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ABSTRACT: Both imidazolium and 1,2,4-triazolium cations are
important functional moieties widely incorporated as building blocks
in poly(ionic liquid)s (PILs). In a classical model, a PIL usually
contains either imidazolium or 1,2,4-triazolium in its repeating unit.
Herein, via exploiting the slight reactivity difference of alkyl bromide
with imidazole and 1,2,4-triazole at room temperature, we
synthesized dual-cationic PIL homopolymers carrying both imida-
zolium and 1,2,4-triazolium moieties in the same repeating unit, that
is, an asymmetrically dicationic unit. We investigated their
fundamental properties, for example, thermal stability and solubility,
as well as their unique function in forming supramolecular porous
membranes via a water-initiated phase-separation and cross-linking
process. With such knowledge, we identified a water-based fabricate
strategy toward air-stable porous membranes from single-component
PILs. This study will enrich the design tools and chemical structure library of PILs and expand their application spectrum.

The types of cations in poly(ionic liquid)s (PILs) have
been traditionally focused on imidazolium, pyridinium,

ammonium, and phosphonium.1−4 Among them, the imidazo-
lium cation has been playing a dominant role since the research
concept of PILs emerged in the polymer community around
2000.5,6 The popularity of imidazolium cations7−16 in PIL
chemical structure design lies in the following facts. (1)
Imidazolium-based ionic liquids (ILs) are among the best
studied ILs because of their rich chemical structures. When
researchers think of polymerizing ILs, it is no doubt that
imidazolium-based ILs come first. (2) Imidazolium is known
to be associated with some unique properties, such as high
thermal and chemical stability, aromaticity, rich forms of
supramolecular interactions, and abundance in heteroatoms.
(3) Easy access to imidazolium-based IL monomers. There is a
giant library of commercial imidazole compounds that can be
easily converted to their IL monomers. A classic example is 1-
vinylimidazole that, via a simple step of quaternization reaction
with alkyl halide, can readily form a polymerizable IL.
Lately, there have been surging activities to build up PILs

from triazoliums, including 1,2,3-triazolium17−21 and 1,2,4-
triazolium.22−27 From a chemical structure point of view,
replacement of only a single carbon atom in an imidazolium
ring produces either 1,2,3-, or 1,2,4-triazolium, depending on
the relative position of the added nitrogen atom in the five-
membered heterocyclic ring.21 This minor change of the
chemical structure of PILs can drastically alter their global

physicochemical properties. For example, poly(3-n-dodecyl-1-
vinylimidazolium bromide) nanoparticles prepared in water are
onion-like spheres, while poly(4-n-dodecyl-1-vinyl-1,2,4-triazo-
lium bromide) nanoparticles are wasp-like ellipsoids;25 poly(3-
methyl-1-vinylimidazolium TFSI) (TFSI stands for the bis-
(trifluoromethane sulfonyl)imide anion) in contact with water
does not form a regular structure, while poly(4-methyl-1-vinyl-
1,2,4-triazolium TFSI) can be physically cross-linked by water
molecules through H-bonds into a porous membrane in wet
conditions.28 Such distinctive behaviors of polytriazoliums
initiate a rising wave to understand their intrinsic structure−
property relationships and explore their applications in
sorption, catalysis, sensors, and more.28−30

The physical and chemical properties of polyimidazoliums
and polytriazoliums have been investigated individually to date.
It raises a question in our mind: what if these two cations are
localized in a single dicationic repeating unit of PILs? As such a
structure is unusual and synthetically challenging, it has so far
not been reported. Note that there have been a few studies
reporting PILs of dicationic repeating units, for example, 1,2,3-
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Figure 1. Schematic representation of the synthesis of 1,2,4-triazolium/imidazolium-type dicationic PILs.

Figure 2. 1H NMR spectra of (a) compound 1, (b) monomer 2, (c) monomer 3, (d) polymer 4, and (e) polymer 6. For Figure 2a−c, CD3OD was
used as the solvent; for Figure 2d,e, DMSO-d6 was used as the solvent.
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triazolium/1,3-thiazolium31,32 and 1,2,3-triazolium/1,2,3-tria-
zolium33 ones. Driven by curiosities and wishes to expand the
structural toolbox of PILs, we reported herein the synthesis of
1,2,4-triazolium/imidazolium-type dicationic PILs, and their
capability of forming air-stable single-component porous
membranes.
The overall synthetic route is displayed in Figure 1. It starts

