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Abstract
1.	 Changes in the timing of life‐history events (phenology) are a widespread conse-

quence of climate change. Predicting population resilience requires knowledge of 
how phenology is likely to change over time, which can be gained by identifying 
the specific environmental cues that drive phenological events. Cue identifica-
tion is often achieved with statistical testing of candidate cues. As the number 
of methods used to generate predictions increases, assessing the predictive ac-
curacy of different approaches has become necessary.

2.	 This study aims to (a) provide an empirical illustration of the predictive ability of 
five commonly applied statistical methods for cue identification (absolute and rel-
ative sliding time window analyses, penalized signal regression, climate sensitivity 
profiles and a growing degree‐day model) and (b) discuss approaches for imple-
menting cue identification methods in different systems.

3.	 Using a dataset of mean clutch initiation timing in wild great tits (Parus major), we 
explored how the days of the year identified as most important, and the aggregate 
statistic identified as a cue, differed between statistical methods and with respect 
to the time span of data used. Each method's predictive capacity was tested using 
cross‐validation and assessed for robustness to varying sample size.

4.	 We show that the identified critical time window of cue sensitivity was consistent 
across four of the five methods. The accuracy and precision of predictions dif-
fered by method with penalized signal regression resulting in the most accurate 
and most precise predictions in our case. Accuracy was maximal for near‐future 
predictions and showed a relationship with time. The difference between pre-
dictions and observations systematically shifted across the study from preceding 
observations to lagging.

5.	 This temporal trend in prediction error suggests that the current statistical tools 
either fail to capture a key component of the cue–phenology relationship, or the 
relationship itself is changing through time in our system. These two influences 
need to be teased apart if we are to generate realistic predictions of phenological 
change. We recommend future phenological studies to challenge the idea of a 
static cue–phenology relationship and should cross‐validate results across multi-
ple time periods.
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1  | INTRODUC TION

Rapid climate change is causing shifts in the timing of annual peak 
resource availability for many animal populations across the world 
(Cook et al., 2012; Post, Pedersen, Wilmers, & Forchhammer, 2008; 
Singer & Parmesan, 2010; Visser, Holleman, & Gienapp, 2006; 
Visser, Marvelde, & Lof, 2012). Species can respond to these changes 
through evolution or by phenotypic plasticity in the timing of life‐
history events. Phenotypic plasticity has often been indicated as the 
primary driver of interannual phenological change, for example in 
breeding and migration dates of birds, summarized in Charmantier 
and Gienapp (2014). Species are thought to either respond directly 
to environmental changes or to proxy cues which relate to optimal 
timing. When temperature sensitivity differs between species, in-
terspecific interactions can be disrupted causing temporal mismatch 
between trophic levels. Such mismatches impact individual fitness, 
with poor matching reducing survival and reproductive success, po-
tentially affecting population resilience (Lane, Kruuk, Charmantier, 
Murie, & Dobson, 2012; Plard et al., 2014; Reed, Jenouvrier, & 
Visser, 2013; Visser et al., 2006).

Predicting phenological change over time is an important ele-
ment in assessing population resilience, since identifying potential 
trophic mismatches can highlight populations at risk. Prediction is 
becoming more common in ecological studies, particularly those in-
cluding phenology (van Asch, Tienderen, Holleman, & Visser, 2007; 
Chuine & Beaubien, 2001; Cleland et al., 2007; Pau et al., 2011; Roy 
& Sparks, 2000). Before generating predictions, however, it is nec-
essary to build an understanding of how species time their life‐his-
tory events. Life‐history events such as the onset of reproduction 
(Ardia, Cooper, & Dhondt, 2006; Charmantier et al., 2008), flowering 
(Cleland et al., 2007; Menzel et al., 2006), migration (Usui, Butchart, 
& Phillimore, 2017) and hibernation (Lane et al., 2012) have been 
linked to environmental variables (Parmesan, 2006). However, iden-
tifying the exact environmental cue or cues used is challenging. To 
establish causation between a proposed cue and phenology would 
require experimentation, preferably in the organism's natural envi-
ronment. However, such experiments are logistically challenging, 
particularly for large and mobile species. As a result, for long‐term 
phenological studies, the primary tool for identifying environmen-
tal cues has been statistical analysis. There are two overarching 
approaches: phenomenological and mechanistic (Roberts, Tansey, 
Smithers, & Phillimore, 2015). Phenomenological approaches are 
based on statistical associations between observed data (Roberts 
et al., 2015). Mechanistic approaches are based on assuming known 
biological processes as drivers of variation. Both methods identify 
correlative rather than causal relationships. This impedes the teas-
ing apart of real cues from confounding variables, particularly as 

many weather variables are highly autocorrelated both temporally 
and spatially. Of the different methods used, the phenomenological 
sliding time window and smoothing function‐based regressions, and 
the mechanistic growing degree‐day model (GDD), have been used 
most frequently.

Sliding time window analyses—a regression‐based approach 
(Hudson, 2010)—have been widely applied (Bailey & De Pol, 2016; 
Husby et al., 2010; Perrins & McCleery, 1989; Phillimore et al., 2013; 
van de Pol et al., 2016; van de Pol & Cockburn, 2011; Samplonius et 
al., 2018). This approach statistically identifies the critical time win-
dow in which an environmental variable explains the most variance 
in phenology. Typically, the explanatory variable is some measure of 
an abiotic weather variable across a temporal window; the response 
variable is the phenological variable of interest. The duration and 
temporal position of the window can be altered, and the explanatory 
power of each model compared. The temporal position is either tied 
to a reference calendar day (i.e. 20 May) or to the time event itself 
(i.e. days prior to event); these approaches are absolute sliding time 
window (SWA) analysis and relative sliding time window (SWR) anal-
ysis, respectively (van de Pol et al., 2016). SWAs vary in the annual 
lag between the window and the event, whereas SWRs are fixed 
relative to the phenological event, but calendar day can vary. The 
SWR has been proposed as an alternative to absolute methods to 
allow for individual or interannual variation in weather conditions 
experienced (van de Pol et al., 2016; van de Pol & Cockburn, 2011). 
Absolute methods (SWA; climate sensitivity profiles—CSP; and P‐
spline signal regressions—PSR), which are tied to a calendar day, 
can identify good proxies for the actual cue, which can be useful 
for prediction, if the relationship between the cue and proxy is sta-
ble. However, they cannot identify a true biological cue. It is biolog-
ically implausible that the exact same period of calendar days, for 
example May temperature, influences the phenological event in all 
individuals or in all years. For example, in a particularly warm year 
the mean phenological event timing may fall prior to or within May. 
Consequently, the timing decision could not be influenced by this 
cue and therefore it cannot be a true biological cue, even if it were 
to correlate strongly with it (therefore being a good proxy). Relative 
windows provide some alternative to this in an attempt to access a 
more biologically meaningful cue by having temporally variable win-
dows, for example temperature in the month prior to laying would 
influence lay date each year. Instead of being fixed to a calendar day, 
SWR methods are fixed to the phenological event, covering different 
calendar days each year (or for each individual) but having a fixed lag 
time between the cue and event.

