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Abstract
Molecular targeted therapies are the standard of care for front-line treatment of 
metastatic non-small-cell lung cancers (NSCLCs) harboring driver gene mutations. 
However, despite the initial dramatic responses, the emergence of acquired resist-
ance is inevitable. Acquisition of secondary mutations in the target gene (on-target 
resistance) is one of the major mechanisms of resistance. The mouse pro-B cell line 
Ba/F3 is dependent on interleukin-3 for survival and proliferation. Upon transduction 
of a driver gene, Ba/F3 cells become independent of interleukin-3 but dependent on 
the transduced driver gene. Therefore, the Ba/F3 cell line has been a popular system 
to generate models with oncogene dependence and vulnerability to specific targeted 
therapies. These models have been used to estimate oncogenicity of driver muta-
tions or efficacies of molecularly targeted drugs. In addition, Ba/F3 models, together 
with N-ethyl-N-nitrosourea mutagenesis, have been used to derive acquired resistant 
cells to investigate on-target resistance mechanisms. Here, we reviewed studies that 
used Ba/F3 models with EGFR mutations, ALK/ROS1/NTRK/RET fusions, MET exon 14 
skipping mutations, or KRAS G12C mutations to investigate secondary/tertiary drug 
resistant mutations. We determined that 68% of resistance mutations reproducibly 
detected in clinical cases were also found in Ba/F3 models. In addition, sensitivity 
data generated with Ba/F3 models correlated well with clinical responses to each 
drug. Ba/F3 models are useful to comprehensively identify potential mutations that 
induce resistance to molecularly targeted drugs and to explore drugs to overcome the 
resistance.

K E Y W O R D S
acquired resistance, adenocarcinoma of lung, Ba/F3, secondary mutation, tyrosine kinase 
inhibitor

www.wileyonlinelibrary.com/journal/cas
mailto:﻿￼
https://orcid.org/0000-0001-9860-8505
http://creativecommons.org/licenses/by/4.0/
mailto:mitsudom@med.kindai.ac.jp


816  |    KOGA et al.

1  |  INTRODUCTION

For unresectable/advanced NSCLC, molecular targeted thera-
pies are the standard, front-line treatment for NSCLCs that har-
bor one of the following driver gene alterations: EGFR mutations, 
ALK fusions, ROS1 fusions, RET fusions, BRAF V600E mutation, 
MET exon 14 skipping mutation, and NTRK fusions. In addition, 
sotorasib (KRAS G12C inhibitor), amivantamab-vmjw (anti-EGFR/
MET bispecific Ab), and mobocertinib have recently joined the list 
of FDA-approved drugs, and inhibitors targeting HER2 have been 
investigated with promising outcomes in early phase clinical trials1 
(Table S1).

Despite the initial dramatic response to these molecular 
targeted drugs, the emergence of acquired resistance is inevi-
table. Molecular mechanisms of acquired resistance can be 
classified into three categories: (i) on-target alterations such 
as secondary mutations, (ii) activation of accessory or down-
stream pathways, and (iii) phenotypic transformation, such as 
the epithelial-mesenchymal transition or SCLC transformation.2 
Identification of acquired resistance mechanisms potentially 
leads to mechanism-oriented, second line treatments with prom-
ising efficacies.3,4

2  |  IN VITRO MODELS FOR RESISTANCE 
MECHANISM ANALYSES

In vitro models have played important roles in elucidating resist-
ance mechanisms that develop after treatment with molecular 
targeted drugs. These in vitro models can be classified into three 
groups: (i) conventional cell lines established from lung cancer 
patients a long time ago, many of which were established by 
Professors Adi F. Gazdar and John Minna approximately 30 years 
ago,5 (ii) newly derived cell lines and tumor organoids from pa-
tients, and (iii) Ba/F3 models, which are the focus of this review 
article (Figure 1A).

After discoveries of EGFR mutations and ALK fusions in 
NSCLCs, many researchers have used conventional cell lines with 
either EGFR mutations or ALK fusions to explore mechanisms of 
acquired resistance to the respective TKIs (Figure 1B).6-8 These 
studies identified numerous mechanisms, as listed above, and re-
vealed that secondary mutations were the most common mecha-
nism of acquired resistance.2 Following the EGFR mutations and 
ALK fusions, several other driver mutations, such as BRAF V600E 
mutation, ROS1 fusions, NTRK fusions, and MET exon 14 skipping 
mutations, were discovered in NSCLCs, and molecular targeted 
drugs for these genetic alterations have been developed. However, 
due to the rarity of the latter driver mutations, lung cancer-derived 
cell lines that harbor one of these mutations are usually unavail-
able. Therefore, Ba/F3 cells that have been transduced with these 
mutated driver genes are an important tool for mechanistic and 
therapeutic investigations.