with a reaction of sodium 1,2,4-triazolate with 1,4-dibromo-
butane to afford a mono-Br compound 1, the structure of
which was confirmed by 1H and 13C NMR spectroscopy
(spectra in Figures 2a, S1, and S2). It is a stable compound in
either a solid or solution state at room temperature (r.t.), as
the sample shows no difference in its NMR spectra after
storage at r.t. for 2 days. The integration ratio of peak 9 (-CH2-
triazole) to 6 (Br-CH2-) is 0.98 (theoretical value ∼ 1.00) in its
1H NMR spectrum (Figure 2a), confirming the mono-Br
compound 1 as the sole product. Bear in mind that it is crucial
to keep 1,4-dibromobutane in a minimum 2-fold excess with
respect to sodium 1,2,4-triazolate to suppress the formation of
di-Br compound as byproduct (see synthetic details in the SI).
With a moderate yield of 41%, this reaction proceeded in a
mild condition for easy scale-up. Next, an N-alkylation reaction
of compound 1 with 1-vinylimidazole was performed to afford
monomer 2, a crucial step in the entire synthetic line. Here, the
alkyl bromide moiety was subjected to both 1,2,4-triazole and
imidazole compounds at r.t., where only the latter reacts
readily with the alkyl bromide. Figure 2a and b compare the 1H
NMR spectra of compound 1 and monomer 2. The chemical
shift of the Br-CH2- protons (peak 6 in Figure 2a) at 3.48 ppm
vanished completely after quaternization, and a new one at
4.38 ppm (imidazolium-CH2-, peak 6 in Figure 2b) emerged,
indicative of a successful conversion of compound 1 to
monocationic monomer 2.
Dicationic monomer 3 formed upon a second N-alkylation

reaction of monomer 2 with bromoacetonitrile at 60 °C in the
presence of butylated hydroxytoluene (BHT) as an inhibitor.
In its 1H NMR spectrum in Figure 2c, a single peak emerges at
5.77 ppm (peak 12), which is assigned to the CN-CH2-
protons. The integration ratio of peak 12/6 in Figure 2c is
measured to be 0.99 (theoretical value ∼ 1.00), proving a
quantitative alkylation reaction. The specific integration and
assignment of peaks in 1H and 13C NMR spectra of monomers
2 and 3 are displayed in Figures S3−S6, which agree well with
their chemical structures.
After obtaining monomers 2 and 3, free radical polymer-

izations were conducted to synthesize Br−-containing polymers
4 and 6, respectively. As shown in Figure 2b,c, the vinyl proton
signals 1, 1′, and 2 at 7.32, 5.99, and 5.48 ppm, respectively,
vanished after polymerization; two new signals originated from
the backbone protons of the corresponding polymers appeared
(peaks 1 and 2 at 4.28 and 1.84 ppm in Figure 2d for polymer
4, and peaks 1 and 2 at 4.31 and 1.75 ppm in Figure 2e for
polymer 6, respectively). In addition, the broadening effect of
proton signals in their polymers (Figure 2d,e) in comparison
to the corresponding monomers (Figure 2b,c) is clear to see
because of a slower molecular motion of macromolecular
chains than monomers of a lower molecular weight. More
details of 1H and 13C NMR spectra of polymers can be found
in Figures S7−S10. A supportive proof of polymer formation is
provided by Fourier-transform infrared (FT-IR) spectroscopy.
The stretching IR band of vinyl C−H at 3100 cm−1 in the
monomer spectra (Figure S11, highlighted by dotted blue line)

shrank massively in their corresponding polymers (Figure
S12).
Note that the dicationic monomer 3 was observed to

polymerize with more difficulty than the monocationic
monomer 2, apparently due to enhanced intermonomer
electrostatic repulsion and sterical hindrance. Under the
same polymerization condition for 72 h, polymerization of
monomer 3 resulted in a lower yield of 26% than monomer 2
(76%). Aiming at a higher yield, polymer 6 could be
alternatively obtained via quantitative N-alkylation of polymer
4 with bromoacetonitrile at 80 °C for 24 h. To stress,
monomer 2 is an IL with a melting point (mp) at 60 °C, so
that its polymer 4 is strictly a PIL, while monomer 3 is an
organic salt with a mp of 140 °C (Figure S17), defining its
polymer 6 as a classic ionic polymer. Gel permeation
chromatography (GPC) tests were performed to determine
their macromolecular characteristics, showing a monomodal
molecular weight (MW) distribution with an apparent MW of
133 kDa with a polydispersity index (PDI ∼ 4.5) for polymer
4, and 24 kDa with a PDI ∼ 2.0 for polymer 6, respectively
(Figure S15).
Next, anion metathesis reactions of polymers 4 and 6 were

performed with LiTFSI and KPF6 salts to produce polymer 5
and polymers 7/8, respectively (Figure 1). Since PF6

− and
TFSI− anions are H-free and silent in 1H NMR (see
corresponding 1H- and 13C NMR spectra in Figures S22−
S27), the anion exchange reactions were proven by FT-IR
spectra of these polymers (Figure S12). Polymers 5 and 7 with
TFSI− anions display four characteristic bands at 1343, 1133,
611, and 600 cm−1 (dotted purple line in Figure S12) from the
asymmetric/symmetric stretching and bending of the SO2
group of the TFSI− anion.34 Polymer 8 with a PF6

− anion
shows a broad band at 820 cm−1 (dotted brown line in Figure
S12), which can be assigned to the symmetric stretching of
PF6

−.35 Similarly, anion exchange was conducted to dicationic
monomer 3 to produce monomers 9 and 10 with TFSI− and
PF6

