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A B S T R A C T

Objective: We aim to investigate whether EEG dynamics differ in adults with ASD (Autism Spectrum Disorders),
ADHD (attention-deficit/hyperactivity disorder), compared with healthy subjects during the performance of an
innovative cognitive task: Aristotle's valid and invalid syllogisms. We follow the Neuroanatomical differences type
of criterion in assessing the results of our study in supporting or not the dual-process theory of Kahneman, 2011)
(Systems I & II of thinking).
Method:We recorded EEGs from 14 scalp electrodes in 30 adults with ADHD, 30 with ASD and 24 healthy, normal
subjects. The subjects were exposed in a set of innovative cognitive tasks (inducing varying cognitive loads), the
Aristotle's four types of syllogism mentioned above. The multiscale entropy (MSE), a nonlinear information-
theoretic measure or tool was computed to extract features that quantify the complexity of the EEG.
Results: The dynamics of the curves of the grand average of MSE values of the ADHD and ASD participants was
significantly in higher levels for the majority of time scales, than the healthy subjects over a number of brain
regions (electrodes locations), during the performance of both valid and invalid types of syllogism. This result is
seemingly not in accordance of the broadly accepted ‘theory’ of complexity loss in ‘pathological’ subjects, but
actually this is not the case as explained in the text. ADHD subjects are engaged in System II of thinking, for both
Valid and Invalid syllogism, ASD and Control in System I for valid and invalid syllogism, respectively. A surprising
and ‘provocative’ result of this paper, as shown in the next sections, is that the Complexity-variability of ASD and
ADHD subjects, when they face Aristotle's types of syllogisms, is higher than that of the control subjects. An
explanation is suggested as described in the text. Also, in the case of invalid type of Aristotelian syllogisms, the
linguistic and visuo-spatial systems are both engaged ONLY in the temporal and occipital regions of the brain,
respectively, of ADHD subjects. In the case of valid type, both above systems are engaged in the temporal and
occipital regions of the brain, respectively, of both ASD and ADHD subjects, while in the control subjects only the
visuo-spatial type is engaged (Goel et al., 2000; Knauff, 2007).
Conclusion: Based on the results of the analysis described in this work, the differences in the EEG complexity
between the three groups of participants lead to the conclusion that cortical information processing is changed in
ASD and ADHD adults, therefore their level of cortical activation may be insufficient to meet the peculiar
cognitive demand of Aristotle's reasoning.
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Significance: The present paper suggest that MSE, is a powerful and efficient nonlinear measure in detecting neural
dysfunctions in adults with ASD and ADHD characteristics, when they are called on to perform in a very
demanding as well as innovative set of cognitive tasks, that can be considered as a new diagnostic ‘benchmark’ in
helping detecting more effectively such type of disorders. A linear measure alone, as the typical PSD, is not
capable in making such a distinction. The work contributes in shedding light on the neural mechanisms of syl-
logism/reasoning of Aristotelian type, as well as toward understanding how humans reason logically and why
‘pathological’ subjects deviate from the norms of formal logic.
1. Introduction

The main aim of the present work is to shed light on the connection
between two of the ‘special’ types of reasoning, namely the Aristotle's
valid and invalid types of syllogisms with the dual-process theory of
thinking, according to which humans have a unique ability to engage
in different modes of thinking: the intuitive (System I) and the
analytical (System II) (Kahneman, 2011, Stavovich and West, 2000).
Support for dual-process theories originate from a wide range of
studies (e.g categorization, judgment and decision making, problem
solving, inductive, deductive and probabilistic reasoning (Osman,
2004). Based on such a range, this present work focuses on evidence
from syllogisms (other types of evidence are the selection task and the
conjunction problem). The findings from various studies following one
of the above types of evidences are assessed on the base of four
criteria: Criterion S (Sloman's criterion S), the individual differences, the
Implicit vs. explicit processing and finally the Neuroanatomical differences,
on which the assessment of the results of our study is based (Osman,
2004).

More specifically, in this paper, by using EEG recordings from healthy
(control) and ‘pathological’ subjects (ASD and ADHD) and combining two
approaches (working in a complementary mode), a linear (power spectral
density analysis, PS) and a nonlinear (Multiscale entropy, MSE), we
examine possible Neuroanatomical differences or equivalently differ-
ences in the performance of the subjects, due to their exposure in
cognitive loads of varying difficulty induced by the ‘peculiarities’ of the
Aristotelian syllogisms. This examination or analysis, as a consequence,
necessitates the examination of the involvement or coupling of the
following ‘concepts’: a) the systems of thinking I& II, b) The Aristotle's types
of syllogism c) the complexity-variability of EEG signals of healthy and
‘pathological’ subjects, as they are quantified by PS and MSE, d) the primary
cognitive processes (cognitive control, attention, working memory etc.) and
their associated changes in alpha, theta, beta, delta and gamma rhythms. The
interaction of the above ‘concepts’ will provide valuable information
towards answering the question of whether or not the main cognitive
processes in subjects exposed in Aristotelian syllogisms engage System I
or II of thinking, i.e. supporting or not supporting the dual-process theory
of reasoning.

Therefore, in order to facilitate the interpretation of the results of this
work, in answering the above question, it is necessary to provide a short
but also concise introduction and literature review.
1.1. System I & II of thinking

Daily decisions we make range from fast, intuitive responses to slow
deliberations. Broadly the models of thinking are classified in two cate-
gories, the intuitive (System I) and analytical (System II). Whereas System
I is fast, automatic and effortless, System II is slow, contemplative and effortful
(Kahneman, 2011; Evans and Stanovich, 2013a). System I is the main
Operator of the brain, however in some cases, it is interrupted by the
System II which takes the control in order to explore alternative decision
options that require significant mental effort (increased cognitive load).

No general consensus exists about the cognitive processes involved in
these two systems, however System I is attributed to autonomous pro-
cessing while System II to high-level cognitive mechanism (Evans and
Stanovich, 2013a; Pennycook, 2017).
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Systems I and II are linked to:

� Cognitive control (Kahneman, 2011; Pennycook, 2017)
� Attention (Brush et al., 2017)
� Working memory (Evans and Stanovich, 2013b)
� Long-term memory (Brush et al., 2017)

Evans et al., (2013b), argue also that all above cognitive processes are
the outcome of activation of cognitive networks that interact, as the EEG
signals reveal (significant power in the theta and alpha brain rhythms).
For example, increased frontal theta activity (event-related synchroni-
zation) is linked to cognitive control (Cavanagh and Frank, 2014) and
working memory (Hsieh and Ranganath, 2014), while the recruitment of
attention is linked to decreased parietal alpha activity (event-related
synchronization) (Klimesch, 2012). Long-term memory is associated
with increased parietal alpha activity (Klimesch, 2012). A very inter-
esting finding is that novelty conflict, punishment and error are associated
with a cognitive control under uncertainty (Cavanagh and Frank, 2014).
The mental effort in remembering increasing number of things, facts etc.
is associated with increased theta activity with which maintenance and
manipulation are also linked. Computational demands are linked to all
components of working memory. Attention to a task-relevant informa-
tion is associated with a decreased alpha activity. Access of knowledge
systems (including long-term memory) is linked to increased alpha ac-
tivity, a finding that is in compliance with the broadly accepted notion
that long-term memory is an automatic process (Brush et al., 2017).

In summary, System I operationmay reflect autonomous access to long-term
memory and System II operationmay involve the recruitment of cognitive control,
working memory and focused attention. This premise is supported by the
robust interconnectivity between cognitive control, working memory,
attentionand long-termmemory (Mathewson et al., 2014; Klimesch, 2012).

A natural and challenging question that arises is how the above
mentioned important cognitive processes are connected to (so be assessed
within System I and II framework) to Aristotle's system of syllogism, a ques-
tion, the answer of which, is one of the main objectives of the present
paper. The evaluation of the four important cognitive processes within
the framework of System I and II may not be simple.

One of the first attempts for such an evaluation is the study Complex
word or semantic problems (tasks) that are difficult to implement in
neuroimaging research. However, a limited number of EEG studies,
based on ERPs, provide good examples of the linking of cognitive pro-
cesses with Systems I and II (Banks, 2017). Evans and Stanovich (2013b),
provide a relatively good number of various tasks that can be used to-
wards assessing Systems I and II mode of thinking in relation to cognitive
process. Wemention here the seminal work of Kahneman et al. (1968), in
which manipulated thinking mode, induced by having subjects make
computations under time pressure, was measured by pupillometer (a tool
for measuring the dilation of the pupil in an eye). They found that
increased pupil size in the more demanding cognitive task (add-one con-
dition, in their famous experiment), was analogous to increased processing
load and therefore System II or analytical thinking.

1.2. The structure of Aristotle's syllogism and its relation to cognitive
processes

We briefly introduce at this point the syllogistic reasoning task and
orthodox Aristotelian classification. This information is considered
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necessary in order to interpret easily the cognitive loads that the Aris-
totelian syllogisms impose on subjects trying to ‘handle’ them during
experiments. Syllogisms are constructed with two premises and one
conclusion. Each preposition or statement belongs to a group of four
forms called moods (Smith and Translator, 1989; Owen et al., 2015).
These moods, traditionally, are labeled A, I, E and O, as below (Hattori,
2016):

A: All X are Y
I: Some X are Y
E: No X is Y
O: Some X are not Y

The subject (S) (in a preposition) and predicate (P) in the conclusion
are called end terms,while a term not present in the conclusion is amiddle
term (M). There are four arrangements or possibilities of end and middle
terms, since each premise has two possibilities. The four possibilities
mentioned above are called figures. Therefore, there are 4X4X4 ¼ 64
possible types of premises for logical syllogisms, because each of two
premises can be one of the four moods and 4 possibilities regarding the
location of terms. Only 19 syllogisms out of 64 have a logically conclu-
sion (they are valid), even though the validity of a syllogism is a rela-
tively controversial concept (Hattori, 2016). Reasoning is intended to
derive reasonable conclusions from premises and is carried out in
working memory. Human performance on syllogistic reasoning is based on
mental representations, as the mental model theory (one of the earliest
comprehensive psychological theories of syllogism) explain (Jhonson--
Laird and Bara, 1984). As the authors in this paper claim, the difficulty of
syllogistic reasoning is a function of the number of mental models that must be
constructed to derive a logically valid conclusion. Also, a task that requires
more models to be constructed to reach a correct answer, increases the
probability of errors in the inference process, resulting possibly to a
failure. As the mental model theory claims, the difficulty of (or cognitive
load exerted in) syllogisms is determined primarily by the number of
models and the Aristotelian figure (one of the four likely possibilities
mentioned above). Mental model theory of syllogistic reasoning, in-
corporates explicitly the working memory capacity, an important compo-
nent of cognitive process (Baddeley, 2007). According to Sample Mental
Model (SMM), a probabilistic approach in a mental representation
(Hattori, 2016), people ‘use’ or sample six or seven instances in working
memory to derive a conclusion to a syllogism.However, Halford et al. (2007)
argue that the limit of working memory capacity is actually three to five
chunks (‘fat pieces’), and this limit reflects human's capacity for attention
and constraints the relational representations, enabling making
inferences.

All the preceding information lead to the conclusion that the ‘archi-
tecture’ or structure of Aristotelian syllogisms, reflected by modes and
figures, in combination with the difficulty of syllogistic reasoning (which
depends on the number of mental models that must be constructed before
reaching a valid conclusion) and the limited capacity of working memory
constraining the ability of working inferences, may be considered as the
sources of cognitive loads, exerted on participants that are tested in
Aristotelian syllogisms, that are responsible for shaping the dynamics of
the EEGs recorded during relevant experiments. The aforementioned
sources of cognitive loads may be located at, and activated by different
brain regions, with different ways depending on task conditions or
‘pathological’ condition of a subject. It is challenging therefore to
examine how normal, ASD and ADHD subjects ‘react’ when facing
Aristotelian valid and invalid syllogisms, since the loads these syllogisms
exert on subjects belonging to groups previously referred, differ as
described above. Aristotle's method of deduction is probably the first to
analyze the logical reasoning or syllogism (also called valid reasoning). In
his famous work ‘ORGANON – Prior analytics’ (Smith, 1989; Owen et al.,
2015), the great philosopher presents a series of statements (the ‘building
blocks’) in the process of reasoning that leads to a valid conclusion with
absolute certainty. The dual processing model for the logical reasoning (De
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Neys, 2009; Goel, 2007; Williams C. et al., 2019), is developed to help
understanding how the brain functions when a subject is ‘engaged’ in this
type of reasoning. A natural question that is generated is whether an
Aristotle's valid and invalid syllogism induce the same or different mental
processes in the brain. This is a current, still open and challenging
research question, aiming at shedding light in the fundamental operation
of reasoning, in its two extreme conditions.