3  |  BASICS OF BA/F3 CELLS AS A TOOL 
TO GENERATE ONCOGENE-DEPENDENT 
CELL LINE MODELS

Ba/F3 is a murine, IL-3-dependent, pro-B cell line, which is a pop-
ular system that can resolve the limited availability of lung cancer 
patient-derived cells with rare driver mutations. The origin of Ba/
F3 cells is somewhat unclear because they were initially reported 
as IL-3-dependent pro-B cells isolated from the bone marrow of 
Balb/c mice.9 However, single nucleotide polymorphism geno-
typing revealed that this cell line was derived from C3H mice.10 
Nevertheless, Ba/F3 cells have served as an important tool for on-
cology research because the removal of IL-3 causes loss of viability. 
Ba/F3 cells can grow in the presence of 5 ng/mL IL-3 with a doubling 
time of 8 hours.11 Introduction of a driver gene mutation can render 
Ba/F3 cells independent of IL-3 but dependent on the introduced 
driver gene. Therefore, this simple oncogene dependency creates 
a straightforward tool for testing the sensitivity of Ba/F3 cells to 
molecular targeted drugs (Figure 1A). Ba/F3 cells have been used 
to investigate the transforming ability of driver oncogenes since 
Daley and Baltimore reported in 1988 that the introduction of BCR/
ABL produced IL-3-independent growth.12 Using a mutagenesis PCR 
technique, Ba/F3 cells can be generated with any driver mutation 
that is found in NSCLCs.

However, it should be noted that Ba/F3 models have some lim-
itations that should be considered when we evaluate the results ob-
tained from Ba/F3 experiments. First, it is usually difficult to control 
the expression level (as well as the introduced gene copy number) 
of the transfected driver gene. Second, because only a single driver 
mutation is usually introduced into Ba/F3 cells, the established Ba/
F3 clone does not carry the WT allele of the driver gene. Third, be-
cause Ba/F3 cells do not have innate human genes, it is impossible 
to evaluate the impacts of heterodimers between introduced onco-
genes and other RTKs (for example, EGFR is reported to form het-
erodimers with other ERBB members such as ERBB313). However, 
it should be mentioned that the requirement of homodimerization 
can be evaluable using Ba/F3 models; for example, using NIH-3T3 
cells and Ba/F3 cells, a previous study reported that EGFR L858R 
mutant required homodimerization for activation but EGFR exon 
19 deletion, exon 20 insertion, and L858R/T790M did not require 
homodimerization14.

4  |  BA/F3 CELLS AS A TOOL TO IDENTIFY 
ON-TARGET ACQUIRED RESISTANCE 
MECHANISMS

Exposure of transfected Ba/F3 cells to increasing concentrations 
of molecular targeted drugs will often result in the development 
of drug resistance. The use of ENU can facilitate and shorten the 
process of resistance induction (Figure 1A). However, it is difficult 
to identify acquired resistance mechanisms other than secondary 
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mutations using the Ba/F3 model. One of the first applications of 
Ba/F3 cells for identifying secondary resistance mutations was re-
ported by Ercan et al who used ENU mutagenesis and identified an 
EGFR C797S mutation as a mechanism of osimertinib resistance.15 
This study was followed by the identification of a C797S muta-
tion in a patient who developed acquired resistance to osimerti-
nib.16 Furthermore, Katayama et al used Ba/F3 cells to identify 
secondary ROS1 mutations that could cause crizotinib or ceritinib 
resistance.17

Secondary mutations identified in Ba/F3 models and clinical 
specimens are not always identical. We classified secondary re-
sistance mutations into three groups: (i) those found in both clin-
ical specimens and Ba/F3 models, (ii) those found only in clinical 

specimens, and (iii) those found only in Ba/F3 models (Figure 2A-C). 
Thirty-four amino acid residues in EGFR, ALK, ROS1, RET, NTRK1, 
and MET proteins contained secondary/tertiary mutations and were 
reproducibly identified in clinical samples obtained from NSCLCs 
(and other type of cancers for RET/NTRK fusions). Of these 34 
residues, 23 (68%) of these mutations were also identified in Ba/
F3 models (Figure 2A). However, mutations in 22 other residues 
have been reported only in Ba/F3 models. We noted that the data 
on ROS1, NTRK, or MET mutations were the primary cause of dis-
cordance, which was likely because of the rarity of clinical reports 
that examined resistance to these driver mutations. Therefore, the 
discordant data are expected to decrease as more samples are ana-
lyzed in the future.

