotide
NMDAR N-methyl-D-aspartate receptor
NO nitric oxide
Panx1 PGE2 Pannexin-1 Prostaglandin E
Poly (I:C) polyriboinosinic-polyribocytidilic acid
P2X7Rs P2X7 receptors
p38 MAPK p38 mitogen-activated protein kinase
ROS reactive oxygen species
SFK Src family kinase
IFNs type I interferons
TNF-α Tumor necrosis factor-α
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