Smoothing function methods are a more recent approach (Roberts, 
2008; Roberts et al., 2015; Thackeray et al., 2016). They are also 
regression‐based analyses but employ smoothing functions and 
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penalties to generate sensitivity profiles (Roberts, 2010). These analy-
ses consider the influence of the environment on all days during a year 
rather than bounded windows. The PSR method (Roberts, 2008) and 
CSP method (Thackeray et al., 2016) are both examples of smoothing 
function approaches. Using these methods, it is possible to identify 
the most influential days of the year, based on the effect size.

Growing degree‐day (GDD) models were developed for plants 
(Chuine, 2000; Kramer, 1995; Rötzer, Grote, & Pretzsch, 2004), 
based on the assumption of linear relations between temperature 
and development due to enzyme activity (Bonhomme, 2000). Any 
temperatures exceeding a particular threshold are considered to 
contribute to development, and the influence of each degree over 
the threshold is accumulated until a second threshold is reached 
and the phenological event occurs. These models can be applied to 
animal systems although fewer direct developmental links to tem-
perature might be expected for endothermic animals (Khaliq, Hof, 
Prinzinger, Böhning‐Gaese, & Pfenninger, 2014; McNab, 2012).

A fundamental implicit assumption across all of these methods 
is that the environmental cues driving phenology remain consistent 
across time. Many studies of phenology in long‐term systems con-
tinue to use the same cue identified previously to inform later analy-
ses (Charmantier et al., 2008; Visser et al., 2006; Visser, Noordwijk, 
van Tinbergen, & Lessells, 1998). Alternatively, cues are defined 
using all data available or without consideration of the temporal dis-
tribution of the data (Husby et al., 2010; Perrins & McCleery, 1989; 
Phillimore et al., 2013; van de Pol et al., 2016; Thackeray et al., 2016). 
Both approaches assume that the cue, or the relationship between a 
proxy and timing, does not change over the time period considered. 
This assumption fails to account not only for the potential of chang-
ing cues over time but also for the influence of sample size on the 
cues identified.

Other methods exist in the cue identification toolkit, such as ma-
chine learning (Holloway, Kudenko, &Bell, 2018); however, the above 
are the most commonly applied and well developed. Previous studies 
have compared the performance of different methods in capturing en-
vironmental sensitivity (Phillimore et al., 2013; Roberts et al., 2015), 
finding largely congruent results across different methods. Similar 
cues were identified using GDD, SWA and PSR (Phillimore et al., 2013; 
Roberts et al., 2015). While predictive potential was inferred in these 
studies through R2 values, the predictive capacity and accuracy of 
different methods were not compared. The aims of explanation and 
prediction are fundamentally different and models optimized for one 
will not necessarily perform well for the other. Therefore, it is timely 
to assess the predictive performance of cues identified for the aim of 
explanation as a predictive focus in ecology increases.

In this study, we address the following specific objectives, using 
a dataset of population mean annual laying date, collected over 
55 years from a long‐term study of the great tit, as our phenology 
measure to:

1.	 Compare and contrast temperature cues identified (allowing 
variation in both the critical window and aggregate statistic 
of the cue) by five commonly used methods (sliding window 

absolute analysis (SWA), sliding window relative analysis (SWR), 
climate sensitivity profiles (CSP), penalized signal regression 
(PSR) and a growing degree‐day model (GDD)).

2.	 Assess how these identified cues vary depending on the length of 
the dataset and the precise time period used.

3.	 Use the temperature cues identified by the different methods and 
lengths of dataset to predict phenology for five‐year test datasets 
of observed data.

4.	 Evaluate the predictive performance of the different methods and 
interpret their biological meaning.

2  | MATERIAL S AND METHODS

2.1 | The study system

The Wytham Woods great tit nest box population study has been 
conducted in a standardized way since 1960 (Perrins, 1979). Each 
breeding season (April–June), weekly nest box checks are carried out 
to provide data on nest stage, number of eggs and the onset of incu-
bation. Clutch initiation date is determined by assuming a laying rate 
of one egg per day; therefore, it is possible to count backwards from 
the number of eggs counted on the weekly check to determine the 
date that the clutch was initiated. Species identity (four species of 
tit use the study nest boxes) is initially confirmed by weighing eggs, 
when at least three are present; great tit eggs can be confirmed 
by average egg weight of >1.3  g per egg. Clutch initiation timing, 
hereafter “lay date,” has been extensively studied in this popula-
tion and strongly linked to spring temperature (Charmantier et al., 
2008; Husby et al., 2010; van Noordwijk, McCleery, & Perrins, 1995; 
Perrins & McCleery, 1989). Therefore, we focus on testing tempera-
ture cues only in this study. We also exclude any lay dates more than 
30 days after the first lay date of the year from analyses. This is to 
avoid inclusion of second or replacement clutches (Van Der Jeugd, 
Henk, & McCleery, 2002). All mean lay dates were rounded to the 
nearest whole day.