F I G U R E  1  Ba/F3 model and lung cancer cell lines as tools for mechanistic analysis of resistance to molecular targeted drugs. A, Parental 
Ba/F3 cells are interleukin-3 (IL-3)-dependent; however, they transform to IL-3-independent when a driver mutation is introduced. This 
model is extremely sensitive to molecular targeted drugs that can inhibit the introduced driver mutation. N-ethyl-N-nitrosourea (ENU) 
mutagenesis can cause various secondary mutations in the introduced driver gene, and short-term treatment with a molecular targeted drug 
will select Ba/F3 clones with drug-resistant mutations. Ba/F3 cells are also used as a validation tool for secondary mutations identified in 
clinical samples. Ba/F3 cells harboring a driver mutation plus a secondary mutation are used to evaluate drug sensitivity or investigate drugs 
that can overcome the initial drug resistance. B, Commercially available, conventional lung cancer cell lines or patient-derived lung cancer 
cells are used to establish models to study acquired resistance to molecular targeted drugs. Cell lines are exposed to the drug for at least 3-4 
mo until these cells become resistant to the drug. EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition
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FKKIKVLGSGAFGTVYKGLWIP-EGE-KVKIPVAIKELR-EATSPKANKEILDEAYVMASVDNPHVCRLLGICLT -STVQLITQLMPFGCLLDYVREHKD-----------------------NIGSQY
ITLIRGLGHGAFGEVYEGQVSGMPND-PSPLQVAVKTLP-EVCSEQDELDFLMEALIISKFNHQNIVRCIGVSLQ-SLPRFILLELMAGGDLKSFLRETRP-----------RPS------QPSSLAMLD
LTLRLLLGSGAFGEVYEGTAVDILGVGSGEIKVAVKTLK-KGSTDQEKIEFLKEAHLMSKFNHPNILKQLGVCLL-NEPQYIILELMEGGDLLTYLRK------ARMAT-----------FYGPLLTLVD
LVLGKTLGEGEFGKVVKATAFHLKGR-AGYTTVAVKMLK-ENASPSELRDLLSEFNVLKQVNHPHVIKLYGACSQ-DGPLLLIVEYAKYGSLRGFLRESRKVGPGYLGSGGSRNSSSLDHPDERALTMGD
IVLKWELGEGAFGKVFLAECHNLLPE-QDKMLVAVKALK-EAS-ESARQDFQREAELLTMLQHQHIVRFFGVCTE-GRPLLMVFEYMRHGDLNRFLRSHGP -DAKLLAGGE------DVAPGP-LGLGQ
VHFNEVIGRGHFGCVYHGTLLDNDGK-K--IHCAVKSLN-RITDIGEVSQFLTEGIIMKDFSHPNVLSLLGICLRSEGSPLVVLPYMKHGDLRNFIRN-----------------------ETHNPTVKD

LLNWCVQIAKGMNYLEDRRLVHRDLAARNVLV-----KTPQHVKITDFGLAKLLGAEEKEY--HAEGGKVPIKWMALESIL---HRIYTHQSDVWSYGVTVWELMTFGSKPYDGIPASEISSILEK
LLHVARDIACGCQYLEENHFIHRDIAARNCLLTCP--GPGRVAKIGDFGMARDIYRASYYRK--GGCAMLPVKWMPPEAFM---EGIFTSKTDTWSFGVLLWEIFSLGYMPYPSKSNQEVLEFVTS
LVDLCVDISKGCVYLERMHFIHRDLAARNCLVSVKDYTSPRIVKIGDFGLARDIYKNDYYRK--RGEGLLPVRWMAPESLM---DGIFTTQSDVWSFGILIWEILTLGHQPYPAHSNLDVLNYVQT
LISFAWQISQGMQYLAEMKLVHRDLAARNILV-----AEGRKMKISDFGLSRDVYEEDSYV--KRSQGRIPVKWMAIESLF---DHIYTTQSDVWSFGVLLWEIVTLGGNPYPGIPPERLFNLLKT
LLAVASQVAAGMVYLAGLHFVHRDLATRNCLV-----GQGLVVKIGDFGMSRDIYSTDYYRV--GGRTMLPIRWMPPESIL---YRKFTTESDVWSFGVVLWEIFTYGKQPWYQLSNTEAIDCITQ
LIGFGLQVAKGMKYLASKKFVHRDLAARNCML-----DEKFTVKVADFGLARDMYDKEYYSVHNKTGAKLPVKWMALESLQ---TQKFTTKSDVWSFGVLLWELMTRGAPPYPDVNTFDITVYLLQ
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N-ethyl-N-nitrosourea mutagenesis preferentially induces 
T→C or C→T transitions and T→A transversions,18 which is a 
limitation using the Ba/F3 model. The frequencies of these ge-
netic changes were calculated using data from our recent publi-
cations.19-21 We found that the preferential changes were more 
frequent (66%) than other genetic changes (Figure 2D). In ad-
dition, as described above, Ba/F3 clone does not carry the WT 
allele of the introduced driver mutation. Therefore, the second-
ary mutation always occurs in cis with the activating mutation. 
Secondary mutation in cis is frequent in clinic,22 however, there 
are some reports that describe the occurrence of in trans second-
ary mutations.23,24