In this work, we focus on an experiment called ‘Aristotle's experiment’,
in which EEG signals of participants belonging to three groups (control,
ASD and ADHD) are recorded, when these subjects applied valid, invalid,
paradox and illusions type of reasoning. Special care was taken during
the experiment, to induce the working memory (WM) of each participant,
as WM is a very crucial cognitive activity that helps humans to retain
information ‘alive’, not just for memorizing purposes but also for other
very important cognitive tasks, like reasoning, problem solving, decision
making, planning etc.

One of the main objectives of this work is to find out whether
different modes of electro-physiological activity are activated when
healthy (controls), ASD and ADHD patients are exposed in Aristotle's valid
and invalid syllogisms. The contribution of this paper is that it sheds light
in how critical aspects of reasoning process, related to attention,
perception and cognitive behavior, differs between the aforementioned
groups of participants. The difference in EEG signals in the case of
healthy participants exposed in valid and paradoxes syllogisms has been
analyzed in case of a single subject in the work of Papaodysseus et al.
(2016). Therefore, the present work can be seen as a natural extension of
the previous paper, answering some of the questions suggested as future
considerations, however it examines the complexities of EEGs taken from
subjects of three different groups when they are ‘exposed’ in Aristotle's
valid and invalid cognitive loads, so it differs from aforesaid work in
various ways.
1.3. Syllogistic reasoning and linguistic and visuo-spatial systems.
Connection with systems I&II

Goel et al. (2000) provide strong evidence that syllogistic reasoning
implicates a widespread network involving occipital, temporal and pa-
rietal lobes, prefrontal cortex, and surprisingly, cerebellum and basal
ganglia nuclei. According to Goel et al. (2000), syllogistic reasoning is
implemented in two distinct systems, whose engagement is mainly a
function of the presence or absence of semantic content. In fact, the
temporal system (left hemisphere, LH) is recruited during content-based
reasoning, while the parietal system is activated when the reasoning lacks
semantic content. The two systems however, share common components
(bilateral basal ganglia nuclei, right cerebellum, bilateral fusiform gyri
and left prefrontal cortex). In addition, the right prefrontal cortex is
recruited when logical argument results in a belief-logic conflict. What is
doubtable in Goal's et al. work (Knauff, 2007), is the conclusion these
authors draw from their findings. Specifically, the conclusion that the
frontal-temporal system is more ‘basic’, and effortlessly engaged (i.e.
‘corresponds’ to System I), while the parietal system is effortfully engaged
(i.e. ‘corresponds’ to System II) only when the frontal-temporal route is
due to a lack of familiar content. Under the current perspective, the
question of how mental logical reasoning is implemented in the human
brain is a question of formal reasoning. Goel et al. (2000) and Knauff
(2007) argue that in syllogistic reasoning, both linguistic and
visuo-spatial systems are engaged. Frontal cortex place central role in
logical reasoning. Since Aristotelian Syllogism ‘belongs’ to the
model-based reasoning theoretical context, which suggests that
reasoning is a visuo-spatial process it is natural to deduce that parietal
and occipital cortices are essential brain structures for Aristotelian syl-
logism. More specifically, Goel et al. (2000) used problems with semantic
content (e.g. ‘All A are B; all B are C; so all A are C). Based on the dis-
cussion section 4, tables 15 and 16, we attempted a connection of our
results with the above information.
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1.4. Complexity and MSE in normal and ‘pathological’ conditions

A novel approach of analysis and description towards investigating
normal or typical and pathological states, degenerative or develop-
mental, is the Physiological Complexity, a term which combines physi-
ology with complexity, the later developed and used extensively in the
fields of physics and mathematics. In complexity perspective, seemingly
irregular dynamic evolution of physiological signals may contain a sig-
nificant amount of nonrandom (of ‘nonlinear deterministic’ or stochastic
type) fluctuations over multiple time scales, ‘hidden’ in the signals and
not easily or never revealed by using ‘typical’ or linear tools of analysis
(Glass and Mackey, 1992; Manor et al., 2010). Adopting the complexity
approach, Costa et al. (2002, 2005), introduced the entropy analysis in
biological and physiological signals or time series, more specifically the
Multiscale entropy (the tool that is also used in this work), while Fallani
Fde et al. (2010), used graph theory, a nonlinear approach, to study brain
functional networks.

To investigate the differences in complexity of EEGs for the partici-
pated groups of subjects, the multiscale entropy (MSE) is adopted in this
study. Entropy is a measure to quantify the complexity or order of a
system. Systems exhibiting periodic or regular dynamic behavior are said
to have low values of entropy. Irregular or random noise-like dynamics
have high values of entropy. Regularity and complexity are not neces-
sarily correlated. For example, white noise (a random process), even
though has a high value of entropy does not have the characteristics of a
complex system since does not possess the structural – informational
richness over multiple temporal scales that a genuine complex system ex-
hibits. A measure of complexity to be able distinguish an EEG signal from
a linear or nonlinear stochastic signal, behaving the ‘same way’ (for
example in view of the autocorrelation function etc.) as an EEG one, the
MSE developed by Costa et al. (2002,2005), is applied here and it is a
powerful tool in detecting the multiple time-scales present in a physio-
logical signal, as the EEG, using a coarse-graining procedure. This type of
procedure suggests that optimally operating biological systems are modu-
lated by multiple mechanisms which interact over multiple temporal scales.
Therefore for these (optimally) functioning systems, the MSE is expected to
have a high value, sustained for increasingly coarser time-scale. On the
opposite, the signals generated by random processes will have MSE or en-
tropy values that decrease as the timescales increase. This is actually an
expected result since the information in random noise remains only on
the shortest timescale (information is lost), due to the fact that no new
structure in the signal is revealed, as the timescale increase. In fact, the
variance of the signal decreases, resulting in a decreasing value of the
entropy.

A number of articles published relatively recently, provide an evi-
dence that a plethora of pathological processes, like in ASD and in ADHD
that are examined in this work, are ‘linked’ to atypical and often, but not
always, to the phenomenon of reduced levels of physiological complexity
regardless the developmental and clinical situations, that could attribute
a different understanding on the changes in complexity encountered in
such conditions. In the case of detecting differences in EEG complexity
between normal and patients with schizophrenia, Takahashi et al.
applied the multiscale entropy method (Takahashi et al., 2010).

Brain activity complexity, in particular, measured by EEGs is an
appealing area for research, because they incorporate the simultaneous
action of a number of factors-sources that interact with each other, are
nonlinearly coupled and induce feedback loops. This structure has the
ingredients of a high-dimensional, nonlinear ‘deterministic’ or stochastic
system that exhibits complex dynamic behavior capture in the EEGs
(Sakkalis et al., 2008). The fine temporal resolution the EEGs provide,
make them suitable for analyzing their inherited nonlinear or chaotic
characteristics, which originate from complex functioning of the brain,
when the subject is exposed in various cognitive loads. The aim of this
paper is the detection of differences in the response of subjects in the control,
ASD and ADHD groups, when they are tested in cognitive tasks and conditions
within the frame of the Aristotelian syllogisms (described in section 2). The
4

Aristotelian type of valid and paradox reasoning was applied in a new
method of classification of event related potential (ERPs) (Papaodysseus
et al., 2010). In the present work, we follow the same ‘way of thinking’,
regarding the cognitive loads that are ‘imposed’ on the subjects under
examination, but now focusing on the differences in the EEGs of ASD,
ADHD and normal groups, in the cases of valid and invalid types.

It seems very reasonable to assume that ASD subjects (exhibiting
behaviors reflecting the autism spectrum conditions), may be associated
with atypical patterns of brain complexity. This is because the core social
and cognitive characteristics of ASD, according to the American Psychi-
atric Association, 2000 (restricted repetitive range of behaviors, interests
and activities, impairments in social interactions and qualitative distur-
bances in communication), as well as recently recognized characteristics
as atypical patterns of sensory and motor functioning and interaction
(Simmons et al., 2009), atypical visual perception (Kaiser et al., 2010),
auditory perception (Hitoglou et al., 2010) and the reduced adaptability
to environmental changes (Russo et al., 2007), suggest that they are
possibly connected with EEG signals of atypical complexity. Brain func-
tioning models aiming to explain the above mentioned features of ASD,
include those suggesting disturbances in the underlying brain
complexity, atypical neural connectivity (Barttfeld et al., 2011), and
disrupted temporal integration of information (Rippon et al., 2007).

The idea that in autism an atypical functional complexity may exists,
is enhanced by the observation that subjects without ASD exhibit improved
adaptability to cognitive demands or loads associated with increasing
variability (or volatility), as it is manifested by greater complexity in
scalp EEG (Sitges et al., 2010). Therefore, it seems natural to adopt a
complexity measure in order to ‘measure’ the possible differences in the
amplitude and frequency dynamics of EEGs taken from ASD, ADHD
adults patients and a matched typically developing control (normal)
group of subjects. A surprising and ‘provocative’ result of this paper, as shown
in the next sections, is that the Complexity-variability of ASD and ADHD
subjects, when they face Aristotle's types of syllogisms, is higher than that of the
control subjects. An explanation is suggested as described in the discussion
section.

ADHD and ASD are the most prevalent neurodevelopmental disor-
ders. ADHD is characterized by developmentally inappropriate inatten-
tion, impulsiveness, and/or hyperactivity that remain relatively
persistent over time and result in impairment across multiple domains of
life activities. ASD is characterized by persistent deficits in social inter-
action and communication as well as restrictive, repetitive patterns of
behavior or interests American Psychiatric Association (2013). These
disorders in most cases persist into adult life. There is a significant unmet
clinical and research need to understand the persistence into adulthood
(Kooij et al., 2019; Lai and Baron-Cohen, 2015; Baron-Cohen et al.,
2001).

An extensive literature exists for the assessment of EEG characteristics
related to ADHD, revealing a continuous substantial interest of the re-
searchers. The majority of the literature concerns measures or indicators
of frequency-domain, as estimates of absolute and relative power for
frequency bands (Barry et al., 2003; Swartwood et al., 2003). These two
works, and especially the last one, are very connected –related to the
focus of our work, since it describes the EEG differences in ADHD during
baseline and cognitive tasks. It therefore helped us toward finding an
appropriate way to link Aristotle's syllogisms with cognitive tasks of
varying cognitive difficulty (load), imposing different demands on the
brain of the examined subjects with ADHD, resulting in EEG with
different complexity levels.

In typical (normal) development from childhood to adult, brain ac-
tivity is associated with increasing MSE values (McIntosh et al., 2008).
Patients with schizophrenia show an increase MSE in fronto-central and
parietal brain regions (Takahashi et al., 2009). The same researchers have
shown that treatment of schizophrenia with antipsychotics is associated
with reduced entropy. A more relevant to ours work is the one by Bosl et al.
(2011), which shows a decrease in resting state EEG complexity, during
several phases of development, for infants at high risk of ASD, in



Table 1. Main findings in studies examining the link of disorders with various cognitive tasks extracted from literature review.

Neuropsychiatric Disorder Study Subjects Analysis Methods Condition Main Findings

ADHD Li et al. (2016) 13 ADHD
13 control

δ, θ, α, β
MSE

Multi-source interference task
(MSIT)

Increased complexity of EEG data in delta, theta
frequency bands and decreased bands in ADHD
children

Ke et al. (2014) 14 healthy adults Θ, β
MSE

Visual attention
Resisting
No attention

Higher level of visual attention is correlated to
greater values of MSE. Classification of recognition
of 3 levels of attention is superior when using MSE
feature extraction than by using classical θ/β ratio.

Khoshnoud et al. (2017) 12 ADHD
12 age-matched healthy children

α, β, θ, δ mDFA,
PCA

During rest (eyes-closed) Average LLE of the ADHD group was significantly
higher than the Control. Mean ApEn in ADHD
subjects was lower than the control group, at all 19
channels

11 ADHD adolescent boys
12 healthy boys

Θ, α, β, γ
ApEn,
PSD

Rest
During CPT (continuous
performance test)

Mean ApEn in ADHD patients was lower than the
healthy subjects over the frontal region Fp2, F8
during CPT, but not at rest.