This study uses annual mean lay dates from 55 years (1961–2015); 
these were calculated from 14,372 individual nest observations. The 
mean number of nests per year was 256.6 (range 114–473). The 
mean standard deviation of lay dates in a given year was 7.8 days 
(range 4.4–13.4 days).

Our biological dataset has the following format (column names): 
year, mean lay date (in days since 1 April), mean lay date (dd/mm/
yyyy), day of the month, month, day of the year.

2.2 | Environmental data collection

Temperature data were collected by the Meteorological Office, as 
part of the National Climate Information Centre gridded daily data 
(grid point 447500E 202500N) (Hollis & McCarthy, 2017; Met 
Office, 2009). These data are available at a 5 km by 5 km resolution 
across the United Kingdom (UK). Daily maximum and minimum tem-
peratures were recorded in weather stations across the UK and the 
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mean of these taken to produce a daily mean temperature measure. 
Spatial and temporal interpolation for missing data was conducted 
by the Meteorological Office (Met Office, 2009). Environmental 
data were available from 1960 to 2015.

Our environmental dataset has the following format (column 
names) with daily resolution; date (dd/mm/yyyy), day of month, 
month, day of year, temperature (°C).

2.3 | Statistical analyses

2.3.1 | Cue identification methods

The response variable used in all analyses was the mean annual lay 
date for the Wytham Woods great tit population.

2.3.2 | Sliding time window analyses

The premise of sliding time window analyses is that there is an 
optimum time period in which the focal species is most strongly 
influenced by abiotic conditions. To identify this time period, en-
vironmental conditions, such as precipitation or temperature, are 
aggregated across a period of days (the time “window”). The dura-
tion and calendar position of the window are then altered to gen-
erate a series of candidate windows and associated environmental 
conditions, which are the explanatory variable. The number of 
candidates chosen can be exhaustive, testing all possible dura-
tions and positions within some bounds (van de Pol et al., 2016) 
or restricted to only a few a priori chosen candidates (Husby et 
al., 2010; Perrins, 1965). A regression‐based analysis (typically a 
linear model) is then used to determine the explanatory power of 
each candidate window. Model selection, with a focus on explana-
tory performance, is then conducted to determine the preferred 
model from the candidates. The aggregate statistic used in this 
method is typically a sum, mean (e.g. of the daily mean, minimum, 
or maximum temperature), minimum (e.g. the minimum mean daily 
temperature reached in a focal window) or maximum (e.g. the max-
imum mean daily temperature reached in a focal window) envi-
ronmental value, or the slope of environmental change across the 
window (the gradient of a linear model of daily mean temperature 
against date within the focal window).

2.3.3 | Absolute sliding time window (SWA)

In SWA, the position of the candidate window occurs at the same 
point in the calendar year every year, for example always from the 
10 April to 20 May. In other words, it holds an absolute position not 
influenced by phenological timing.

In this study, we chose to implement the SWA as an exhaustive 
analysis. For this analysis, we used a reference day of the 20 May to 
bound exploration to windows that occur prior to that date, meaning 
all windows are characterized in “days prior to 20 May.” Windows 
were allowed to vary in length from a single day up to 365  days. 
The whole year was used for consistency with other methods in this 

study (CSP and PSR) and to reduce a priori restrictions. It also allows 
influence of autumn or winter temperatures to be detected if these 
are important, as has been previously reported for some species (e.g. 
Thackeray et al., 2016). Four aggregate temperature statistics were 
tested (mean, minimum and maximum temperatures, and the slope of 
temperature change across each window—calculated as the gradient 
from a linear model of temperature against day in window). All ag-
gregate statistics were calculated from data of mean daily tempera-
ture. For instance, the minimum and maximum are the most extreme 
mean daily temperatures that occurred during a particular window. 
Model selection was performed using the AICc (Akaike information 
criterion (Akaike, 1973) with a small sample size correction); the pre-
ferred model was identified by having the lowest AICc compared to 
the baseline model, an intercept‐only linear model of annual mean 
lay dates. The SWA analysis was run using the R package “climwin” 
(Bailey & De Pol, 2016; van de Pol et al., 2016). This package was 
designed to standardize the process of fitting sliding time windows 
to phenological data. It allows for exhaustive exploratory analyses 
across a variety of aggregate statistics.

2.3.4 | Relative sliding time window (SWR)

SWR is similar in principle to SWA; however, the candidate windows 
are not tied to a calendar day, but to the phenological event itself. All 
windows are defined in “days prior to the phenological event” and 
occur on different calendar days each year.

In the same way as for SWA analyses, the time windows were 
allowed to vary in length from one to 365 days, and we tested ag-
gregate temperature statistics of the mean, minimum and maximum 
temperature, and slope of temperature change across each window. 
Model selection was again conducted using AICc (with small sample 
size correction) compared to the baseline model, an intercept‐only 
linear model of annual lay date means. SWR analyses were also run 
using the “climwin” package in R.

2.3.5 | Climate sensitivity profile (CSP)

The CSP technique was first introduced by Thackeray et al. (2016), 
and we follow their general methodology here. This method takes a 
measure of an environmental variable on a single day, for example 
daily mean or maximum temperature, and regresses this against the 
phenological event of interest in turn for every day of a year. The 
first day taken is the day prior to a reference day. Here, we used 20 
May as our reference. We began with mean temperature for the 20 
May and regressed this against the annual mean lay dates (using the 
lm function in R), iterating backwards through time up to 365 days 
prior to 20 May. For each regression, we saved the coefficient value 
(the slope of the relationship between temperature and phenol-
ogy) and the R2. These coefficient and R2 values were each passed 
through a GAM using the R package “mgcv” (Wood, 2001; Wood 
& Wood, 2015) to smooth the values across time. These smoothed 
functions are used to identify the calendar days of greatest influ-
ence on phenology. This period is defined as a period of consecutive 
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days on which the coefficient and the R2 values exceed the lower 
and upper quantiles, defined as greater or equal to the lowest 2.5% 
and highest 97.5% of values following the method used in Thackeray  
et al. (2016).