5  |  BA/F3 CELLS AS A TOOL TO EXPLORE 
NOVEL AGENTS TO OVERCOME ON-
TARGET RESISTANCE

The Ba/F3 cell model is also useful to examine the roles of second-
ary mutations with unknown significance that are found in TKI-
refractory patient specimens. Ba/F3 cell lines can be produced with 
any driver or secondary (or tertiary) mutation (Figure 1A) and used 
to evaluate the efficacy of drugs. To our knowledge, in the field of 
lung cancer research, Ba/F3 cells were first used for this purpose, 
that is, to confirm that the EGFR T790M secondary mutation con-
ferred acquired resistance to gefitinib, a 1G-EGFR-TKI.25

Ba/F3 cells with secondary mutations can be used to explore 
novel TKIs that can overcome drug resistance. These types of 
studies have enabled the development of catalogues that sum-
marize the correlations between secondary mutations and TKI 
efficacies (Tables S2-S4). The clinical utility of these catalogues is 
presented in Figure 3 for some anecdotal cases. We summarized 
sensitivity indices (IC50 values adjusted with clinically achievable 
concentrations of each TKI) generated from Ba/F3 cell exper-
iments and clinical responses in NSCLC patients for each sec-
ondary/tertiary mutation together with the EGFR, ALK, and ROS1 
driver mutation (Figure 3). Sensitivity indices correlated well with 
clinical responses, further signifying the importance of Ba/F3 data 

for predicting drug efficacies in patients who have acquired sec-
ondary/tertiary mutations.

6  |  EXPLORATION OF SECONDARY/
TERTIARY MUTATIONS THAT CAUSE 
RESISTANCE TO EACH KINASE INHIBITOR 
USING THE BA/F3 SYSTEM

6.1  |  Shared structures between RTKs

Several important structural sites or motifs are shared among RTKs 
and include the gatekeeper site, the solvent-front site, and the xDFG 
(Asp-Phe-Gly) motif (Figure 2B,C). The gatekeeper site is in the in-
nermost part of the ATP-binding pocket, and this single amino acid 
determines the shape of the hydrophobic pocket. A secondary mu-
tation at this site will cause TKI resistance by sterically blocking the 
binding of TKIs and/or by increasing ATP affinity and reducing the 
potency of ATP-competitive TKIs. Epidermal growth factor recep-
tor T790M (the most frequent secondary mutation after 1G or 2G 
EGFR-TKI treatment) and ALK L1196M are two well-known gate-
keeper mutations.

The solvent front is a hydrophilic amino acid (often glycine) at 
the entrance of the ATP binding pocket, by which multiple TKIs must 
pass to enter the pocket. Therefore, structural changes at this site 
will inhibit TKI binding. Secondary mutations (often glycine to argi-
nine) at this position occur frequently in fusion gene-derived driver 
proteins, such as those involving ALK, ROS1, and NTRK, and result 
in narrowing of the entrance.

The xDFG motif, which is the initiation point of the activation 
segment of RTKs, adopts an “in” conformation in catalytically active 
kinases, where the motif is flipped outward at kinase inactivation. 
Although the xDFG motif is well conserved, secondary mutations 
at the Asp-Phe-Gly site have not been reported in either Ba/F3 
models or clinical specimens. Some secondary mutations have 
been reported at the “x” position in clinical samples and/or Ba/F3 
experiments in EGFR-, ALK-, and NTRK-driven NSCLCs. Considering 
the homology between RTKs is sometimes helpful to understand 

F I G U R E  2  Correlations between resistance mutations identified in clinical specimens and those found in Ba/F3 models. A, The Venn 
diagrams indicate the numbers of residues in which resistance mutations were reproducibly identified in clinical specimens from non-
small-cell lung cancer patients and/or Ba/F3 models. B, Structural models of the receptor tyrosine kinase (RTK) drug binding pocket and 
one of the molecular targeted drugs for each RTK. The residues in which resistance mutations were identified in both patients and Ba/F3 
models, only in patients, and only in Ba/F3 models are colored in green, blue, and yellow, respectively. Gatekeeper residues, solvent front 
residues, and the “x” residue of xDFG motif are colored in pink, red, and orange, respectively. C, Locations of residues in which resistance 
mutations were identified either in patients or in Ba/F3 models are summarized. The color codes are identical to those described in Figure 
2B. The residues described here but not in Figure 2C are not located in the surface of the protein or not located in the drug binding area. D, 
Patterns of base substitutions identified in our recent studies19-21 that used Ba/F3 models and N-ethyl-N-nitrosourea (ENU) mutagenesis. 
Secondary mutation data are from following references:: EGFR mutation6,16,28-30,32,36,39-43,97-109, ALK fusion45-49,51,53-57,110-117, ROS1 
fusion17,53,59,63,64,118-123, RET fusion69,70,124-126, NTRK fusion73,75,76,127, and MET exon 14 skipping20,21,81,83–86,88,89,95,128-132. *In RET and NTRK 
fusions, the resistance mutations that emerged in other type of cancers are also included. **In NTRK fusion and MET exon 14 skipping 
mutation, the resistance mutations that emerged against unapproved drugs are also included. Protein Database IDs: EGFR_osimertinib, 
6JWL; ALK_alectinib, 3AOX; ROS1_crizotinib, 3ZBF; RET_selparcatinib, 7JU6; TRKA_entrectinib, 5KVT; MET_tepotinib, 4XMO
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resistance mutations and explore effective TKIs that might over-
come drug resistance.