ASD Heunis et al. (2018) 16 ASD
46 TD (typically developing)

RQA Recurrence Quantification
analysis SVM

Resting RQA differentiate ASD from TD, in the age-matched
sample, leave-one-subject-out classification with a
nonlinear Support Vector Machine (SVM). It shows
92.9% accuracy, 100% sensitivity and 85.7%
specificity).

Bosl et al. (2017) 18 ASD
26 CAE
47 controls

Modified
MSE
RQA

Resting In the frontal, occipital and left temporal areas, ASD
subjects showed higher MSE

Takahashi et al. (2016) 43 ASD
72 TD

MSE Video-watching Increased Complexity (MSE) in MEG signals from
ASD subjects (typical age-related). In younger
children with ASD the complexity in MEG is
enhanced.

Catarino et al. (2011) 15 adult with ASD
15 normal (control)

MSE
PSD

EEG in a face and chair detection
tasks

During tasks, a reduction of EEG Complexity over
temporal-parietal and occipital regions, in ASD
subjects was observed, compared with typical
controls, using MSE measure. No changes in PSD
observed.

Bosl et al. (2011) 46 HRA
33 Normal (Controls)

Modified MSE Resting Different complexity profiles in HRA and control
infants were detected. SVM was used for
classification.

-Note: EMD: Empirical Mode Decomposition, IMF: Intrinsic Mode Fuction, PSD: Power Spectral Density, - LLE: Largest Lyapunov Exponent, ApEn: Approximate Entropy, mDFA: multi fractal detrended fluctuation analysis, -
PCA: Principal Component analysis δ, θ, α, β, γ –delta, theta, alpha, beta and gamma frequency ranges.E9, - CAE: childhood absence epilepsy, - RQA: Recurrence qualification analysis, - HRA: High- Risk autism.
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Table 2. Linking of Systems I and II way of thinking with cognitive processes and frequency bands (α, β γ, θ, δ), found in the literature.

Cognitive Control Process System I Frequency Bands System II Frequency Bands

α θ α θ

Cognitive Control Frontal Fz Parietal CPz Recruitment of CC Frontal

Working Memory Parietal CPz Release of WM Frontal Fz Parietal Recruitment of WM

Attention Parietal CPz Release of A Frontal Fz Parietal CPz focused A

Long- Term Memory Parietal PCz Recruitment of autonomic LTM Frontal Fz Parietal CPz no need to access LTM

Note: WM ¼ Working Memory, A: Attention, LTM: Long Term Memory, CC ¼ Cognitive Control.
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comparison with infants at low risk of ASD. As Green (1996) has shown
for the case of schizophrenia, the functional consequences of neuro-
cognitive deficits in ASD and ADHD conditions are ‘translated’ to reduced
complexity of the brain functioning. Sustained cognitive operations such as
logical reasoning, thought continuity and working memory, are known to be
affected in ASD and ADHD disorders (Catarino et al., 2011; Ponomarev
Figure 1. a: Systems of thinking and their connection to Cognitive Control and A
preprocessing, Multi Scale Entropy (MSE) in combination with Power Spectral Dens
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et al., 2014). This kind of operations are related to long-time scales (tens
of seconds) and correspond to temporal patterns of neuronal activities
resembling random-like processes. ASD and ADHD can be deemed as
dynamic processes neuronal activities, evolving in time that have not
addressed adequately, as the literature reveals. These processes are
associated with highly volatile neuronal states as abnormal functional
ttention. b: An indicative workflow. Our approach (path) is from raw data to
ity.



Table 3a. Groups of Subjects engaged in Systems 1 and 2 of Thinking based on Theta and Alpha amplitudes, for the valid type of syllogism.

Group High (increased) frontal Theta (θ) (4–8 Hz) Low (decreased) parietal alpha (α) (8–13 Hz) Engagement in System of Thinking I or II

ASD Yes, in 3 channels 1

ADHD Yes, in 7 channels Yes, in channel P7 2

CONTROL Yes, in 3 channels Yes, in channel P8 2

Cluster 1: ASD þ Control
Cluster 2: ADHD

Table 4. Linking Aristotle's type of syllogism and systems of thinking, for ASD,
ADHD and control groups.

Table 3b. Groups of Subjects engaged in Systems 1 and 2 of Thinking based on Theta and Alpha amplitudes, for the invalid type of syllogism.

Group High (increased) Frontal Theta (θ) (4–8 Hz) Low (decreased) Parietal alpha (α) (8–13 Hz) System of Thinking

ASD Yes, in 1 channel Yes, in channel 8 2

ADHD Yes, in 6 channels Yes, in channel 7 2

CONTROL Yes, in 1 channel 1

Cluster 1: ASD þ Control
Cluster 2: ADHD
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connectivity which allows irregular and random-like jumps or switching
between different brain regions or neuronal populations.

ASD and ADHD pathologies are linked to abnormal brain activities,
therefore they can be viewed on the basis of a dynamical system, in which
the neuronal phase or state space is the so-called attractor, a geometric
structure encompassing the ‘attracted’ trajectories or paths of the system
(describing the dynamics of neuronal activities), due to reduction in
excitations and inhibitory synaptic transmission, inducing change in the
neuronal states. Table 1 summarizes key findings in studies reviewed in
literature that examine the link of disorders with various Cognitive tasks
extracted from literature review. We have included also in this table (first
entry), the main findings of the present work, in an attempt to show
where its contribution is positioned. Table 2 below, presents the linking
of Systems I and II way of thinking with cognitive processes and fre-
quency bands [alpha (α), beta (β), gamma (γ), theta (θ), delta (δ)], found
in the literature.
Model of Thinking Aristotle's types of Syllogism

Valid Invalid

Intuitive System I
� Fast
� Automatic
� Effortless

ASD CONTROL

Analytic System II
� Slow
� Contemplative
� Effortful

ADHD
CONTROL

ASD
ADHD

Table 5. Channel index, name and location.

Channel index Channel name location

1 AF3 Anterio-frontal, left

2 F7 Frontal-temporal, left

3 F3 Frontal, left

4 FC5 Frontal-central, left

5 T7 Temporal, left

6 P7 Parietal, left

7 01 Occipital, left

8 02 Occipital, right

9 P8 Parietal, right

10 T8 Temporal, right

11 FC6 Frontal-central, right

12 F4 Frontal, right

13 F8 Frontal-temporal, right

14 AF4 Anterio-frontal, right
1.5. Linking cognitive processes with systems I & II of thinking and alpha,
beta, theta rhythms

Going form System I to System II way of thinking, due to a system-
atically increasingly cognitive load, is associated with an increased frontal
theta (θ) power and decreased parietal alpha (α) power (Williams et al.,
2019). Does the ‘switching’ from one type of syllogism, during an experiment
(for example from valid type of syllogism to invalid), corresponds to such a
systematically increasing cognitive load ?; and, if the answer is yes then
which regions of the brain are activated and interacting due to this
cognitive load escalation, the dynamic behavior of which can be detected
by measuring the power spectral density of alpha, beta, theta etc. waves (a
typical or main stream approach) or by quantifying the complexity (for
example via entropy, an innovative approach) of the EEGs signals taken
from brain regions, the main approach adopted in this work. Figure 1a
below shows pictorially the link between Systems of thinking and
Cognitive Control and Attention.

To the best of our knowledge, no works in EEG analysis exists that
examine the neural substrate that sustain deductive syllogism. However, the
categorical syllogism (the syllogism in which, in contrast to the conditional
or hypothetical syllogism), the premises are categorical propositions or
statements (‘all men are mortal, Socrates is a man, Socrates is a mortal), a
dual-path systemwas found in imaging studies (fMRI), consisting of a left
frontal-temporal network, mainly in memory and language-dependent
regions and a visuospatial network, located at right parietal regions
(Goel et al., 2000).

In the case of checking for deductive validity of categorical syllogistic
arguments, Osherson et al. (1998), have found a right-hemispheric
7

network, also covering language-homologue regions (Parsons and Osh-
erson, 2001), supported the above results in the case of Conditional syl-
logism. Activation of fronto-parietal-occipital network, for the solution of
linear systems (problems consisting of three terms) have been shown in
the work of Knauff et al. (2003).

A ‘switching’ from posterior brain regions to left prefrontal cortex, in
the case of a conditional syllogism task, was observed as described in the
paper of Houde et al. (2000). In a more recent work, in problems of
relational spatial syllogisms, Knauff (2006), provide evidence for acti-
vation of bilateral prefrontal, occipital and parietal regions.

The above literature review, albeit limited, provide evidence about
the connection between types of reasoning (syllogism) in general, with



Figure 2. Scalp locations covered by Emotive EPOC.
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various brain regions and even more, about how this connection is
associated, in consequence, with the cognitive processes and their EEG α,
β, δ, θ, γ rhythms. However, it does not provide any information of how
Systems I and II of modes of thinking are connected with all mentioned
above ‘typical’ types of reasoning. If such a connection has not been
provided by the existed literature, the connection with Aristotelian syl-
logisms is even more difficult to be found. Therefore, to the best of our
knowledge, there is no work found to show the connection between
Aristotelian types of reasoning (syllogism) with Systems I and II, and
even more how this connection is associated, in consequence, with
various crucial cognitive processes and the dynamics and complexities of
their associated EEG signals. The present work is an effort, as well as
contribution, towards shedding light in the connection between Systems I&II of
thinking, primary Cognitive Processes and Aristotelian type of Syllogism
(reasoning), focusing in particular to the differences in the structure of this
connection in subjects belonging to ASD and ADHD and control groups.

1.6. Key-findings in this work

In Tables 3a and 3b and Table 4 we provide in advance some of the
main findings of the paper, regarding the groups of Subjects that are
engaged in Systems 1 and 2 of Thinking, based on Theta and Alpha
amplitudes of their EEGs, for the valid type of syllogism, as well as the
linking of Aristotle's type of syllogism with the systems of thinking, for
ASD, ADHD and control groups. The entries in the table are extracted
from tables 13 and 14 respectively (see discussion, section 4) (see
Table 5).

From the above table, the required combination of high Frontal θ and low
parietal α is satisfied by ADHD and Control group so these two groups engage
in System 2 of thinking, while ASD in System 1 of thinking, when the subjects
face valid Aristotelian syllogisms.

For the invalid type of syllogism, ASD and ADHD groups are engaged in
System 2 of thinking and Control in System 1 of thinking.

Therefore, we observe from the two tables above that ADHD is
engaged in Systems 2 of thinking for both valid and invalid while ASD
and Control, in system 1 for valid and invalid respectively.

So, our results (Table 1) are in accordance with the results shown on
the above table for cognitive control and attention. Furthermore, the
intense activity in parietal channels shown in our results could be linked
also to the release of working memory and recruitment of autonomic
LTM. For example, ADHD and control groups exhibit high variability in
parietal lobe so they can be linked with release of working memory and
recruitment of autonomic LTM during the valid type of syllogism task.

The rest of this paper is structured as follows. In section 2 the mate-
rials and methods are described (participants, the EEG recording and the
Aristotelian types of syllogism and the experiment procedure is
explained). Also, in the same section, the analysis of signals and the MSE
method is provided, as well as the results of power spectral analysis (on
alpha, beta etc. waves), and finally the statistical measures for assessing
the results. Detail results are given in section 3, followed by an extensive
discussion (section 4) and a conclusion (section 5).

2. Materials and methods

2.1. The workflow

For the purpose and the objectives of the present work, there is an
extensive spectrum of tools of analysis that could be used. Figure 1b
presents an indicative workflow that one can follow to study how the
dynamic behavior of recorded EEGs of subjects, in different groups
(control and ‘pathologic’) is affected, when the subjects are ‘tested’ in
valid and valid Aristotelian syllogisms. In this paper we follow the path
from raw data analysis and preparation to the ‘simultaneous’ usage of
two different approaches: the linear PSD analysis (allowed by the found
stationarity in the data) and nonlinear MSE analysis, that provide an
efficient and effective tool towards detecting the complexities and their
8

changes, at various timescales that are ‘linked’ with the ‘main-stream’

power rhythms [alpha (α), beta (β), theta (θ), delta (δ)].