To run this method, our environmental data were reformatted 
so that each row was a year and each column was a day prior to 20 
May, with entries being daily mean temperature. While Thackeray 
et al. propose using the date on which 95% of individuals have initi-
ated laying (DOY95) as a response, we use annual mean lay date for 
consistency with the other methods trialled here. We also test using 
DOY95 to compare using the method as intended by the authors 
(see Figure S4).

2.3.6 | P‐spline signal regression (PSR)

P‐spline signal regression for phenological cue identification was 
introduced by Roberts (2008). This method works on a similar 
principle to the CSP methodology, but instead of a two‐step pro-
cess there is a single smoothing and coefficient creating step. This 
method regresses all 365 days of temperature against the response, 
simultaneously creating partial coefficients (slope of the relationship 
between temperature and phenology). These partial coefficients 
are smoothed by penalizing for differences in consecutive days. 
The inclusion of many explanatory variables in a single analysis is 
addressed through a data reduction phase in order to reduce the 
high dimensionality. This is achieved by creating a B‐spline basis, 
creating a series of piecemeal polynomials (curves) joined at knots. 
These knots must be specified and cannot exceed one less than the 
sample size. The combination of B‐splines with a difference penalty 
results in P‐splines (penalized B‐splines), which penalizes differences 
between B‐splines to prevent overfitting. The level of difference 
penalty is chosen through cross‐validation. Here, we take the order 
of the B‐spline basis and the difference penalty from that described 
in Roberts (2008) and Roberts et al. (2015), cubic and first order, re-
spectively. The approach can be implemented directly using a GAM. 
We ran the PSR using the “mgcv” R package. The GAM is run on 
the raw phenology data and climate data indexed to the reference 
date of 20 May. Our climate data were arranged in the same way as 
for the CSP method. The whole year of temperature can be used to 
subsequently predict phenology in given years. The most important 
days of temperature influence on phenology in the year may be iden-
tified by as those with partial coefficients greater than or less than 
zero by more than two times their standard error.

2.3.7 | Growing degree day (GDD)

The GDD model we implement here is a three‐parameter thermal‐
time model (also used in Phillimore et al., 2013). The parameters 
used in this model are: start date, minimum threshold temperature 
and the cumulative GDD requirement. The environmental values 
begin being accumulated from the start date onwards; here, we 
use mean daily temperatures. Every degree above the minimum 
threshold temperature is cumulatively summed until the cumulative 

GDD requirement is reached, at which point the phenological event 
is predicted to occur. These parameters were optimized to mini-
mize the sum of squared differences between the predicted an-
nual mean lay date and the observed mean lay dates. The sum of 
squares was calculated using a linear model with the observed phe-
nology as an explanatory variable and predicted phenology as the 
response. Optimization was performed using a generalized simu-
lated annealing optimizer through the “GenSA” R package (Xiang, 
Gubian, Suomela, & Hoeng, 2013). A wide area of parameter space 
is searched with bounds for each parameter of start dates from 1 to 
200 (year day on which temperature starts being counted); minimum 
temperature from 1°C to 10°C; and cumulative GDD requirement of 
50°C to 1,000°C. Parameters were bootstrapped 1,000 times using 
the “boot” package in R (Canty & Ripley, 2017; Davidson & Hinkley, 
1997), and percentile bootstrap confidence intervals for each pa-
rameter were produced to capture uncertainty in the parameter 
estimation. It should be noted that the aggregate statistic used for 
GDD models is cumulative sum of temperature in contrast to pre-
dominantly mean temperature in other methods.

2.3.8 | Identification of critical time windows and 
aggregate statistics

In this study, we identified cues using several different data subsets 
to address the question of whether the time period covered by the 
data alters the cue identified. To answer this question, the data were 
divided into three subsets: a 50‐year training dataset (1961–2010), 
the first 25 years of data (1961–1985) and the last 25 years of data 
(1986–2010). Data from 2011 to 2015 were retained separately to 
use as a test dataset for predictive analyses. An optimal temperature 
cue was identified using each of the five methods detailed above, by 
running each method following its own protocol.

To assess the amount of variance explained by the identified 
cues, we ran linear models with annual mean lay date as a response 
variable and the cues identified as the explanatory variables. For the 
SWA, SWR and CSP methods, the cue identified is a temperature 
variable. For the GDD and PSR methods, the cue identified is the 
date on which the cumulative GDD requirement is reached or the 
fitted date from the PSR model. For each of the linear models, the 
adjusted R2 value was calculated as an indication of the amount of 
variance in the annual mean lay date that has been explained by the 
focal cue.

2.3.9 | Prediction of lay dates using identified cues

Only four of the five methods were used predictively in this study 
because the SWR cue is defined based on the timing of the phe-
nological event, and therefore, to identify the cue, the event must 
have already occurred. As a result, prediction using this method was 
not possible. For the SWA and CSP methods, predictions of annual 
mean lay date timing were generated from linear models of the iden-
tified cues against phenology, based on the observed temperature 
values from the test years. For PSR, predictions were generated 



     |  1433Journal of Animal EcologySIMMONDS et al.

from the P‐spline GAM using all days of temperature in the 365 days 
preceding 20 May. For the GDD model, the temperature data from 
the test years were passed through the GDD equation using previ-
ously optimized parameter values to identify the date in each year 
on which the cumulative GDD requirement was reached. Prediction 
intervals were also generated for all methods using the results of the 
linear models or GAM for SWA, CSP and PSR. However, for the GDD 
method prediction intervals were generated by predicting using the 
lower and upper bounds of estimates of each parameter from boot-
strapped confidence intervals.

We explored the influence of the time period of the training data 
relative to the test data and the length of the training data on pre-
dictive performance at several resolutions. In order to tease apart 
these different influences, three sets of predictions were generated 
to answer specific questions:

1.	 How does the number of years of data influence predictive 
performance? To address this, we subdivided the 50‐year training 
dataset into eight smaller training datasets, creating a total of 
nine datasets. The eight smaller datasets decrease in 10‐year 
increments in both directions (i.e. 1971–2010 and 1961–2000), 
down to two 10‐year datasets of the earliest and latest de-
cade. Cues were identified for each training dataset using the 
four methods where prediction is possible (SWA, CSP, PSR 
and GDD). Predictions of mean annual lay date were then 
generated for test datasets, which cover the 5  years directly 
following the end of each training dataset (i.e. for a training 
dataset of years 1961–2000 the test years are 2001–2005).