6.2  |  EGFR mutations

6.2.1  |  EGFR secondary mutations that confer 
resistance to 1G or 2G EGFR-TKIs

EGFR mutations are one of the most frequent driver mutations in 
lung adenocarcinomas and are present in approximately 17% of 
Caucasians26 and 40% of East Asian27 patients. In clinical practice, the 
secondary T790M (gatekeeper) mutation is the most frequent mech-
anism (~50%) of acquired resistance to 1G or 2G EGFR-TKIs, although 
very rare secondary mutations, such as L747S,28 D761Y,29 or T854A 
(xDFG motif),30 have also been reported.7,31 Similar to clinical obser-
vations, several groups have reported the emergence of the T790M 
secondary mutation in Ba/F3 models after 1G or 2G EGFR-TKI treat-
ment.19,32 In addition, emergence of rare secondary mutations, such 
as C797S (afatinib/dacomitinib),19 L792H/F (afatinib),19,32 or T854A 
(afatinib),19 have been reported in Ba/F3 models (Figure 2B,C).

6.2.2  |  EGFR secondary/tertiary mutations that 
confer resistance to osimertinib

Osimertinib, a 3G irreversible EGFR-TKI, is used either as a front-line 
treatment or a second-line treatment if 1G or 2G EGFR-TKI therapy 
fails because of the development of a T790M secondary mutation. 

In the front-line setting, secondary EGFR mutation, including C797S, 
L718Q, G724S, or S768I, were identified in only 6%–10% of plasma 
samples obtained from NSCLC patients after disease progression, 
while bypass pathway activation or SCLC transformation were more 
common.33,34 L718Q and L718V mutations were also identified in 
tissue biopsy samples after acquisition of resistance to front-line osi-
mertinib treatment.35 In Ba/F3 cells, C797S was the only secondary 
mutation that was identified after first-line osimertinib treatment 
model thus far.32 We and others have observed that 1G EGFR-TKIs 
are active against the C797S mutated cells, which has been con-
firmed in the clinical setting.36

After second- or later-line osimertinib treatment of lung cancer 
patients with secondary T790M mutation, the acquisition of ter-
tiary mutations is relatively frequent (10%–26%).34,37 Tertiary mu-
tations found in clinical samples included L718Q, M766Q, L792X, 
G796X (solvent front), C797X, and exon 20 insertion mutations 
(Figure 2B,C).38-42 Ba/F3 cells were widely used to validate the roles 
of these tertiary mutations (Figure 1A).41,43

Table S2 summarizes the IC50 values of erlotinib, gefitinib, af-
atinib, dacomitinib, osimertinib, and brigatinib in Ba/F3 cells with 
secondary/tertiary EGFR gene mutations. In addition, the mutations 
identified in EGFR-TKI refractory patients and/or Ba/F3 models are 
illustrated in Figure 2B,C.

6.3  |  ALK secondary/tertiary mutations

ALK fusions are identified in approximately 3%–4% of NSCLC patients 
with a prevalence in young never-smokers with adenocarcinoma.44 

F I G U R E  3  Correlations between clinical efficacy of tyrosine kinase inhibitors (TKIs) and sensitivity index using Ba/F3 cells. Clinical 
efficacies of EGFR, ALK, or ROS1-TKIs in anecdotal cases with secondary or tertiary mutations are summarized. Patient data without RECIST 
were not included. For secondary mutations with inconsistent clinical responses, the color code was based on the responses of all patients 
and determined after discussion among the authors. *Sensitivity index (SI) values for Ba/F3 cells (IC50 values × 100/Ctrough in clinical trials) 
with the respective secondary or tertiary mutations are summarized to show the correlations between clinical efficacy and data generated 
with Ba/F3 models. The measured SI values were color coded as follows: ≤1.50, green; 1.50–5.00, yellow; and >5.00, red. NA, not available; 
PD, progressive disease; PR, partial response; RR, response rate; SD, stable disease
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Several ALK-targeting TKIs, including crizotinib (1G), alectinib (2G), 
ceritinib (2G), brigatinib (2G), and lorlatinib (3G), are currently used in 
clinical practice. Because crizotinib was the first ALK-TKI developed, 
many of the reports regarding acquired resistance mutations after 
ALK-TKI treatment are for crizotinib or sequential treatment with 2G 
or 3G TKIs after initial crizotinib therapy.