2.2. Participants

Eighty four (84) subjects (30 ASD and 30 ADHD patients, and 24
typical normal) were recruited in this study. The 84 subjects (58 males
and 26 females) were split in three (3) groups: control (24), ASD (30) and
ADHD (30).

The study was part of a larger research project on de novo diagnosed
adults with ADHD and ASD (Pehlivanidis et al., 2020). The
multi-disciplinary team that carries out all assessments consists of: psy-
chiatrists who have extended experience in the diagnosis and treatment
of Neurodevelopmental Disorders in adults and are trained in ADOS
(Lord et al., 2012; Papanikolaou et al., 2009), ADI-R (Le Couteur et al.,
2003; Papanikolaou et al., 2009) and DIVA (Kooij et al., 2019a; 2019b);
and clinical psychologists. In order to be included in the study subjects
had to be adults with normal intelligence and fluent phrase speech and to
be assessed for the first time in their life for a possible ADHD and/or ASD
diagnosis. Exclusion criteria were a previous ADHD and/or ASD diag-
nosis, the presence of acute psychopathology requiring urgent psychiat-
ric treatment, current substance abuse disorder, IQ < 70 according to
WAIS and a known genetic cause. Diagnosis regarding the presence of
ADHD and/or ASD is given during a consensus meeting of the multidis-
ciplinary team and is based on DSM-5 criteria while taking into consid-
eration all available information.

Written consent was obtained from all participants and the study was
approved by the Ethics Committee of the National and Kapodistrian
University of Athens, Eginition Hospital (10549/17.10.2016).

2.3. EEG recordings

In this work, For EEG signals recording, the Emotive EPOC system
was used, consisting of 14 channels (plus CMS/DRL references),
following the 10–20 International system of locations. The channel
names are AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1 and O2.
Sampling was sequential, with single ADC, and rate 128 Hz (2048 Hz
interval). All electrodes were placed over subject scalp. Band pass was
filtered between 0.05 Hz. Ground and reference electrode were placed on
left and right ear lobes. The electrode impedance below 5KΩ was kept.
The scalp locations for the Emotion EPOC system are shown in Figure 2.



Figure 3. The procedure for coarse-graining (Adapted from Costa et al., 2005).
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In the case of our study, the Emotiv EPOC device has provided several
important benefits (i) compared with more expensive multichannel
equipment: the setting up time of the Emotiv EPOC system is significantly
shorter than that of an expensive EEG system, (ii) additionally, recent
research assessing the reliability of the EMOTIV Epoc EEG device pro-
vides converging evidence indicating their capacity to measure consis-
tently EEG signals (Debener et al., 2012; Papageorgiou et al., 2017).

After cap fitting, good conductivity was confirmed with Emotiv
software through wet saline electrodes (Ramirez et al., 2015).

2.3.1. Tasks description. The Aristotle experiment
Using EEG signals, we aim to isolate the particular brain regions

involved in Aristotelian types of reasoning or syllogisms, and to differ-
entiate their engagement during the different types of syllogism: valid,
invalid, illusions and paradox. In addition, we will try to answer how this
differentiation is accounted for in the case of three groups of subjects
(control, ASD and ADHD).

Care has been taken so the sentences or prepositions in the above
types of syllogisms were presented visually (on a computer screen), in
order to dissociate brain regions related to syllogism processing from
those related to sensory process and low-level reasoning. This is a crucial
stage in the process of analysis since the isolation of substrates associated
with this high-level syllogisms (activating cross-modal cognitive sys-
tems), is not an easy task. In the experiment the syllogism statements
consisted of categorical type, and the participants were informed to
reach to a conclusion from the premises provided by the instructor, and
indicate whether the given instruction was ‘True’ or ‘False’ (see below).

Aristotle's experiment is based on the study of reasoning or syllogism
process, based on logical rules and concerns the way we reach to a
conclusion (reasoning process) and on the way we take decisions. The
process starts with assumptions (hypothesis) that ideally lead to a valid
conclusion. The most known theoretical model ever proposed so far is
that of dual process theory. Type or system I of the process is consider old,
Figure 4. Linking high and low frequency in PS with lo
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fast and automatic, while type or system II is a newer, slower and allows
reasoning based on logical rules. In type I we are aware only for the result
(conclusion), while in type II both, of the way and the result. Usually,
there is an interaction between the two types. The question that arises
often is whether personality or psychopathology enter the reasoning
process. The Aristotle experiment is a process consisting of four stages.
Valid, invalid syllogisms are used, together with paradoxes and illusions-
visual paradoxes (not considered in this study).

The subjects under test seated in front of a computer screen. In-
structions were presented to the subjects, before the start of the experi-
ment, so they can be familiar with the process and its requirements. Then,
syllogisms or arguments started to appear on the screen, in sets of 39, and
every one of themwas accompanied by a question ‘right’, or ‘wrong’. The
time duration of each slide is proportional to the number of letters in the
syllogisms and then the slide disappears. Just immediately the next
stimulus is appeared which may be a right answer or wrong. The subject
is called to give answer. Answers to each one of the ‘valid’ syllogisms are
considered right if subject considers them as right, while answers to
‘invalid’ syllogisms are considered right if subject considers them wrong.
Each subject's answer is accompanied by his percent (%) of certainty
given, which reflects his certainty in the answer he provides (100 %
absolutely certain and 0 % not at all certain).

In parallel with the above process, a recording of the emotional
condition of each of the tested subject is taking place (its intensity,
control and mood of the emotions he feels). Also, EEG signals of alpha,
beta, delta and theta frequency bands (and their sub-bands), are simul-
taneously recorded, using a wireless system of 14 electrodes (EMOTIV
PRO, see above).

2.4. Sample entropy and Multiscale entropy (MSE)

Multiscale entropy (MSE) analysis is the procedure of calculating an
entropy measure, as the SE, for each coarse-grained time series, plotted as
cal and global information processing in the brain.



Figure 5. Linking of fast and slow frequencies in PS with fine and Coarser time scales in MSE.
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a function of the scale factor τ, as described below. For the computation
of MSE, the original signal fXg ¼ fx1; x2; ::; xi…; xNg is transformed to a
coarse-grained signal fyðτÞg , where τ is the scale factor (SF). The pro-
cedure for coarse-graining is shown in Figure 3, adopted from Costa et al.
(2005). The original series is divided into non-overlapping windows of
length τ, and the points inside the window are averaged, so a
coarse-grained series is obtained as

yðτÞ
j ¼ 1

τ

Xjτ

i¼ðj�1Þτþ1

xi; 1 � j � N
τ

(1)

SE is computed for each time-series yðτÞj .
Sample entropy is a modification of the approximate entropy, AEðm;

rÞ, and has the ant vantage of being less dependent on the time series
length. SE also shows relative consistency over a wider range of the pa-
rameters, r, m and N, define below. Let fXg ¼ fx1; x2; x…; xi…; xNg is a
time series of length N.We form them-length vectors: UmðiÞ ¼ fxi; xiþ1;…

; xiþm�1g; 1 � i � n�mþ 1: Now let nmi indicate the number of vectors
that satisfy d½umðiÞ; umðjÞ� � r , where d is the Euclidean distance, so r is
the tolerable distance between the vectors. The quantity

Cm
i ðrÞ¼

nmi ðrÞ
N �mþ 1

(2)

represents the probability that any vector umðjÞ is close to the vector
umðiÞ. The quantity

CmðrÞ¼ 1
N �mþ 1

XN�mþ1

i¼1

Cm
i ðrÞ (3)

Is the average of the Cm
i ðrÞ , the probability that any two vectors are

within r of each other. Then, using the above, the K2 entropy, the lower
bound of the Kolmogorov-Sinai, KS, entropy (Grassberger and Procaccia,
1983) is written as

K2 ¼ logN→∞logm→∞logr→∞ � ln
�
Cm þ1ðrÞ�CmðrÞ� (4)

Following the same direction, Eckmann and Ruelle (1985) define the

function ΦmðrÞ ¼ 1
N�mþ1

PN�mþ1

i¼1
lnCm

i ðrÞ, and Φmþ1ðrÞ � ΦmðrÞ �
PN�mþ1

i¼1

lnCm
i ðrÞ

Cmþ1
i ðrÞ , the average of the natural logarithm of the conditional proba-

bility that sequences that are close to each other for m consecutive data points
will shall be close to each other when one point is known. Thus, Eckman and
Ruelle suggested a new quantity for KS, as follows

HER ¼ logN→∞logm→∞logr→∞ðΦmðrÞ�Φmþ1ðrÞ�

The above formula, although useful in characterizing low dimen-
sional chaotic systems, it does not have a practical application in
experimental data, since for a noisy process (as the majority of real data),
the above formula gives an infinity. For this reason, Pincus (1991)
introduced the approximate entropy, AEðm; rÞ ¼ logN→∞½ΦmðrÞ �
Φmþ1ðrÞ�, and AE is calculated by the regularity statistics AEðm; r;NÞ ¼
ðΦmðrÞ �Φmþ1ðrÞÞ . This entropy measure applies to ‘real life’ time series
and has been extensively used in physiology and medicine (Pincus,
2001).

Regular (e.g. periodic) time series have lower AE values, while
irregular, less predictable time series, have higher AE values. Richman
et al. (2004), defined Sample entropy as the parameter
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SEðm; rÞ¼ logN→∞ � ln
Umþ1ðrÞ
UmðrÞ
which is computed by the statistics

SEðm; r;NÞ¼ � ln
Umþ1ðrÞ
UmðrÞ (5)

SE is exactly equal to the negative natural logarithm of the conditional
probability that sequences close to each other for m consecutive data
points will remain also close to each other when one more point is added
to each sequence. SE and AE both measure the degree of randomness (or
inversely the degree of orderliness) of a signal. SE is computed for the

coarse-grained time series yðτÞ
j in (1). The following term,

Umþ1ðrÞ¼
�
number of pairsði; jÞwith ��yðτÞmk � yðτÞml

�� < r; k 6¼ l
�

fnumber of all probable pairs in the coarse� grained time seriesg
(6)

therefore, symbolizes the distance between vectors yðτÞmk ; yðτÞml , formed
from the coarse-grained time series, with scale factor τ, and having length
m, and r the tolerable distance between the two groups.

The relative complexity of the normalized time series (same variance
for scale factor τ ¼ 1), is detected by comparing the MSE curves (see
Figures 9 and 10), based on the guidelines: a) if for the majority of the
scales (in our study we used 20 scales) the entropy values are higher for
one time series than for another, the former is said to be more complex
than the latter b) a decrease of the entropy values, following a monotonic
mode, indicates that the original time series (τ¼ 1) contains information
only in the smallest scale. Also, the value of the parameter r is a per-
centage of the standard deviation, SD, of the time series (we used r¼ 0.15
SD).

Based on previous studies SE has a good statistical validity for pa-
rameters m ¼ [1,2] and 0.1 � r � 0:25 (Richman et al., 2004). In the
present study m ¼ 2, N ¼ 60000 samples and τ ¼ 20 scale factors, so N/τ
¼ 3000 samples, therefore, enough to obtain a reliable estimation of SE
(Richman et al., 2004).
2.5. Linking power spectral analysis (alpha, beta, theta, and delta
rhythms) and MSE's parameters

According to Takahasi et al. (2016), differences in the MSE (or SE)
may be correlated with differences in the EEG power spectra. We
investigated this possibility in our, clean from artifacts, data by
computing the PSD (power spectral density), in the first 40 s (or 5120
samples for sampling rate fs ¼ 128 Hz), by using the EEGLAB (which is
based on the pwelch function of MATLAB, ver. 2019b, and uses a
Hamming window, 8 segments with 50% overlapping). Five typical
band frequencies were analyzed: delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta 1 (13–19 Hz), beta 2 (20–30) and gamma
(30–60 Hz).

The evolution of dynamics in EEGs, over different time scales, is a
crucial information for understanding the overall functioning of the brain
and requires the detection of temporal correlations on such scales. The
detection however is not a trivial work. The structure of volatility or
variability of EEGs at short time scales or equivalently higher frequencies
are linked to local neural populations processing, while at longer time
scales or lower frequencies are linked to large scale network processing
(McIntosh et al., 2014). Figure 4 below shows schematically these two



Figure 6. Mean of Grand average EEGs across all subjects for valid type, all groups.
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important links, on which the present work will refer frequently, towards
interpreting the results.