−, respectively. Both monomers 9 and 10 are ILs; the
former is a r.t. IL with a glass transition temperature (Tg) of
−25 °C (Figure S13), and the latter (Tg ∼ 10 °C) becomes a
viscous liquid above 80 °C (Figures S14 and S17). In this
context, both polymers 7 and 8 belong to the PIL family. It is
worth mentioning that, despite our various attempts, we failed
in the synthesis of polymers 7 and 8 directly from radical
polymerization of monomers 9 and 10, respectively.
Presumably, the strong intermonomer electrostatic repulsion
in the superposition of the large-sized anions eventually
blocked chain growth in polymerization.
The thermal properties of polymers 4−8 were investigated

by thermal gravimetric analysis (TGA) and differential
scanning calorimetry (DSC). We found that their thermal
properties are strongly anion-dependent, typically observed for
PILs. As seen in Figure S16, the thermal decomposition
temperatures (Td, defined as 10 wt % mass loss) for TFSI−-
bearing polymers 5 and 7, were found to be 336 and 345 °C,
respectively, which are expectedly higher than their corre-
sponding Br−-containing polymers 4 (274 °C) and 6 (285 °C).
To our surprise, PF6

−-containing polymer 8 presents the
lowest Td of 252 °C. The weakened thermal stability of
polymer 8 was presumably caused by a residue of 14.8 mol %
of Br- anions, which was proven by a AgPF6 titration test (see
SI for details). The DSC traces of polymers 4−8 are displayed
in Figure S18, showing a Tg at about 80 °C for Br−-containing
polymer 4 and 6, and a lower Tg at ca. 60 °C for TFSI−-
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containing polymers 5 and 7 due to a plasticizing effect of
large-sized TFSI− anion. Meanwhile, PF6

−-containing polymer
8 exhibited no detectable Tg up to 240 °C. The solubility table
of polymers 4−8 (Table S1) presents characteristic anion-
adaptive solubility.
Having 1,2,4-triazolium/imidazolium dicationic PILs in

hand, we were interested in exploring their functions and
applications. Recently we discovered that some TFSI−-
containing poly(1,2,4-triazolium) and occasionally also poly-
imidazolium could be cross-linked via H-bonding by water
molecules into porous membranes, a processing technique that
allows for “green” membrane fabrication. Unfortunately, these
reported porous structures in water lost pores upon warming
or drying at ambient condition, that is, the pores are only
stable in wet conditions unless being freeze-dried.28

Here, we tested TFSI−-containing dicationic polymer 7 for
this pore-forming behavior in water, as the TFSI− anion is
required to make polymer 7 hydrophobic enough to induce
phase separation in contact with water. The detailed
fabrication procedure is illustrated in Figure 3a. First, a

DMSO solution of polymer 7 was cast onto a glass plate and
dried at 80 °C for 3 h into a transparent yellowish thin film,
which according to the scanning electron microscopy (SEM)
analysis is dense and pore-free (Figure S19). This film was
immersed in water for 12 h, during which it became opaque.
Finally, the sample was taken out and dried in a fume hood
under an ambient environment to a constant weight. Its SEM
image visualizes an interconnected porous architecture from its
top to bottom (Figure 3b,c). The membranes prepared by this
method are generally 5−20 μm in thickness, depending on the
thickness of the original films on the glass plate. The average
pore size is 1.1 ± 0.3 μm with a monomodal pore size
distribution (Figure 3d). It is noteworthy that 1,2,4-triazolium-
free polymer 5 failed to form pores along the same fabrication

procedure (Figure S20), as the 1,2,4-triazolium cation assists
the formation of strong hydrogen bonds with water molecules.
Surprisingly, the porous membrane formed in water remains

porous even after being dried in air. Thermogravimetric
analysis shows that the membrane has no weight loss (<1 wt
%) up to 200 °C (Figure S21), implying the absence of water
molecules. This observation is different from our recent report
that the pores formed in water and cross-linked by H-bonds
were only stable in a wet condition.28 We attribute the
capability of porous structures to survive the dry process, to the
high-content of TFSI− anions (2 per repeating unit) that
sufficiently stabilize the phase-separated porous structure, even
after removal of water molecules. Note that the dried
membrane is soluble in DMSO upon gentle warming, allowing
for full recycle and reuse of the membrane materials. This
discovery provides a fabrication strategy of supramolecular
porous membranes from single-component PILs.
In summary, homopolymer-type PILs containing both

imidazolium and 1,2,4-triazolium cations in the repeating
unit have been synthesized. As expected, the relatively high
charge density in monomers makes it difficult to directly
polymerize dicationic monomers with large-sized counter-
anions. Such PILs in contact with water produce porous
membranes that are air-stable after drying in ambient
conditions. The design and synthesis of asymmetrically
dicationic PILs will not only enrich the chemical structure
library of PILs, but also contribute to the green fabrication
techniques for porous membranes.
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Figure 3. (a) Fabrication scheme of a porous membrane from
polymer 7 in water; (b, c) SEM images of the cross-sectional view of
the porous membrane made from polymer 7 after annealed in water
for 12 h; (d) its pore size distribution histogram.
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