In a large systematic analysis of resistance mechanisms to crizo-
tinib and 2G ALK TKIs, secondary mutations were identified in 20% 
(11/55) of crizotinib, 54% (13/24) of ceritinib, and 53% (9/17) of 
alectinib refractory tumors.45 As shown in Figure 2B,C, various sec-
ondary mutations have been reported in clinical samples after crizo-
tinib treatment, including the first reported L1196M (gatekeeper) 
and C1156Y mutations46 and L1151Tins, L1152R, G1202R (sol-
vent front), S1206Y, and G1269A (xDFG motif) mutations that fol-
lowed.47-49 The G1202R solvent front mutation causes resistance to 
both of alectinib and ceritinib, in addition, I1171N/S/T or F1174C/L 
mutations were reported to cause alectinib resistance or ceritinib 
resistance, respectively.45,50-55 Ba/F3 models were frequently used 
to confirm these clinical findings.45,51,52,54

Lorlatinib, a 3G TKI, is active against the majority of secondary 
mutations that could cause resistance to 1G or 2G TKIs, including 
G1202R.45,56 However, clinical use of lorlatinib after treatment fail-
ure of 1G and/or 2G ALK-TKIs, resulted in the emergence of tertiary 
mutations.45,54,56 Among these tertiary mutations, ALK L1198F was 
detected in a patient who developed acquired resistance to lorlatinib 

after previously developing a secondary C1156Y mutation against 
front-line crizotinib. Interestingly, the lorlatinib-resistant tumor 
(EML4-ALK/C1156Y/L1198F) responded to crizotinib again.57 In 
vitro experiments using Ba/F3 cells supported this clinical phenom-
enon; L1198F mutant and C1156Y/L1198F mutant cells were both 
sensitive to crizotinib but C1156Y mutant cells were not.45,57 In 
addition, ENU mutagenesis screening of Ba/F3 cells identified clin-
ically meaningful tertiary mutations; for example, L1196M/G1202R 
mutations established in Ba/F3 models were also identified in pa-
tients who received lorlatinib or brigatinib after crizotinib treatment 
failure.56,58 Mutations identified in ALK-TKI refractory patients and/
or Ba/F3 models are illustrated in Figure 2B,C. We summarized the 
IC50 data for ALK-TKIs using Ba/F3 cells with secondary or tertiary 
mutations in Figure 4 (detailed IC50 values are presented in Table S3).

6.4  |  ROS1 secondary/tertiary mutations

ROS1 fusions are found in 1%–2% of NSCLC patients and occur 
preferentially in young lung adenocarcinoma patients without a 
smoking history. Crizotinib, entrectinib, ceritinib, and lorlatinib are 
currently available for NSCLC patients with ROS1 fusions in the 
United States. As observed for ALK rearrangement, the majority of 
reported data on acquired resistance mechanisms in ROS1-positive 
NSCLC patients are for crizotinib treatment. A case series reported 

F I G U R E  4  The IC50 values of Ba/F3 
cells harboring the EML4/ALK fusion plus 
resistance mutations for each anaplastic 
lymphoma kinase (ALK)-tyrosine kinase 
inhibitor (TKI). IC50 values for each ALK-
TKI in Ba/F3 cells harboring the EML4/
ALK fusion gene with secondary/tertiary 
mutations. Each plot indicates the average 
value of the IC50 described in each 
manuscript reviewed

(A)

(B)

Pa
re

nt
al

 c
el

ls
I1

17
1N

/F
11

74
I

I1
17

1N
/F

11
74

L
I1

17
1N

/L
11

96
M

I1
17

1N
/L

11
98

F
I1

17
1N

/L
11

98
H

I1
17

1N
/L

12
56

F
I1

17
1N

/G
12

69
A

I1
17

1S
/G

12
69

A
L1

19
6M

/L
11

98
F

G
12

02
R

/L
11

96
M

G
12

02
R

/F
11

74
C

G
12

02
R

/F
11

74
L

G
12

02
R

/L
11

98
F

G
12

02
R

/G
12

69
A

D
12

03
N

+F
11

74
C

D
12

03
N

+E
12

10
K

D
12

03
N

/L
11

96
M

D
12

03
N

/F
12

45
V

10-1

100

101

102

103

104

IC
50

  (
nM

) Crizotinib
Alectinib
Ceritinib
Brigatinib
Lorlatinib
Entrectinib
Gilteritinib

Pa
re

nt
al

 c
el

ls
L1

15
1T

in
s

T1
15

1K
L1

15
2V

C
11

56
Y

I1
17

1N
I1

17
1S

I1
17

1T
F1

17
4C

F1
17

4I
F1

17
4V

V1
18

0L
L1

19
6M

L1
19

6Q
L1

19
8F

G
12

02
R

G
12

02
de

l
D

12
03

N
S1

20
6Y

S1
20

6R
E1

21
0K

F1
24

5C
F1

24
5V

L1
25

6F
G

12
69

A
G

12
69

S

10-1

100

101

102

103

104

IC
50

  (
nM

) Crizotinib
Alectinib
Ceritinib
Brigatinib
Lorlatinib
Entrectinib
Gilteritinib



822  |    KOGA et al.