The nature of the linking of frequency domain (High/Low) with
the spatial scales of neuronal processing is considered more neuro-
physical than neurophysiological: (Cognitive) Communication and
information processing in brains involve different frequencies across
bands and spatial scales, respectively (Postle B., 2015). Cross-frequency
coupling (CFC) methods quantify network information flow, in
‘switching’ from synchronization to desynchronization structures,
and although they capture ‘sufficiently’ the complexity of communi-
cation, the linking of its long-range form with delta (δ), theta (θ) and
alpha (α) rhythms (lower frequencies) and its short-range form with
Table 6. Correspondence between PS and MSE parameters (from scale factor to
frequency content).

Scale factor,
τsf
In MSE

Frequency,
Hz

fN;τsf ¼ fs;1
2τsf

fs;1 ¼ 128 Hz

Time Scale
τsf
fs;1

x1000

In ms
(millisecond)

Log (Time
Scale)

Signal
Rhythms

1 64 7.81 2.05 gamma

2 32 15.6 2.75

3 21.3 23.4 3.15 beta

4 16 31.25 3.44 alpha

5 12.8 39.06 3.66

6 10.6 46.87 3.84

7 9.14 54.68 4.00

8 8 62.50 4.13 theta

9 7.11 70.31 4.25

10 6.4 78.12 4.35

11 5.8 85.93 4.45

12 5.33 93.75 4.54

13 4.92 101.56 4.62

14 5.57 109.37 4.69

15 4.26 117.8 4.76

16 4 125 4.82

17 3.76 132.8 4.88 delta

18 3.55 140.6 4.94

19 3.36 148.4 5.00

20 3.2 156.2 5.05
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higher frequencies (beta β and gamma γ), can be realized on the basis
of error propagation encountered in these two forms of communication.
Faster oscillations are more detrimentally affected by variance in this
error (Jirsa and Muller, 2013). In addition, when applying MSE as a
measure to differentiate EEGs complexities among various groups of
subjects (in our case control, ASD and ADHD), it is not clear how to
interpret the MSE patterns or curves, beyond the naïve conclusion that
some EEGs are more or less complex (entropic) than other. More
importantly, how the MSE curves are explicitly related to neurophysiological
processes.

Local and Global brain networks are very important concepts in
understanding the functioning of the brain, so it is very useful to shed
light on the linking between MSE's time scales and frequency contents of
the EEGs. A literature review we made (Bruce et al., 2009), ‘revealed’ a
correlation between single-scale (no coarse grained) entropy and power
spectrum. More specifically, it was found a negative correlation (Corr)
with delta power and positive with beta power:

Corr(entropy, δ) < 0 and Corr(entropy,β) > 0 (7)

With both correlations attributed mainly on changes is power spec-
trum rather than in regularity. This finding revealed the weakness of
using single scale (Sample) entropy methods. In later studies, however,
MSE was used to relate entropy timescales to frequency content of the
underlying signal dynamics (McIntosh et al., 2014), as shown in the
Figure 5 below (see Figure 6).

In the present work, we have applied the guidelines given in the paper
by Courtiol et al. (2016), in order to attain a strong and consistent rela-
tion between MSE's and Power Spectrum's parameters, making the
interpretation of the results of the two complementary approaches more
easy to understand. For this purpose we provide Table 6 that shows the
aforementioned linking of parameters.

In the table above, fs is the sampling frequency and is related to the
highest frequency in the data via the Nyquist-Shannon's sampling theo-

rem as fN ¼ fs
2 . The link between frequency and scale factor τsF is given by

fN;τsF ¼
fs;1

2xτsF
(8)

where fs;1 corresponds to the sampling frequency at time scale 1 (the one
of the original signal), so in our case fs;1 ¼ 128 Hz. The above link be-
comes clearer by converting the MSE's parameter scale factor to time
scale, τ as
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τ¼ τsF
fs;1

� 1000 (9)
where the factor 1000 is for expressing all parameters in milliseconds
(ms). In order to capture all possible changes in the distribution of both
structure and amplitude of EEG signals, the figures in the results of the
analysis are presented in log-log graphs. The difference in the MSE pat-
terns between the groups of subjects becomes clearer compared with
those when using linear x and y scales in 2-d graphs.

MSE is an extension of SE (SampEn) (Richman et al., 2004), using
temporal coarse -graining procedure (Costa et al., 2002, 2005bib_Cos-
ta_et_al_2002bib_Costa_et_al_2005). SampEn can capture effectively the
structure of variability (or volatility) of a signal and has been applied on
biological systems. It can distinguish regular (predictable-less complex)
signals from irregular (less predictable, more complex). MSE evaluates
SampEn on multiple time scales, via the temporal coarse-graining pro-
cedure, which is equivalent to filtering the original signal with a moving
average filter (by down-sampling it successively) in the time-domain, and
equivalent to a low-pass filter in the frequency domain (Govindan et al.,
2007). Because coarse-graining alters the frequency components of a
signal, the clarification for the link between MSE and PS parameters
given in Table 6 above is very informative and extremely useful.

2.6. Statistical evaluation

Average values are expressed as mean and SD. Significant differences
in behavioral as well as computational parameters (i.e extracted features
after applying measures -in our case MSE-on the cleaned data), between
the control, ASD and ADHD groups, are determined either by Indepen-
dent sample t-test, in case the extracted features signal are normally
distributed (checked by Q-Q plots and other statics), or the non -para-
metric Mann-Whitney U test, in case they are not normally distributed. A
6-way ANOVAwas applied with within and between subjects’ factors, as
described in section 3.2, where the independent Variable in ANOVA is
the MSE (extracted feature). For all above statistical tests, the SPSS,
version 20.0 for the Windows is used. A p-value<0.05 is considered
statistically significant.

For the MSE values, the distribution normality was tested via
Kolmogorov-Smirnov test, and via optical control of the Skewness and
Kurtosis values, for each channel (1–14) and each group (ASD, ADHD,
and control).

For all analysis, as ANOVA method requires, the Greenhouse-Geisser
adjustment was applied to the degrees of freedom, and the Bonferroni
correction was applied for all post hoc tests (Catarino et al., 2011).

We have also performed Independent t-test, Paired Sample test and a
Kruskal-Wallis, one-way between subjects, as described in section 3.2.

3. Results

3.1. Some useful notes on multiscale entropy (MSE)

� For simulated white and 1/f noises (see section 3.5), we observe that
both the mean value of sample entropy SE and standard deviation
(st.dev) increase as the length of the time series decrease.

� The required minimum number of data depends on the level of
accepted uncertainty. In the present work we use 40.000 data points,
so the shortest coarse-grained time series, for 20 scale factors, is
40000/20¼ 2000 samples (or 15.6 s, with a sampling rate of 128 Hz)

� Stationarity is also a crucial consideration when applying MSE. In
calculating SE, a parameter must be fixed depending on the st.dev of
the signal. The value of SE is greatly affected by non-stationarities due
to the presence of outliers, artifacts. The structure of the signal is not
modified when removing local artifacts and a small percentage of
outliers (<2%), but is significantly affected over multiple time scales
when removing trends. In our case, an outlier is a data point larger
than the mean þ/- 3.5 x (standard deviation) of the time series.
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� When a biological system is forced to work under stressful conditions,
even in the typical (control) systems, the dynamic of the system is
constrained or limited, to evolve within a subset of the state space.
Therefore, it is anticipated that under a variety of stressed conditions
(in our case under the cognitive loads included to control subjects due
to their exposure to -testing in- Aristotelian syllogism information
processing), control systems will generate less complex outputs than
under being tested in more usual reasoning loads (Costa et al., 2003).

� The reduced MSE exhibited by subjects of control group, over a number
of timescales, compared to the larger-complexities of ADHD and ASD
subjects, may be explained by the above argument. During the Aristotle's
Syllogisms, the dynamic evolution of neural waves ‘emitted’ by ADHD
and ASD subjects continues to travel all over the high-dimensional state
space of the brain regions that have been activated by these types of
reasoning, so the trajectories of the underlying dynamic system visit the
whole space, not just a small region as it is in the case of a healthy
system.

3.1.1. MSE, nonlinear dynamics and ‘pathology-related’ differences in EEG
signals

One of the main advantages of using MSE is its strong capacity in
differentiating time series of weak nonlinearity from those with strong
nonlinearity, as well as from stochastic ones. In, fact MSE is much more
sensitive to the interactions of stochastic dynamical components with
linear autocorrelations than the power spectrum. Therefore, in case of
existence of such components in EEGs, MSE patterns (curves) are ex-
pected to reflect such dynamical interactions and to differentiate them in
different groups of subjects (in our work control, ASD and ADHD). If the
nonlinearity content in EEGs is weak, then its influence in differentiating
EEGs from different groups, as it is measured by MSE, is also weak.

3.2. Descriptive statistics, stationarity and normality tests

In the Tables 7a and 7ba and b below we provide summary statistics
information for the Grand averages EEG values, for the ASD group and in
supplementary materials for the rest groups of subjects and channels.
EEG are biomedical data that are regarded as the stochastic phenomena
of biological systems. It is necessary, the statistical properties of such
time series to be often examined because most of the statistical analysis
processed in the frequency and the time domain is based on the
assumption that the time series is weakly stationary and normally
distributed. Therefore, it is necessary to knowwhether the EEGs analyzed
in this study satisfy the conditions of weak stationarity and normality,
since the methods used here, in a complementary mode, are both linear
(Power spectral analysis, an FFT approach that assumes both stationary
and normally distributed data) and nonlinear (MSE).

Actually, EEG signals are ‘3N’ – Nonstationary, Nonlinear, and Noisy,
since brain activity is essentially nonstationary, not because of casual
external influences of the stimuli on the brain mechanisms, but due to the
fact that of switching of the inherent metastable states of neural assem-
blies during brain functioning. Therefore, to confirm that EEGs of grand
averages are indeed stationary, we also conducted the ADF (Dickey-Fuller
test for a unit root in a univariate time series) stationarity tests (Kwiatkowski
et al., 1992), the results of which are shown on the Table 7a and b (and in
tables of Appendix A). In the tables the logical variable h ¼ TRUE in-
dicates rejection of the unit-root null hypothesis in favor of the alterna-
tive model (no unit root present, so the time series is stationary).
Therefore, all signals found to be stationary, rendering possible the
power spectral analysis (based on FFT, a linear method which assumes
stationarity). For the normality testing of our data, we performed q-q
plots (plot of quantiles of each EEG vs. the quintiles of normal distribu-
tion). All signals found to be linearly distributed, thanks again to the
averaging of EEG amplitudes (across all subjects in a group, per each
channel separately). Figure 7 presents the results of the tests, for an
indicative channel, AF3, for valid and invalid types of syllogism, for all
groups of subjects. The Kolmogorov-Smyrnov normality test (K–S test)



Figure 7. Q-Q plot of Grand average EEGs, for valid & invalid types, for each group, at channel AF3, Vs. normal distribution. The linearity of the points suggests that
the data are normally distributed.
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was also applied, the results of which (not shown here) confirm as well,
the normal distribution of EEGs analyzed.
3.3. Analysis of the kurtosis of EEGs amplitudes

The calculations show that the kurtosis of the ADHD and ASD pa-
tients’ EEG are positive and much higher than that of the controls. Kur-
tosis is a statistical quantity which measures the complexity of an EEG
data set, and indicates how intensely the tails of a distribution compared
to tails of normal distribution (it determines if the EEG signal has a peak
or rather flat at the mean point of the signal (Brijil C., et al., 2010). Higher
values of kurtosis indicate that the signal has a sharp peak at the mean
point of an EEG signal data set and low values of kurtosis indicate that the
signal has a flat nature at the mean point of the signal. The kurtosis for a
signal xðtÞ is given by (Brijil C., et al., 2010),

k¼ 1
N

XN
t¼1

�xðtÞ � μ
σ

�4

(10)

where σ is the standard deviation and μ is the mean of the signal. The
kurtosis for EEG signals from ADHD, ASD subjects and control subjects,
for valid and invalid syllogisms, are calculated. The values for the ADHD,
ASD subjects and control subjects are compared and shown in the
Figures S2 and S3, in Supplementary material. From the figures, it is
observed that the kurtosis for ASD for both valid and invalid syllogisms
remains small and constant for all channels. For the valid type, the kur-
tosis of the control subjects is large at channels 3(F3) and 10 (T8) and
very large at channel 4 (FC5), while for ADHD the kurtosis is extremely
high at channel 12 (F4) and large at channel 6(P7). For the invalid type,
the variability (kurtosis) of Control subjects is high at channel 4(FC5),
while for ADHD is extremely high at channel 12(F4) and high at channel
6(P7).