2.	 How does the temporal distance between the dataset and predicted 
years interact with data length to influence predictive performance? 
To address this question, we used the same data subsets from above 
but instead of using the 5 years following the end of the training 
dataset as test years we used only 2011–2015. For datasets ending 
in 2010 (five of the nine), this was the same analysis as above. This 
allowed the influence of years of study to be distinguished from the 
influence of temporal lag between data and predictions.

3.	 How accurate and precise are predictions from the SWA, CSP, 
PSR and GDD methods across our dataset? To address this, we 
conducted K‐fold (in this instance 5‐fold) cross‐validation to de-
termine predictive performance when accounting for stochastic-
ity in the test years of data. We split the original 55‐year dataset 
(1961–2015) into five‐year subsets and in turn predicted one 
five‐year subset from the parameters generated by the remain-
ing 50 years (e.g. 1961–1965 could be held as a test dataset and 
1966–2015 data used to predict phenology in the test years).

To quantify the accuracy of the phenological predictions and compare 
across different methods and data subsets, the mean absolute error 
(MAE) was calculated for each set of five predicted years (2011–2015). 
The MAE is the mean of the positive value of all discrepancies between 
the predicted lay dates and the observed lay dates (error) across the 
five test years. The larger the MAE, the greater the discrepancy be-
tween predicted and observed phenology. In addition to the MAE, we 

also calculated the raw discrepancy (retaining sign of error) between 
the predicted and observed phenology during the K‐fold cross‐valida-
tion (the mean prediction error). This allowed an exploration of bias in 
the predictions, which would not be captured by MAE.

Precision of predictions was represented by prediction intervals. 
The widths of prediction intervals were compared, with wider inter-
vals indicating lower precision. We also explored how well the preci-
sion is captured by calculating the proportion of times the observed 
value fell within the prediction interval for each set of five test years 
(coverage of the prediction interval).

3  | RESULTS

3.1 | Critical time windows of sensitivity

We found considerable variability in the exact days identified as the 
“critical window” of environmental sensitivity; the window length 
and position varied based on the method used and the time period 
covered by the dataset (Figure 1). The timing of the critical window 
was broadly similar between the SWA, PSR, CSP and GDD methods, 
for all time periods. However, the SWR method identified windows 
considerably earlier than all other methods, more than 200  days 
earlier at the most extreme. The SWR method showed large differ-
ences in window timing depending on the dataset used, with older 
data producing earlier windows. Time windows identified using the 
whole long‐term training dataset (1961–2010) were typically midway 
between the early data and late data, with the exception of SWR 
where the window was different from both early and late. In addi-
tion, for all methods except SWR, the windows for the latter half of 

F I G U R E  1   Temporal critical windows for great tit egg‐
laying phenology identified by different statistical methods 
and timeframes of data. Vertical dotted line shows 1 January, 
and solid vertical line indicates 20 May, the reference day for 
absolute methods; absolute sliding window analysis (SWA), climate 
sensitivity profile (CSP) and penalized signal regression (PSR). 
Growing degree‐day model (GDD) is plotted relative to the mean 
lay date across years and the relative sliding window analysis (SWR) 
relative to the reference date of 20 May
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our data (1986–2010) began earlier and were longer in duration than 
the windows identified using older data.

Relationships between the identified cue and the mean annual lay 
date varied from explaining 41% (CSP) to 77% (PSR) of the variance in 
the response variable. Three of the five (SWA, SWR and PSR) explained 
approx. 70%, or greater, of the variation (Table 1). When selecting for 
a model which maximizes explanatory power, dissimilar environmental 
cues can still produce similar results and consequently be difficult to 
choose between. This is not surprising in highly explorative analyses 
such as this; consequently, R2 should be used with caution.

3.2 | How accurate is predicted phenology?

Error between predicted and observed phenology was lowest for 
near‐future predictions—those where test years occur directly after 
the end of the training dataset (Figure 2a,b). These predictions had 
MAE that did not exceed 7  days. The standard deviation in mean 
annual lay dates across the study period was 7.2 days; therefore, all 
near‐future predictions had error which was lower than the standard 
deviation of the data as a whole.

Sample size did not appear to have a strong influence on predic-
tive accuracy. Mean absolute error remained consistent across five 
different sample sizes from 10 to 50 years in Figure 2(a,b). There was 
a slight reduction of MAE with increasing sample size in Figure 2c. 
However, this also coincided with decreasing temporal lag between 
data and predictions. The larger the temporal lag between data and 
predictions, the greater the error up to 12 days MAE. When data 
were collected relative to when it is predicting had a greater impact 
on accuracy than the total number of years of data. The PSR method 
had the lowest mean MAE and consequently the highest accuracy of 
all methods in K‐fold cross‐validation (Table 2). SWA, GDD and CSP 
also had mean MAE of <7 days.

While MAE was consistent across all sets of test years for near‐
future predictions, the mean prediction error (mean of the raw 
values of prediction minus observed) indicated systematic bias in 
accuracy (Figure 3). Non‐random structure was present in the error. 
Predictions for the earliest half of the study period tended to be ear-
lier than observations, and predictions for the latter half of the study 

period tended to be later than observations. This structure was de-
scribed by using a fitted least‐squares line with study year as an ex-
planatory variable: 50% of the variation in the error was explained by 
year of study (quantified by multiple R2). While the GDD method did 
demonstrate bias in the prediction error, in the same direction as all 
other methods, the error for this method did not appear to follow a 
linear trend. If only the regression‐based analyses were included, the 
amount of variation explained by the linear term increased to 66%. 
The fitted line in Figure 3 crossed 0 at approximately the mid‐point 
of our study (1986).

3.3 | How precise are our predictions of phenology?