that secondary ROS1 mutations were detected in 38% (16/42)-53% 
(9/16) of crizotinib-resistant specimens,59,60 and G2032R (solvent 
front), D2033N, S1986F, and L2026M (gatekeeper) mutations were 
the exact secondary mutations.59,61

Ba/F3 models have also been used to identify secondary mu-
tations that may confer resistance to ROS1-TKIs. Several groups 
have carried out ENU mutagenesis screening with crizotinib and 
ceritinib in Ba/F3 cells containing a CD74-ROS1 fusion and identi-
fied several secondary mutations, including G2032R, D2033N, and 
L2026M (Figure 2B,C).17,62 Furthermore, these studies showed that 
the D2033N, but not G2032R, mutation could be overcome by lor-
latinib treatment (Table S4). ROS1 mutations have been identified 
in 46% (13/28) of lorlatinib/crizotinib-resistant patients and include 
G2032R, L2086F, G2032R/L2086F, S2032R/L2086F/S1986F, and 
S1986F/L2000V mutations.59

Based on the homology between ROS1 and ALK kinase domains, 
several groups proposed that certain TKIs may overcome ROS1 
secondary mutations and confirmed their hypothesis using Ba/F3 
models. For example, the ROS1 S1986Y/F is homologous to the ALK 
C1156 mutation, which is sensitive to lorlatinib, and lorlatinib over-
comes crizotinib/ceritinib-resistance conferred by ROS1 S1986Y/F 
mutations.63 The ROS1 L2026M crizotinib-resistant mutation is lo-
cated at the gatekeeper position (homologous to ALK L1196M), and 
Ba/F3 cells with a CD74-ROS1 fusion plus L2026M mutation are sen-
sitive to ceritinib, which is similar to Ba/F3 cells with an EML4-ALK 
fusion plus L1196M (gatekeeper) mutation.51 In addition to these 
ROS1/ALK TKIs, experiments using Ba/F3 models have shown that 
repotrectinib (a ROS1/TRKA-C/ALK inhibitor),64,65 DS-6051b (next 
generation ROS1/NTRK inhibitor),66 or cabozantinib (a multikinase 
TKI)17,62,67 have potent activity against crizotinib-resistant cells with 
ROS1 mutations, including G2032R. The IC50 values of ROS1-TKIs 
in Ba/F3 cells with secondary/tertiary mutations are summarized in 
Table S4.

6.5  |  RET secondary mutations

RET fusions are rare driver mutations that are present in less than 
0.9% of NSCLCs.68 The RET-specific TKIs selpercatinib and pral-
setinib have been approved in the United States, and the former was 
recently approved in Japan (Table S1). Because of the rarity of RET 
fusions in NSCLCs, the incidence of secondary mutations resulting in 
acquired resistance to RET-TKIs is currently unclear. In the analyses 
of selpercatinib- or pralsetinib-resistant patients with RET fusions 
(NSCLC or medullary thyroid cancer), several secondary mutations 
have been reported (Figure 2B,C). Acquired G810R/S/C/V solvent 
front mutations were detected by plasma cell-free tumor DNA anal-
ysis in an NSCLC patient with a KIF5B-RET fusion who progressed 
after selpercatinib treatment.69 The RET G810C secondary mutation 
was also identified in an NSCLC patient with a CCDC6-RET fusion 
who acquired resistance to selpercatinib, and this finding was sup-
ported by Ba/F3 cell experiments. The IC50 values for selpercatinib 
or pralsetinib in Ba/F3 cells harboring KIF5B-RET plus G810S/C/R 

were 42- to 334-fold higher than Ba/F3 cells with only the KIF5B-RET 
fusion.70 TPX-0046, a next-generation RET/SRC inhibitor, showed a 
much lower IC50 value than selpercatinib in G810R-positive Ba/F3 
cells. The phase I/II clinical trial investigating the use of TPX-0046 
for RET-altered NSCLC and medullary thyroid cancer is currently on-
going (NCT04161391).

6.6  | NTRK secondary mutations

NTRK includes NTRK1, NTRK2, and NTRK3 that encode TRKA, TRKB, 
and TRKC proteins, respectively. NTRK fusions are detected in vari-
ous type of cancers, including secretory breast carcinoma, mammary 
analogue secretary carcinoma, congenital mesoblastic nephroma, 
and infantile fibrosarcoma.71 In NSCLC, the frequency of NTRK fu-
sions is reported to be less than 1%.72 In phase I/II trials of solid tu-
mors harboring NTRK fusions, including NSCLCs, both larotrectinib 
and entrectinib showed significant responses (Table S1).73,74