In summary, control and ADHD subjects have similar kurtosis at frontal
right (extremely high variability in EEGs), and at parietal left (high
14
variability). So there is a significant difference between the variability of ASD
subjects for both types of syllogisms (small and constant at all channels) and
the variability of ADHD and Control subjects (which is extremely high at right
frontal and high at left parietal).
3.4. Behavioral results. Comparing MSE values across groups and brain
regions and syllogism types. An ANOVA and related tests

We used first an Independent t-test to compare the ‘performance’ in
MSE of the participant in the ASD, ADHD and control groups, since the
MSE scores were obtained using an independent groups design. It was
hypothesized that the complexity, i.e. the average MSE values recorded
in frontal, parietal, temporal and occipital regions of the brain, for both
types of valid and invalid syllogisms, are significantly different between
participants of the above (independent) groups.

In the test regarding ASD and ADHD, the Levene's test for equality of
variances showed a value p> 0.05, indicating a quality of variances in all
combinations of syllogism and brain regions (e.g. valid-frontal, valid-
parietal, invalid-temporal etc.), except in the valid-occipital combination
(p > 0.05), where the variances were found different. So, we conclude
that the mean difference of MSE in all, but one, combinations of syllogism
and brain regions is significant, specifically we report the following re-
sults: significant in valid-frontal (t ¼ -2.432, df ¼ 58, p ¼ 0.018), valid-
parietal (t¼ -3.025, df¼ 58, p¼ 0.004), valid-temporal (t ¼ -2.841, df ¼
58, p ¼ 0.006), valid-occipital (t ¼ -4.966, df ¼ 58, p ¼ 0.000) and
invalid-occipital (t ¼ -4.079,df¼ 58,p¼ 0.000), while not significant the
combinations invalid-frontal (t ¼ -1.268, df ¼ 58, p ¼ 0.210), invalid-
parietal (t ¼ -1.965, df ¼ 58, p ¼ 0.054), and invalid-temporal (t ¼
-1.444, df ¼ 58,p ¼ 0.154).

In a similar test for difference in mean values of MSE between ADHD
and control participants, the equal variances assumption is not valid (p <

0.05 in Levene's Test), and the difference was found to be significant for
the combinations valid-frontal (t ¼ 1.692, df ¼ 49, p ¼ 0.097), valid-
parietal (t ¼ 2.156, df ¼ 49, p ¼ 0.036), valid-occipital (t ¼ 2.572, df



Figure 8a. Time series of normal random walk (white noise), fractional Brownian motion (FBM) and 1/f or Pink noise.
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¼ 49, p ¼ 0.013) and invalid-occipital (t ¼ 2.498, df ¼ 49,p ¼ 0.016),
while not-significant were found the combinations valid-temporal (t ¼
1.810, df¼ 49, p¼ 0.076 (.0.05)), invalid-frontal (t¼ 0.683, df¼ 49, p¼
0.498), invalid-parietal (t ¼ 1.227,df ¼ 49, p ¼ 0.229) and finally
invalid-temporal (t ¼ 0.835, df ¼ 49, p ¼ 0.407).

The same test for the difference in mean MSE values for ASD and
Control subjects, we report the results as follows: the assumption of equal
variances is satisfied in all syllogism-brain region combinations (Levene's
p> 0.05), and not significant differences were found, in all combinations
considered. Therefore, there is no difference between the complexity values
recorded in all brain regions and syllogism types considered in this study, be-
tween ASD and Normal subjects, by using an independent samples test.

Then, we also tested for differences in mean MSE scores, as above, by
using Paired Sample Test.
Figure 8b. Grand average EEGs (of each second in each condition-type of syllogism,
for the invalid type of syllogism in ‘Aristotle's’ experiment.
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The difference in mean score measured in frontal and parietal brain
regions, for the valid type of syllogism (i.e. valid-frontal and valid-
parietal combinations), was found significant (t ¼ 5.10, df ¼ 80, p ¼
0.00025, one-tailed). The difference for the valid-temporal and valid-
occipital combinations were found not significant. Similar results were
found for the invalid-type of syllogism and brain regions (significant
differences in invalid-frontal and invalid-parietal, and not significant in
invalid-temporal and invalid-occipital). We also computed the correla-
tion between the MSE scores in the frontal and parietal regions, for all
groups considered (ASD, ADHD and control), for both valid and invalid
syllogism, and we found it to be significant (0.926, p < 0.00025 and
0.914, p < 0.00025, respectively). We also compare the difference in the
mean MSE values, for all brain regions considered, for both valid and
invalid types, considering the whole data set (all groups included), by
across all subjects), at channel 5 (T5) taken from ADHD, ASD and control groups,



Figure 9. Comparison of MSE curves (linear x y scales) for the three stochastic noises and three EEGs at channel 5 (indicative), for the invalid type of syllogism, and
for the three groups of subjects (control, ASD and ADHD).
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using paired t-test. All combinations were found to be not significant,
however their (linear) correlations were found significant indicating that
in the same brain regions, the scores of MSE values of the subjects, tasted
on both valid and invalid syllogisms, on the average ‘go the same way or
change in the same direction’.

We have also tested for differences in the distribution of percentage
values of certainty of the participants that they have reported in answering
which of the thirty nine (39) questions presented to them (see section
2.3.1), are valid or invalid, using the Kruskal-Wallis, One-Way between
subjects test. According to the test, the distribution is similar across all
categories (ASD, ADHD and control).

Finally, we perform a 6-way ANOVA or 8X3X2X2X2X2 (syllogism-
BrainRegion*group*smoking*handedness*health issues*health treat-
ment), where group, smoking, handedness, health issues and health
treatment are between subjects factors and syllogism-BrainRegion is a
Figure 10. MSE curves vs. time scales, in log-log scales, for subject #23 and
channel 8, for invalid type of syllogism. The red line set the borders of fre-
quency bands (gamma, beta, alpha, theta and delta).
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within subjects factor. Since the Mauchly's test of sphericity was found
significant (W ¼ 0.007, p ¼ 0.000), we adopted the multivariate
approach and the statistics are as follows:

� The main effect of syllogism_BrainRegions is significant by Pillai's
Trace (F(7,48) ¼ 5.184, p ¼ 0.000)

� The syllogism_BrainRegions by group (interaction) is significant by Pil-
lai's Trace (F(14,98) ¼ 1.942, p ¼ 0.034)

� The syllogism_BrainRegions by group (interaction) by health_treatment is
significant by Pillai's Trace (F(7,48) ¼ 1.955, p ¼ 0.008)

� All other interactions were found to be not significant.
3.5. MSE analysis

In this section we present the results from applying MSE and Power
Spectrum analysis on our data, emphasizing once more that the two
approaches work complementarily. Since the number of results,
expressed mainly as Figures, is large (30 data sets corresponding to 30
subjects for each ASD and ADHD groups, and 24 for control group, for
two types of syllogism, valid and invalid i.e. 84 � 2 ¼ 164 figures), we
present only some indicative but representative results. Specifically, for a
single subject namely #23 in all groups (selected arbitrarily), at channel
8 (02 occipital location of electrodes) we provide all the results for valid
and invalid types of syllogism. This gives the opportunity to see the EEG's
MSE patterns or curves for each time scale, as well as the EEG's power
spectra at channel 8, for each type of syllogism, an information that is
both representative and informative of the rest of all other results. Then,
the MSE curves and PS for some selected Grand EEGs (across all subjects,
for each group at each channel separately) are presented (the majority of
the results is in the supplementary material, figures S4–S10). In order to
facilitate both presentation and interpretation of the results, we provide
summary Figures 19 and 20 in section 4, that incorporates, we believe, all
essential information extracted by the analysis.

Before proceeding to the presentation of MSE for the recorded EEGs,
it is very insightful to compare MSE curves computed on simulated data
of three types of noise with those computed on the EEGs, following the
work of Courtiol J. et al. (2016). The need for such a comparison will be
obvious as we proceed further into our analysis. Figure 8a shows the time



Figure 11. MSE curves vs. time scales, in log-log scales, for subject #23 and channel 8, for valid type of syllogism. The red line set the borders of frequency bands
(gamma, beta, alpha, theta and delta).
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series of normal random walk (white noise), fractional Brownian noise and
1/f (where f frequency), and Figure 8b shows the time series of grand
average EEGs, at channel T5, for all groups for invalid syllogism. The
behavior of MSE varies significantly for these noises, and as we observe
in Figure 9, MSE of white noise ‘resembles’ that one estimated on the
EEGs of our study. The figure shows that uncorrelated random signals
(white noise) are less complex than the correlated random signals
(colored noise). For scale one (corresponding to the original signal,
before coarse-graining), a higher value of entropy is assigned to normal
walk (white noise) time series, in comparison with 1/f time series. The
coarse-grained 1/f time series however remains almost constant for all
scales, while the coarse-grained white noise decreases monotonically and
for scales >4 becomes smaller than the corresponding values for 1/f
noise. Fractional Brownian noise on the other hand, increases with scale.
Coarse-grained signals are progressively ‘smoothed out’ and the standard
deviation decreases monotonically with the scale factor, reflecting the
fact that such signals have information only on the shortest scales.
Figure 12. MSE curves vs. time scales, in log-log scales, for Grand-average of EEGs a
bands (gamma, beta, alpha, theta and delta).
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As we see in Figure 9, the three EEGs in our study (for the invalid type
of syllogism, and for the three groups of subjects, at channel 5) ‘generate’
MSE curves like the ones extracted from white noise, i.e. after the 2nd

scale they decrease monotonically (become less complex, they lose the
information content). Most importantly, up to scale 5 the complexity of
EEG from ASD subjects is larger than both ADHD and control ones, while
after scale 5 the complexity of ADHD is higher. This indicates the advan-
tage of using multiscale entropy measure instead of using the ‘typical’, simple,
one-scale entropy that does not take into account that the dynamics of EEGs
are dependent also on the time-scale (new mechanisms activated at
different timescales come on the ‘scene’ and affect the dynamics of EEG).

In the next Figure 10 the MSE curves vs. time scales, in log-log scales,
for subject 23 and channel 8, for all groups and valid and invalid types of
syllogisms, are shown. As it is shown in the figure, in gamma frequency
region (gamma rhythm), group ASD present the highest value in MSE for
invalid type as also in the case of valid type (see next Figure 11), in which
MSE of ADHD is larger than that of ASD. In beta region, MSE values for
t channel 8, for valid type of syllogism. The red line set the borders of frequency



Figure 13. MSE curves vs. time scales, in log-log scales, for Grand-average of EEGs at channel 8, for invalid type of syllogism. The red line set the borders of frequency
bands (gamma, beta, alpha, theta and delta).
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valid and invalid are different. In this figure both control and ADHD EEGs
have identical MSE values, while in the valid type MSE od ASD is larger
than that od ADHD which is larger that of control. In the most interesting
region of frequencies alpha (α), MSE of ASD is larger than both the ADH
and control, while the MSE curve of the ADHD group becomes faster
larger (almost just before the onset of the alpha region but also within
Figure 14. MSE vs scale factor (linear scale) at channels 1 to 4, computed on EEG gran
invalid type of syllogism.
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beta region) than that of the control group, in comparison with the
behavior in the valid type (see Figure 11). Therefore, this may be an
indication that mechanisms that are activated mainly by frequencies
stimulating factors ‘working’ within region alpha and secondarily less
within region beta, in the case of the invalid type of syllogism the
mechanism start operating earlier and affect the dynamics of EEG
d averages (across all subjects of each group, for each separate channel), for the



Figure 15. log MSE vs. log time scales at channels 1 to 4, computed on EEG grand averages (across all subjects of each group, for each separate channel), for the
invalid type of syllogism. The red line set the borders of frequency bands (gamma, beta, alpha, theta and delta).
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recorded at channel 8. A very interesting observation is the leveling off of
MSE for ADHD group, which remains constant in that region. In theta (θ)
band, the relative difference in levels of the curves remain as before, but
here the slopes of MSE curves for ASD and control are steeper while the
slope of ADHD is falling more slowly and finally at the end of theta band,
is the same as the slope of the other two. At region delta (δ), the com-
plexities of all curves are small with same slope and series of relative
levels.