The amount of uncertainty (how precise the predictions are) in pre-
dicted phenology—the width of prediction intervals—varied sub-
stantially between methods (Table 2 and Figure 4) from 6.73 days for 
the PSR method to 66.13 for the GDD method. There was no clear 
association between width of prediction intervals and either number 
of years of data or distance from the data and predictions (Table 2). 
The range of the 95% prediction intervals of all methods except PSR 
was more than double the within (7.8 days)‐ and between (7.2 days)‐
year standard deviation in lay dates for this population.

Within methods, there was no association between how accurate 
and how precise predictions were, that is sets of test years with higher 
accuracy in predictions did not consistently have tighter prediction in-
tervals. In contrast, between methods those with higher accuracy (PSR 
and SWA) were also more precise (have tighter prediction intervals—
Table 2). The PSR method was both the most accurate and the most 
precise method, based on prediction interval width. However, the width 
of a prediction interval alone does not give us a complete picture of how 
precise a method is. It is also important to know whether the estimated 
prediction interval does accurately capture the uncertainty in a particu-
lar method. To quantify this, we calculated the proportion of prediction 
intervals which contained the observed value (coverage). For 95% pre-
diction intervals, we would expect on average 95% of the intervals to 
overlap the observed value. From Table 2, it is clear that this was not al-
ways the case when predicting outside of the original dataset (the train-
ing dataset). The proportion of prediction intervals that contained the 

TA B L E  1   Summary statistics for linear models of identified cues and lay date for all methods

Method Time period Aggregate statistic Intercept Slope SE R2 Window open Window close

SWA Whole dataset Mean across 
window

163.91 −6.06 0.54 0.72 81 14

SWR Whole dataset Mean across 
window

167.33 −5.24 0.49 0.69 250 165

CSP Whole dataset Mean across 
window

135.78 −3.06 0.52 0.41 90 51

PSR Whole dataset Daily mean 181.08 NA NA 0.77 102.95 0.00

                °C min °C total

GDD Whole dataset Sum 0.09 0.91 10.06 0.66 61.53 1.03 355.50

Note: Shows time period of data used, intercept of the regression, slope of the relationship, standard error (SE), adjusted R2 (R2), window open and 
window close (in days prior to reference day of 20 May). The minimum threshold temperature and cumulative GDD requirement are also presented.
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observed value in this study ranged from 100% to 0% (Table S2), but was 
most interesting for the K‐fold cross‐validation because these results 
take account of stochasticity in individual sets of test years by having 11 
sets of test years (55 predicted years in total). For the K‐fold cross‐vali-
dation, the SWA and CSP methods had approximately 95% of observa-
tions falling within the prediction intervals, as would be expected. The 
GDD method had 82% of observations within the prediction intervals, 
whereas the PSR method had a particularly low proportion of observa-
tions within prediction intervals, 58%. This is much lower than expected 
even with stochastic variation. Despite the seemingly high precision and 
absolute accuracy of this method, it appears that precision in the predic-
tions was not being correctly quantified.

4  | DISCUSSION

4.1 | Identified temperature cues differ between 
methods and over time but explanatory power of cues 
remains high

We have shown, using multiple analyses on the same dataset, that 
the identified temporal windows of environmental sensitivity vary 

F I G U R E  2   Mean absolute error (MAE) of model predictions 
using different amounts of data. Error between predictions and 
observations shown for different training dataset lengths from 
10 to 50 years, in 10‐year increments beginning. (a) Beginning at 
2001–2010 and extending backwards in time. (b and c) Beginning 
at 1961–1970 and extending forwards in time. Predicted years are 
the 5 years directly following the end of training data (a and b) or 
2011–2015 (c)

TA B L E  2   Summary of predictive accuracy and precision of  
K‐fold cross‐validation

Method MAE PI width
% observations in 
PI (coverage)

SWA 3.35 15.29 96

CSP 4.60 21.03 93

PSR 3.16 6.73 58

GDD 6.60 66.13 82

F I G U R E  3   Plot of the error from K‐fold cross‐validation (mean 
difference between predicted and observed mean annual lay date). 
Error is plotted against the time period of the five‐year test dataset 
it is generated for. Plotted solid line is a fitted least‐squares line, 
dashed line indicates 0

F I G U R E  4   Predicted and observed mean annual lay dates. 
Predictions generated from different methods, using the whole 
long‐term dataset, are plotted against the observed lay dates. 
Vertical lines represent 95% prediction intervals or the standard 
deviation for observed data
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in their position and duration dependent on the statistical method 
and the time period of data used (Figure 1). While there was some 
temporal overlap between the windows identified by SWA, CSP, 
PSR and GDD, the SWR method identified critical windows of 
temperature sensitivity that were 50–250 days earlier than other 
methods. The amount of temporal overlap in cues identified by dif-
ferent methods was highly influenced by the time period of data 
used to identify the cue. If only the most recent 25 years were used, 
the results of the SWA, CSP, PSR and GDD methods were largely 
congruent, as found in previous comparisons of statistical methods 
for cue identification (Phillimore et al., 2013; Roberts et al., 2015). 
However, when the earliest 25  years of data were used, more 
marked between‐method differences emerged. This appears to be 
driven by different susceptibility of the methods to the input data, 
with SWR having the greatest variation in cues identified. It should 
be noted that when CSP is employed using DOY95, as suggested in 
Thackeray et al. (2016), the windows identified by this method are 
more variable (see Figure S4). For all methods, excluding SWR, the 
windows identified by the most recent half of the data all began 
earlier in the year and had a longer duration than those identified by 
the earlier half. This is as would be expected as the birds are shifting 
their lay dates earlier in the year.

Despite the difference in cues identified by different methods, 
explanatory power of the different cues remained fairly high (ex-
cluding CSP). Using metrics based on the ability to explain variances 
such as AIC or R2 may not be sufficient to distinguish between cor-
related cues. In the worst case, the R2 values can be overly opti-
mistic in highly explorative studies and should be interpreted with 
caution. As a result, we recommend, for prediction in particular, to 
assess how well the identified cues perform for prediction to de-
termine whether the identified cues hold for future years or novel 
conditions.