As resistant mechanisms, NTRK1 G595R (solvent front) and 
G667S (xDFG motif) mutations were detected in a TPR-NTRK1 
fusion-positive lung cancer patient who acquired resistance to laro-
trectinib (Figure 2B,C).73 Ba/F3 models harboring a TPM3-NTRK1 
fusion plus G667C or G595R mutation were used to explore TKIs 
that can overcome these secondary mutations. Nintedanib, pona-
tinib, cabozantinib, and foretinib were active against cells with the 
G667C mutation but inactive against cells with the G595R muta-
tion.75 Selitrectinib (LOXO-195), TPX-0005, and ONO5390556 
have shown potent activity in preclinical models of NRTK1 G595R 
or G667C mutations.71,76 In a clinical trial, selitrectinib showed a 
45% (9/20) objective response rate in TRK fusion-positive patients 
with solid tumors who had been treated with more than one TRK 
inhibitor.77

6.7  | MET secondary mutations

The MET exon 14 skipping mutation is a driver mutation detectable 
in approximately 4% and 20% of patients with lung adenocarcinoma 
and pleomorphic carcinoma, respectively.78,79 Several types of MET-
TKIs have been developed: type I inhibitors (crizotinib, capmatinib, 
tepotinib, savolitinib) that bind the active form of MET, and type II 
inhibitors (merestinib, glesatinib, cabozantinib) that bind the inactive 
form of MET.80 Among these MET-TKIs, tepotinib and capmatinib 
have been approved for clinical use in the United States and Japan.

In the analysis of 20 patients who were treated with MET-TKIs, 
on-target and off-target resistance was identified in 35% and 45% 
of patients, respectively.81 Among patients with on-target ac-
quired resistance to crizotinib, various secondary mutations were 
identified, including G1163R (solvent front), L1195V, F1200I, 
D1228N/H/A, and Y1230C/. 81-86 It is noteworthy that several 
secondary mutations can emerge simultaneously after crizotinib 
treatment. For example, two NSCLC patients each developed four 
missense mutations simultaneously after crizotinib treatment: 



    | 823KOGA et al.

(i) G1163R, D1228H, D1228A, and Y1230H, and (ii) G1163R, 
D1228N, Y1230H, and 1230S.85,87 In NSCLC patients with ac-
quired resistance to capmatinib, D1228N/Y mutations have been 
repeatedly reported.81,88

Using a Ba/F3 model with MET exon 14 skipping, we compre-
hensively examined secondary mutations that could cause MET-TKI 
resistance using various type I and II MET-TKIs.20 D1228 and Y1230 
mutations frequently occurred after type I MET-TKI exposure, and 
L1195 and F1200 mutations tended to emerge after type II MET-
TKI treatment. Therefore, from Ba/F3 experiments and clinical ob-
servations, it is reasonable to suggest that sequential use of type 
II MET-TKIs might overcome secondary mutations caused by type I 
MET-TKIs and vice versa.20,89

6.8  |  KRAS secondary mutations

KRAS mutations are present in approximately 15%–25% of NSCLC 
patients.90,91 Recently, two covalent inhibitors, sotorasib and adag-
rasib, have shown potent clinical activity against cells with the KRAS 
G12C mutation, which accounts for approximately 40% of all KRAS 
mutations in NSCLCs.92-94 Sotorasib was approved for clinical use in 
the United States in May 2021 (Table S1).

To identify mechanisms of on-target resistance to KRAS G12C 
inhibitors, we undertook ENU mutagenesis using the Ba/F3 model.21 
KRAS Y96D/S mutations induced acquired resistance to both so-
torasib and adagrasib.21 Other KRAS secondary mutations, such 
as G13D, A59S/T, Q61L, and R68M/S were also detected. A KRAS 
Y96D mutation was also detected in a liquid biopsy of an NSCLC 
patient who acquired resistance to adagrasib, which was validated 
as the refractory mutation using the Ba/F3 model.95 Furthermore, 
acquired KRAS mutations after adagrasib monotherapy, including 
G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, and Y96C, were de-
tected in the analysis of 27 patients with NSCLC, 10 with colorectal 
cancer, and one with appendiceal cancer who achieved tumor re-
duction, in addition to EGFR or MET amplification and other MAPK 
kinase gene mutations.96 The Ba/F3 model was used in this study to 
comprehensively validate the sensitivity of KRAS mutations to KRAS 
G12C inhibitors.96

7  |  CONCLUSIONS

The development and approvals of targeted drugs have improved 
treatment outcomes of patients with NSCLC harboring driver mu-
tations. This progress in oncology is encouraging; however, mech-
anistic analyses of acquired resistance to these targeted drugs is 
necessary to further improve patient outcomes. As described in 
this review, the Ba/F3 cell model is useful to validate the oncogenic 
roles of these mutations. Furthermore, exploratory studies using 
Ba/F3 cells with ENU mutagenesis will be beneficial to comprehen-
sively detect mutations that could promote resistance to targeted 
drugs.
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