In valid type of syllogism, the dynamic behavior of MSE curves is
significantly different than that in invalid type. In the gamma region MSE
values for ASD and ADHD are clustered together and are both more away
than the values in the control group. In beta also, MSE values of ASD and
control differ significantly, while in the middle of alpha region an
intersection takes place, after which ADHD's entropy is larger than that of
ASD's one, and completely different than that of control. So, in this crucial
region, the clustering of MSE values of both ‘pathological’ groups is clear and
differ strongly than those of the control group. It is very important to examine
further which underlying dynamic mechanism ‘enters the scene’ at the middle
of the alpha region and causes the dynamics of the ADHD signal to be more
complex than that of the ASD signal. In delta region, the relative series of
values of MSE remains as in the previous region, but with a large devi-
ation of the ASD curves from ADHD curves and with larger slope.

Next, we present in Figures 12 and 13, the results of MSE curves
evaluated for the Grand averages of EEGs (across subjects of each group,
and for each channel). Here we show the result for channel 8, for valid
and invalid groups, so we can compare the results with those computed
for a single subject, at the same channel. As it is expected, the averaging
across subjects ‘smooths’ the data but as it is also evident from the fig-
ures, the dynamic behavior of the curves is consistent.

In Figures 14 and 15, theMSE vs scale factor (linear scale) and log scale,
respectively, is presented, at channels 1 to 4, computed on EEG grand
averages (across all subjects of each group, for each separate channel),
for the invalid type of syllogism. Similar results, for both valid and
invalid types, at all channels, for all groups are provided at the supple-
mentary material, in figures S4–S10.
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3.6. Power spectrum analysis

In Figures 16, 17, and 18 we present the results of the power spectrum
analysis for control, ADHD and ASD groups of subjects, for the invalid
type, for delta, theta and alpha rhythms. Similar results for all groups,
both type of syllogism and all rhythms, are presented in supplementary
material (figures S11–S25). Figure 16 is concentrated in a single subject
PSD analysis, actually subject c#23 (from Control group).

In order to have an insight on the behavior of PSD curves per each
channel, and particularly on the spatial power distribution, this is
implemented via the topographic maps at each electrode location. In
Figure 16a, PSDs and topographic maps, of subject #23, for all frequency
bands are shown. We observe that the peak of power values (the PSD
intensity, reflecting a high level of variability in EEGs oscillations), for
almost all frequencies, are highly concentrated mainly at the 02 and
secondarily at P8 electrodes (right Occipital and Parietal), as shown also
in figure 16b, a zoom at theta band. A low to moderately variability is
also observed at AF4 electrode (anterio-frontal, right), as shown in the
right top region of the topographic map, Figure 16b. The rest of the
figures present the PSD of Grand average EEGs, for each type of syllogism
and group of subjects. Combining the information contained in these
figures and the results from MSE analysis, we have constructed the
summary Figure 19, section 4, on which all results are ‘synthesized’ and
facilitate a lot their interpretation as well as the extraction of final
conclusions.

4. Discussion

In this paper, we attempt to detect whether typical controls and
groups with ASD and ADHD have similar or differing patterns of
complexity, as reflected by statistically significant different MSE values,
as the coarse-graining is getting larger, compared to that in the controls.
The stimuli used to activate the brain are cognitive tasks of varying
complexity (inducing varying cognitive loads), four type of Aristotle's
syllogisms or reasoning patterns. Based on the above literature, the



Figure 16. Channel spectra and topographical maps of EEGs, for the Invalid type of syllogism, from CONTROL group of subjects. a) PSD and topographic maps, of
subject #23, for all frequency bands. b) Zoom of frequency band 4–8 Hz (theta). c) Delta, theta and alpha bands. Each colored trace represents the spectrum of the
activity of one of the 14 channels. The maps show the scalp distribution of power at 1–4 Hz (delta rhythm), 4–8 Hz (theta rhythm), and 8–13 Hz (alpha rhythm) (The
small black dots on the map, indicate the locations of the electrodes).

Figure 17. Channel spectra and topographical maps of EEGs, for the Invalid type of syllogism, from ADHD group of subjects. Each colored trace represents the
spectrum of the activity of one of the 14 channels. The maps show the scalp distribution of power at 1–4 Hz (delta rhythm), 4–8 Hz (theta rhythm), and 8–13 Hz
(alpha rhythm).
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Figure 18. Channel spectra and topographical maps of EEGs, for the Invalid type of syllogism, from ASD group of subjects. Each colored trace represents the spectrum
of the activity of one of the 14 channels. The maps show the scalp distribution of power at 1–4 Hz (delta rhythm), 4–8 Hz (theta rhythm), and 8–13 Hz (alpha rhythm).
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Figure 19. Summary of results of MSE and PS analysis for the valid type of syllogism.
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research hypothesis in this challenging work is that MSE will be reduced
over coarser time scales in the ASD and ADHD groups, when compared to
MSE in the control group, during performance of Aristotle's valid and
invalid sets of types of syllogisms (cognitive tasks).

The results of the application of the combination of a linear (power
spectrum) and a nonlinear (MSE) tool, are summarized in the Figures 19
and 20. Starting with the valid type of syllogism, in AF3 channel in the
left anterio-frontal region of the brain, only the groups ASD and ADHD
are observed to show significant complexity-variability in the EEGs. In
rhythms (frequency bands) alpha and theta, this region is dominated by
EEGs of the ADHD group, showing large values of entropy and peak
21
values in the power spectrum. EEGs of the ASD group appear to have
large values of complexity-variability in gamma and beta, in which
ADHD is present. In summary, ADHD and ASD groups differ from
control group in left anterio-frontal region. The increased, high value in
frontal theta amplitude combined with the decreased – small value of
parietal (P7, P8) alpha amplitude, demonstrate the engagement of
enhanced cognitive control and attention levels, conditions that correspond
to System II of thinking (Cavanagh and Frank, 2014; Cavanagh &
Shankman, 2015).

As we have seen in section 1.3, when a subject engages in System I of
thinking, cognitive control and attentional resources are required to a
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Figure 20. Summary of results of MSE and PS analysis for the invalid type of syllogism.
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lesser extend (decreased frontal theta amplitude, increased parietal alpha
amplitude), reflecting a reliance on automatic or routinized systems of
the brain (Evans, 2010a, 2010b; Evans & Stanovich, 2013a, 2013b;
Kahneman, 2011; Varga & Hamburger, 2014). The above literature has
shown also that cognitive control (theta) and attentional mechanisms (alpha)
are not independent and work in conjunction to result in System I and System II
thinking.

4.1. Valid type of syllogism

In channel F7 (frontal temporal left), ADHD subjects have the largest
values primarily in α and θ bands, as well as lesser in β1 and β2, while
ASD in γ and control in β1 and β2.
22
In channel F3 (frontal left), exhibits the same behavior as channel F7.
In FC5 we have the same behavior as the previous channels but ASD

shows large entropy values also in β1 and β2.
In T7 (temporal left) channel, all groups (control included) show large

complexity and variability in γ, β1 and β2 while α, θ and δ are dominated
by ADHD, while ASD in α.

In channel P7 (parietal left), ASD appears strong in α, θ, δ, β1 and β2
and control in α. ADHD group is absent in this channel. So, EEGs in left
parietal are primarily activated by ASD.

In channel 01 (occipital left), control and ADHD dominate α and θ
bands ASD and ADHD in β1 and β2, while δ is dominated by ADHD.

In channel 02 (occipital right), MSE analysis and PS indicates that
ASD and ADHD are strong in γ, β1 and β2 (the PS shows also control in γ,



Table 8. Engagement of linguistic& visuo-spatial systems in temporal& occipital
lobes, in the groups of subjects, for the valid type of syllogism.

Engagement in Syllogistic
Reasoning

Alpha rhythm Theta Rhythm

Linguistic System Temporal Lobes

T7 (ASD þ ADHD) T7 (ADHD)

T8 (ALL þ ADHD) T8 (ADHD)

Visuo-Spatial Occipital lobes

01 (ADHD þ CONTROL) 01 (ADHD þ CONTROL)

02 (ASD þ ADHD) 02 (ADHD)

Table 9. Engagement of linguistic& visuo-spatial systems in temporal& occipital
lobes, in the groups of subjects, for the invalid type of syllogism.

Engagement in Syllogistic
Reasoning

Alpha rhythm Theta Rhythm

Linguistic System Temporal Lobes

T7 (ADHD) T7 (ADHD)

T8 (ADHD) T8 (ADHD)

Visuo-Spatial Occipital lobes

01 (ADHD þ CONTROL) 01 (ADHD þ CONTROL)

02 (ADHD) 02 (ADHD)
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β1, β2) while in α and θ ASD and ADHD (by MSE) and ASD and control
(by PS). Thus MSE shows in the right Occipital, the EEGs of ASD and
ADHD primarily show large variability and complexity in rhythms α and
θ, and EEGs of control groups in a lesser level indicated by PS.

In channel P8 (parietal right), EEGs of ADHD and ASD show large
variability in α (ASD þ ADHD) and θ (ADHD), as also in all other bands.
The EEGs of control observed to have very small variability. So, ASD and
ADHD differ significantly from control in this region of the brain (right
parietal).

In channel T8 (temporal right), all groups show the same complexity
and variability in γ, β1, and β2, while ADHD dominates in α (together
with control), θ and δ. So, control and pathological groups, show the
same complexity in a band, in the right temporal region of the brain.

FC6 channel (frontal-central right), in the majority of frequencies (β1,
β2, α, θ) the complexity-variability of the EEGs in the frontal-central right
of the brain is the same in both control and pathological subjects.

F4 channel (frontal right), in the right frontal the complexity of ADHD
is very small compared to that of ASD (in all frequency bands) and that of
control (in θ band). This, in right frontal ASD EEGs complexity
dominates.

In F8 channel (frontal-temporal right), also in this region, ASD EEGs
dominate in all frequency bands, with control EEGs to be present in α and
θ bands (MSE result) while PS also shows presence of ADHD EEGs.

In channel AF4 (anterio-frontal right) no control EEGs have large
complexity. ASD and ADHD dominates the anterio-frontal right area, in
all bands.

In summary, for the valid type of syllogism, out of 14 channels, EEGs
of ADHD appears to have large complexity in 13 channels in alpha (α)
frequency band (~93%), and in 12 channels in θ band (86%). Also, in
these 3 important bands, ASD has large complexity in 10 channels (θ
band) (71%), and only in 4 channels (28%) in alpha (α) band. Also, in
these 3 bands, control has large complexity in 6 channels in alpha (α)
band (43%) and in 5 channels in theta (θ) band (36%).

4.2. Invalid type of syllogism

Channel AF3 is dominated, in respect of complexity and variability by
groups ASD and ADHD in all frequency bands. Control subjects do not
appear in any of these frequency bands. More specifically ADHD is pre-
sent in θ and α bands while ASD is present in γ and β and ADHD only in β.
Therefore, in the anterio-frontal region there is a significant difference in the
EEGs complexity, between control and pathological participants.

At channel F7 (frontal temporal left), only the pathological groups are
present. Rhythms α and θ are dominated by ADHD. Pathological groups
are present also in other rhythms, ASD in γ and β and ADHD in β1 and β2.
Therefore, at F7 there is complete distinction between ASD, ADHD and control.

The above behavior is also present in F3 channel where control group
is absent. The same also happens as FC5. At channel F7, control group is
present at rhythms β1, β2 and ADHD group dominates frequency bands α
and θ. At channel P7, control group appears only at γ frequency and ASD
dominates α and θ frequency bands. At the left occipital 01 groups ADHD
and control dominate in α and θ bands while control appears in β1, β2 and
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δ. At the right occipital the control group appears in α rhythms γ, β, δ,
while ADHD in α and θ bands (MSE analysis). ASD is present at α and θ
(PS analysis). At channel PH (right parietal) ADHD appears only in
rhythms α and θ while ASD in γ and control in β and δ. At the frontal-
central right region of the brain, the control group dominates in all
rhythms while ADHD is present also at α and θ. At channel F4, ASD is
present at α and θ, and control in θ and δ. Group ADHD is absent. At
frontal temporal right (F8), ASD and control are present only in α and θ
(MSE analysis) while PS also includes ADHD. ASD group dominates γ, β1,
β2 rhythms while the control group appears in δ band. At F4 channel,
ADHD dominates α, θ, δ bands while ASD in γ, β1 and β2.