Temporal movement of the cue identified across our study pe-
riod data could indicate a shift in the actual temperature cue over 
time (Figure 1). This could operate through evolution of the cue–
phenology relationship. The consistent (expect for SWR) shift to an 
earlier beginning of identified critical windows for more recent data 
could give support to evolution to use a different cue. However, an 
alternative possibility is that the statistical methods could be iden-
tifying proxies for the actual cue used by great tits and that under 
climatic change the relationship between these proxies and the ac-
tual cue are shifting, leading to a change in the proxy identified as 
the best predictor. It may also be the case that none of the statistical 
methods we use identify either the precise cue or a consistent proxy 
and that the cue identified is simply the best predictor of variance 
in lay dates for that particular time period and that this is altered 
depending on the exact years included.

We found (Figure 1) that the cue identified by SWR method 
was notably different to all other techniques, which identified very 
similar windows here and in previous comparison studies (Hudson, 
2010; Phillimore et al., 2013; Roberts et al., 2015). This indicates that 
the relative approach can also be problematic in phenological cue 
identification.

The SWR approach has been used successfully to understand 
climate predictors of egg size in fairy wrens (Langmore, Bailey, 
Heinsohn, Russell, & Kilner, 2016). A variant on a relative approach 
was also successfully used to look at the timing of incubation onset 
relative to clutch completion (Simmonds, Sheldon, Coulson, & Cole, 
2017); here, the temperature windows were tied to clutch completion 
rather than a calendar date but the lag between the cue and incuba-
tion onset remained variable. However, relative approaches should 
be used with caution. Due to the linear regression basis of these 
methods the strongest effect size, R2, and lowest AIC values will be 
produced when there is variability in the explanatory variable and this 
variability correlates with the response variable, that is high values of 
temperature correspond with either early or late lay dates and low 
temperatures with the opposite. When using relative windows, it is 
likely that the time period preceding the phenological event will have 
similar temperature values for all years. For instance, if laying com-
mences soon after particular temperatures are reached, regardless 
of their exact yearly timing. In this case, the explanatory power of 
windows identified close to the lay date will be low, because there will 
be lower variability in the explanatory variable than in the response 
variable. Only when a difference between temperatures for early and 
late years occurs will the explanatory power increase. This is likely 
to occur at periods of seasonal transition, for example, the onset of 
spring or winter. At this point, years with early lay dates will have their 
relative window cross these transitions prior to later years, generat-
ing strong temperature differences, a linear relationship and poten-
tially temperatures which can explain variance in lay date. However, 
what has been identified is unlikely to be a cue for laying; instead, it 
is a statistical artefact of the method being used. The location of the 
SWR windows identified here, around the autumn and winter onsets, 
suggests that the statistical artefact discussed above might be the 
cause of the erroneous cues identified in this study.

Being aware of the statistical limitations of any methods used 
is vital for conducting analyses based on these methods. If used in 
a threshold rather than regression‐based format, relative windows 
might provide a suitable alternative to absolute methods, which can 
never identify the precise cues being used. Equally, a failure to iden-
tify a precise cue, if the proxy is good, may not be an impairment to 
many analyses. But relative windows used in a regression format to 
identify phenological cues will not statistically identify a true cue and 
cannot be used predictively, so risk being misleading in this context.

4.2 | Predictive accuracy is highest for near‐future 
predictions

We have shown that the accuracy of predictions of phenological 
timing are influenced more by the temporal distance between the 
data used to identify the cue and the years being predicted, than by 
the number of years in the sample. When predicting the five years 
following the end of the data used to identify the cue, the predic-
tion error remained consistent despite reductions in sample size 
(Figure 2a,b). This trend was consistent across all methods trialled. 
A reduction in MAE with increasing sample size was only seen in 
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tandem with a reduction in the temporal distance between dataset 
end and predicted years (Figure 2c).

It is not surprising that near‐future predictions have higher accu-
racy than those further from the data used to parameterize the mod-
els. Extrapolating statistical relationships beyond the data used to 
estimate them can always be problematic as the identified relation-
ships may not hold under novel conditions. Our results suggest that 
this may be the case in the Wytham Woods great tit population. When 
cues and cue–phenology relationships identified by data early in our 
study years are used to predict years later in the study, predictive ac-
curacy is reduced. Such a pattern indicates that either the cue itself, 
or the cue–phenology relationship, is changing over the period of our 
study; further work should address the consequences of such changes.

The suggestion that biological systems, in particular phenologi-
cal relationships, are not static is further supported by Figure 3. Our 
results show temporal autocorrelation in prediction error from K‐
fold cross‐validation. Predictions earlier in our study years tended to 
be earlier than observed phenology; in contrast, predictions later in 
our study years tended to be later than observed phenology, with a 
single linear term (including prediction error from regression‐based 
methods only) explaining up to 66% of the variation observed. The 
mechanistic GDD method also showed the same bias in error but 
with a nonlinear trend. Therefore, a directional temporal component 
of the system has not been captured by our current analyses. One 
possibility is evolution of the cue–phenology relationship over the 
period of our study (c. 30 great tit generations). Previous work on an-
other great tit population suggests that evolution of reaction norms 
may be hampered by low heritability and the sex‐limited nature of 
laying date (Ramakers, Gienapp, & Visser, 2018). However, explora-
tion of evolution to use different cues (e.g. shifting to be sensitive to 
cues earlier in the year) has not yet been explored. Another possibil-
ity is that our models have not identified the true cue used by great 
tits to time phenology. If the true cue and the identified cue respond 
differently to climate change, then predictions will diverge over time. 
As a result, the impact of current climate change on phenology would 
not be correctly captured in our models and could lead to a temporal 
bias. A potential cause of this could be that all methods discussed 
here and the majority of studies (Charmantier et al., 2008; Husby et 
al., 2010; Perrins & McCleery, 1989; Visser et al., 1998) focus solely 
on the role of abiotic cues. It seems highly unlikely that biotic cues 
play no role in the phenology of other species. If in reality a biotic 
cue drives great tit phenology, this could create a pattern such as the 
one shown here. Teasing apart these two potential causes requires 
quantification of selection on the cue–phenology relationship, or 
validating cue identification experimentally (e.g. Lambrechts, Perret, 
Maistre, Perret, Maistre, & Blondel, 1999; Schaper et al., 2012; 
Schaper, Rueda, Sharp, Dawson, & Visser, 2011).