In summary for the invalid syllogism:

1. Rhythms α and θ are dominated heavily by ADHD group (at 10 out of 14
channels or 71%) while only 4 out of 14 channels (24%) by control group
and only 1% by the ASD group.

2. Out of the 14 channel, control group shows the highest values in complexity
and variability (independently from the method of analysis PS or MSE)
only at 5 channels (33,3%) while the rest 66.6% of the channels is
dominated by the pathological groups ASD and ADHD with the later to
dominate completely at rhythms α and θ.

Figure 19 shows that the Frontal channels at which Theta power is
high are, for ADHD: AF3, F7, F3, FC5, FC6, F8 and F14 (7 channels). For
ASD: FC6, F4 and F8 (3 channels). For CONTROL: FC6, F4 and F8 (3
channels). The Parietal channels at which alpha power is low, are for
ASD: P7, and for CONTROL: P8.

We now describe our effort to connect our results found in temporal
lobes (T7, T8 channels), and occipital lobes (O1, O2, channels) with the
linguistic and visuo-spatial components in the Aristotelian syllogism, as
described in section 1.3. The following table (using results in Figures 19
and 20) aims in summarizing the findings.

From Table 8 it is evident that the linguistic and visuo-spatial systems
are strongly engaged in the ‘pathological’ subjects, as in ASD and ADHD
groups the temporal and occipital lobes are heavily activated. We note
that the engagement of linguistic system is very strong only in ASD
subjects while the engagement of visuo-system is also present in the
control group.

We observe in Table 9 that both the linguistic& visuo-spatial systems,
in the case of invalid type, are only engaged in the ADHD subjects, with
ASD in absence. In the control subjects the visuo-spatial system is also
engaged.

Taken together, we found that during both valid and invalid experi-
mental settings beta and gamma oscillations were significantly associated
in patients with ASD compared to both ADHD and controls. These find-
ings are compatible with studies reporting altered activities of beta os-
cillations, which are related to the continuance of the present
sensorimotor or cognitive conditions in patients with ASD (Engel and
Fries, 2010; Leung et al., 2014). In this context it should be noted that
gamma oscillations are the highly frequently perceived brain activity in
ASD (Maxwell et al., 2015). The gamma oscillations are believed to
reflect the operation of inhibitory GABAergic interneurons, and a
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predominant theory states that loss or reduction of inhibitory in-
terneurons may result to compromised dealing with the social and
emotional stimuli in ASD (Rubenstein and Merzenich, 2010).

The variability of the obtained patterns activity of the gamma and
beta brain activity might reflect the heterogeneous nature of the disorder
(Buzsaki and Draguhn, 2004; Uhlhaas and Singer, 2006).

Another balancing explanation regarding the observed results might
be the widely acknowledged notion concerning the brain activity of in-
dividuals with ASD who mostly manifest a distributed network pattern
with reduced activity in task-related areas and enhanced activity in task
unrelated areas (Takarae et al., 2007; van Diessen et al., 2015).

As far as the observed EEG oscillations and ADHD group the present
results appear to be compatible with studies investigating the relation-
ship between ADHD and brain activity as it reflected by EEG bands.
Indeed, there is evidence indicating that theta and alpha EEG activity
would distinguish between healthy populations and adult ADHD (Ada-
mou et al., 2020). Marzbani et al. (2016) also showed that people with
ADHD disorder have slower brain wave activity (theta) and less beta
activity compared to normal people. Similarly Egner and Gruzelier
(2004) reported that beta activity is a good indicator for mental perfor-
mance and inappropriate beta activity represents mental and physical
disorders like depression, ADHD and insomnia (Egner and Gruzelier,
2004).

From the Reasoning Type (valid and invalid) the principal notice in
the present study are the findings that ADHD and ASD groups differ from
control group in left anterio-frontal region to greater degree and in a
lesser degree the participation of visuospatial circuit. Probably to
maintain andmanipulate familiar information, together with a functional
decoupling unfamiliar information. This assessment is compatible with
the view regarding the anatomy of deductive reasoning. Indeed Goel
(2007) claims ‘Cognitive neuroscience data suggest a unitary system for
logical reasoning and towards a fractionated system dynamically recon-
figured in response to specific task and environmental cues’. It has been
proposed that the left frontal-temporal system treats familiar material,
while the parietal visuospatial system treats unfamiliar material. In a
similar account Johnson-Laird PN (2010) suggests that reasoning is a
reproduction of our around world obtainable through our knowledge,
but not the logical frames of premises.

Regarding the, surprisingly, large complexity-variability in ASD and
ADHD subjects (which is opposite to the ‘main stream’ theory of
complexity loss in ‘pathological’ brain systems) we provide the following
explanation. Since regularity and complexity are not necessarily correlated,
signals exhibiting high complexity (high entropy) are not necessary, also,
real complex systems i.e. they do not possess the structural-informational
richness over multiple temporal scales. As we have seen (see section 3.3)
white noise even though has a high value of entropy, is not a real complex
system. In Figure 9 of section 3.3 we show that the MSE values of white
noise resemble, in respect to their dynamic behavior (MSE carves), to the
MSE values of ADHD and ASD. Therefore, the higher complexity-
variability of these two “pathological” groups of subjects, relative to
Control subjects, does not undermines the broadly accepted argument that
reduced levels of psysiological complexity is observed in ‘pathological’ groups.
This work, instead, supports further the above theory, since reveals,
through a combination of linear and nonlinear tools (PS and MSE,
respectively), that ASD and ADHD subjects do not possess the structural-
informational richness of real complex and adaptive systems, as the
control subjects do. Therefore, the increased complexity observed in ASD
and ADHD is not due to their endogenous adaptive capacity to ‘face’
difficult demanding cognitive loads imposed by Aristotelian syllogism.
The ‘pathological’ subjects, having low (inherently) cognitive and
attentional capacity, during such syllogisms are in a stage of ‘confusion’,
unable to recall any typical presentations in the brain that ‘resemble’ the
ones required by syllogism. Their brain state of confusion incorporates a
high number of brain subsystems located in various brain regions,
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making their brain a higher dimensional dynamical system with higher
degrees of freedom (like a high dimensional white noise process),
compared with the dynamics in the brains of control Subjects, which is
concentrated in fewer regions of the brain, i.e. in a low dimensional
attractor, but very adaptive to the external environment (generated by the
syllogisms), making the brain with high cognitive control and attention
capacity, as well as other cognitive qualities like working memory, STM,
LTM that are necessary to face conditions with ‘heavy’ cognitive loads
during reasoning processes.

The aforementioned discrepancy regarding the higher complexity-
variability in ASD and ADHD subjects than the healthy controls could
be also understood considering the cognitive efficiency theory. Cognitive
efficiency (CE) has been described as the ability to reach optimal use of
mental resources, such as cognitive and executive functions, in order to
achieve the maximum performance on a task (Hoffman and Schraw,
2010).

This view is influenced by the following accounts. On the one hand
frequent forms of cognition are easily learned through experience and
thus might be developed automaticity (Hoffman, 2012). Additionally,
human beings posit an evolutionary tendency to improve working
memory load proceeding by demanding problem-solving duties (Evans,
2008; Stanovich, 2009). In this context, subjects solving cognitive tasks
correctly are regarded cognitively efficient since use less brain energy
consumption as verified by brain imaging technique whereas they
actuate working memory resources (Neubauer and Fink, 2009).

Furthermore, there are convergent evidence suggesting that ineffi-
cient cognitive control of information processing is a fundamental deficit
in both ASD and ADHD. Indeed Speirs et al. (2014); and Mackie MA, &
Fan J, (2016) reported inefficient cognitive control of information pro-
cessing in ASD which have implications for social functioning and in-
terventions. Peterson et al. (2019) also demonstrated that children and
adults with ASD exhibit reduced neural efficiency for cognitive and social
functioning which in turn is correlated positively with higher hyper-
perfusion throughout frontal white matter and subcortical gray.

In the same way ADHD is characterized by various cognitive diffi-
culties. In particular Segal et al. (2015), reported ineffective processing of
semantic conflicts in adults with ADHD attributable to their inability to
rely on executive attention and as an alternative, they may recruit higher
(probably less effective) language mechanisms such as semantic mech-
anisms. In this sense Sheridan et al. (2007) revealed cognitive deficits in
children and adolescents with ADHDwhich hypothesized to be related to
low efficiency of prefrontal cortex (PFC) function. Equally B�edard et al.
(2014) registered declined efficiency of DLPFC in ADHD for high-load
visuospatial working memory and compensatory support of posterior
spatial attention circuits to manage spatial position than healthy control.

In summary, in the case of invalid type of Aristotelian syllogisms, the
linguistic and visuo-spatial systems are both engaged ONLY in the tem-
poral and occipital regions of the brain, respectively, of ADHD subjects.
In the case of valid type, both above systems are engaged in the temporal
and occipital regions of the brain, respectively, of both ASD and ADHD
subjects, while in the control subjects only the visuo-spatial type is
engaged.

5. Conclusions

This investigation shows the ranking of cognitive workload using the
EEG signals, imposed by Aristotle's valid and invalid types of syllogisms,
and how this ranking is differentiated in three different groups of sub-
jects: control, ASD and ADHD. For the differentiation within-subjects and
within-groups, a combination of a linear tool (power spectral density
analysis) and a nonlinear one (Multiscale entropy) was used. The main
finding is that the level of complexity and variability of the EEG signals,
reflecting the cognitive workload in various brain regions, differ signif-
icantly in respect to the location of the channel, as well as to the group
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the subject belongs to. The cognitive load imposed by the different types
of Aristotelian syllogism ‘activate’ different regions of the brain that may
interact each other, depending on the difficulty the subject ‘feels’ in an
effort to ‘manage’ the information content and the consequent processing
in the syllogism cognitive task. The channels related to the occipital and
frontal lobes attain the highest values of the complexity-variability, sup-
porting the existing literature (Knauff, 2007) and further expanding it as
the nonlinear tool MSE can detect-reveal nonlinear correlations and in-
teractions of brain regions that cannot be by PS. In this respect, this work
contributes toward understanding deeper how different subject groups,
normal-‘pathological’, respond to these particular demanding cognitive
workloads imposed by Aristotelian syllogisms.

Regarding the, surprisingly, large complexity-variability in ASD and
ADHD subjects (which is opposite to the ‘main stream’ theory of
complexity loss in ‘pathological’ brain systems) we provide the following
explanation. Since regularity and complexity are not necessarily correlated,
signals exhibiting high complexity (high entropy) are not necessary, also,
real complex systems i.e. they do not possess the structural-informational
richness over multiple temporal scales. As we have seen (see section 3.3)
white noise even though has a high value of entropy, is not a real complex
systems. In Figure 9 of section 3.3 we show that the MSE values of white
noise resemble, in respect to their dynamic behavior (MSE carves), to the
MSE values of ADHD and ASD. Therefore, the higher complexity-
variability of these two ‘pathological’ groups of subjects, relative to
Control subjects, does not undermines the broadly accepted argument that
reduced levels of psysiological complexity is observed in ‘pathological’ groups.
This work, instead, supports further the above theory, since reveals,
through a combination of linear and nonlinear tools (PS and MSE,
respectively), that ASD and ADHD subjects do not possess the structural-
informational richness of real complex and adaptive systems, as the con-
trol subject do. Therefore, the increased complexity observed in ASD and
ADHD is not due to their endogenous adaptive capacity to ‘face’ difficult
demanding cognitive loads imposed by Aristotelian syllogism. The
“pathological” subjects, having low (inherently) cognitive and atten-
tional capacity, during such syllogisms are in a stage of ‘confusion’, un-
able to recall any typical presentations in the brain that ‘resemble’ the
ones required by syllogism. Their brain state of confusion incorporates a
high number of brain subsystems located in various brain regions,
making their brain a higher dimensional dynamical system with higher
degrees of freedom (like a high dimensional white noise process),
compared with the dynamics in the brains of control Subjects, which is
concentrated in fewer regions of the brain, i.e. in a low dimensional
attractor, but very adaptive to the external environment (generated by the
syllogisms), making the brain with high cognitive control and attention
capacity, as well as other cognitive qualities like working memory, STM,
LTM that are necessary to face conditions with ‘heavy’ cognitive loads
during reasoning processes.
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