4.3 | How precise predictions are differs by method and 
shows a between‐method association with accuracy

The predictive precision of methods varied from over 100 days (GDD 
method) to fewer than 7 days (PSR method). The very wide prediction 

intervals of the GDD method (Figure 4 and Table S2), which were sev-
eral times larger than those of the other methods, likely stem from 
the need to estimate uncertainty of three parameters for this method 
(start date, minimum threshold temperature and the cumulative GDD 
requirement). This is in contrast to two (intercept and slope) for the 
regression‐based approaches. The PSR method was shown to be both 
the most precise and most accurate method. However, the precision 
in this method was not correctly quantified. This was demonstrated 
by the prediction intervals including the observed values only 58% of 
the time (Table 2). 58% is a much lower coverage than would be ex-
pected from a 95% prediction interval, even when allowing for the 
fact it will rarely cover exactly 95% (we would not expect coverage 
of <80% (Altman & Krzywinski, 2018)). This overestimation of preci-
sion in PSR could in part be influenced by the temporal trend in error 
as the error in PSR predictions for the middle years of our study was 
close to 0 (Figure 3); if the temporal trend in PSR is corrected, estima-
tion of how precise the method is could also improve. This highlights 
the importance of cross‐validation and quantifying the accuracy and 
precision of predictions. Both the SWA and CSP methods had errors of 
approximately one week (across year standard deviation was 7 days). 
They also had prediction intervals of roughly two (SWA) or three (CSP) 
weeks. These intervals seem to represent the precision well in these 
methods, when considered across the whole study period (Table 2). 
These methods could provide rather uninformative predictions about 
phenology in this population, given that the precision of predictions 
is greater than twice the standard deviation of the data. A prediction 
interval of 15 days would imply that 95% of the observed mean lay 
dates were equally as plausible as the predicted estimate. As a result, 
little insight would be gained into the change in phenology over time.

When generating predictions, it is essential to consider which 
is most important for a particular question (accuracy or precision). 
Achieving a balance between these different predictive measures is 
important. One step to achieving this, possibly the most important, 
is to quantify these metrics and to be aware of the limitations of 
the method being used to predict. The results of this study demon-
strate that the accuracy and precision of predictions relating to 
seasonal phenology are influenced by the method used and the dis-
tance between predictions and the data used to generate them. For 
near‐future predictions, all of the methods trialled here produced 
predictions with good accuracy but variable precision. If precision of 
predictions is not fully considered, this could create misleading pre-
dictions and misleading conclusions about the future of populations. 
However, with the right consideration of how the underlying statisti-
cal methods operate and cross‐validation of predictions, usable pre-
dictive outputs can be generated. In the case of our study system, 
accounting for the additional temporal trend that is not included in 
our models will also be essential to creating useable predictions.

All of the specific results here are generated from one study sys-
tem and may not hold for other species or systems. However, the 
potential for variation in results generated by the different methods, 
shown here, is something that should be considered in all phenologi-
cal analyses. This study is a step along a continual process of assess-
ment and critique of the state of the art in ecological methods. As 
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methodological approaches, computing power and data availability 
improve, we should remain aware of the limitations of the statistical 
tools we use, especially when applied to purposes beyond their orig-
inal design. Here, we have provided an empirical illustration of how 
variable common cue identification methods can be in a predictive 
context. We hope that our recommendations below can act as best 
practice in the light of the fact that all populations will likely produce 
different results.

To create a theoretical understanding of the performance of 
these methods, simulation studies could be appealing. However, 
there are some difficulties with using small‐scale simulation studies 
when looking at phenological cue identification. The main problem 
is that we do not yet know the underlying cue that drives phenology. 
As a result, we have to assume a cue and a relationship between that 
cue and phenology in order to simulate data. As each cue identifica-
tion method assumes a different underlying cue (e.g. temperature in 
a fixed window, temperature sum up to a threshold or temperature 
during the entire year), the cue chosen in order to simulate the data 
will inevitably have a strong influence on which method performs 
best. Extensive simulation studies would be a welcome next step 
to further investigating the performance of statistical cue identifi-
cation tools. In the meantime, we recommend several key steps to 
follow when implementing cue identification methods on empirical 
data:

•	 Previously identified cues from populations should be reassessed 
when new data become available. By doing this, the assumptions 
that cues are static across time and that the cues identified pre-
viously remain reliable can be avoided (Charmantier et al., 2008; 
Visser et al., 2006).

•	 The merits of different statistical cue identification methods 
should be considered when applying them. Our results suggest 
that—for this dataset—the PSR and SWA methods were the most 
accurate and precise, with SWA having the more accurately esti-
mated precision.

•	 More robust evaluation techniques need to be implemented as 
standard. In particular, K‐fold cross‐validation of predictions from 
the method chosen should be conducted and accuracy and pre-
cision should be quantified and reported. This can be easily im-
plemented in some R packages such as climwin (Bailey & De Pol, 
2016; van de Pol et al., 2016).

•	 More flexible approaches allowing windows that vary in length 
and timing across years should be explored. These could act as 
more realistic alternatives to absolute and relative regression‐
based approaches, which both have theoretical flaws. In order to 
improve our confidence in cue identification (including exploring 
biotic cues), research effort is required to teasing apart the causes 
of the temporal autocorrelation in prediction error.

Cue identification models are increasingly being used predictively 
(Morin et al., 2009; van de Pol et al., 2016; Roberts et al., 2015; 
Thackeray et al., 2016), and consequently, it is timely to assess of the 
accuracy of such predictions. Our results suggest some fundamental 

issues with our current toolkit, particularly the inadequacy of the rel-
ative sliding window method for identification of phenological cues. 
They also demonstrate, through the temporal trend in predictive error, 
that our current tools either miss a key component of the cue–phenol-
ogy relationship or the relationship is changing through time for some 
systems. Future phenological studies should challenge the idea of a 
static cue–phenology relationship and should cross‐validate results 
across multiple time periods.
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