
sensors

Article

Homography Ranking Based on Multiple Groups of
Point Correspondences
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Abstract: Homography mapping is often exploited to remove perspective distortion in images and
can be estimated using point correspondences of a known object (marker). We focus on scenarios
with multiple markers placed on the same plane if their relative positions in the world are unknown,
causing an indeterminate point correspondence. Existing approaches may only estimate an isolated
homography for each marker and cannot determine which homography achieves the best reprojection
over the entire image. We thus propose a method to rank isolated homographies obtained from
multiple distinct markers to select the best homography. This method extends existing approaches in
the post-processing stage, provided that the point correspondences are available and that the markers
differ only by similarity transformation after rectification. We demonstrate the robustness of our
method using a synthetic dataset and show an approximately 60% relative improvement over the
random selection strategy based on the homography estimation from the OpenCV library.

Keywords: homography matrix; many-to-one point correspondence; perspective distortion; ranking
method; bird’s-eye view

1. Introduction

Homography is a perspective projection of a plane from one camera view into a
different camera view. The perspective projection maps points from a 3D world onto
a 2D image plane along lines that emanate from a single point [1,2]. This projection is
performed by a 3× 3 invertible transformation matrix called the homography matrix (or
just homography) with eight degrees of freedom (DoF). In the pinhole camera model, any
two images of the same planar surface are related to each other by the homography [3,4].
Homography is commonly used for the rectification of text document images by generating
a fronto-parallel view [5,6], image stitching [7,8], video stabilization [9], extracting metric
information from 2D images [10], and pose estimation [11] and for various traffic-related
applications, e.g., ground-plane detection [12] and bird’s-eye view projection [13].

Homography estimation is essential for image registration, i.e., a process of image
matching and transformation of two or more different images [14]. It can be addressed
either on the pixel or feature levels. In our work, we focus on feature-based approaches that
utilize only a subset of pixels. A common approach to estimating the homography is to use a
set of at least four 2D point correspondences [4]. We refer to the points used for establishing
the 2D point correspondences as keypoints. These keypoints may belong to a marker, which
is an object with a known shape that is either naturally occurring or artificially positioned
in the scene. A regular pattern such as a chessboard is usually utilized [15]. A single
marker is identified in the image by multiple independent keypoints that have a direct
correspondence to its real shape, thus making a group of point correspondences. However,
these correspondences are often noisy and they can introduce errors in the homography
estimation. Although four keypoints are satisfactory, often a greater number of keypoints
is used, allowing us to use optimization to minimize a suitable cost function [16,17]. Then,
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outlier removal becomes an important step, and algorithms such as RANSAC [18] are
usually employed [16].

Assume the presence of a sole marker at the scene. Even though the marker is
distorted under perspective, the knowledge of its real shape makes it possible to compute
the homography. When multiple copies of the same marker are visible but their positions
in the world are unknown, the knowledge of the shape is not enough to incorporate
all of the keypoints in the estimation. In the absence of position information, existing
approaches for homography estimation based on point correspondences fail because the
projection has to preserve the proportional positions. Thus, estimating the homography
without knowing the ground-truth layout of the keypoints up to an arbitrary scale does
not guarantee the correct result. Under the aforementioned constraints, existing methods
can only generate an isolated homography for each marker based on the one-to-one point
correspondence (see Figure 1). Each homography may be affected by different sources of
noise, e.g., low resolution, blur, or keypoint detection. Thus, the outcome of rectification
may vary. Additionally, in many practical applications, a single marker usually covers a
small portion of the image, which increases susceptibility to noise. The trivial solution
would be to use a bigger marker that covers the majority of the estimated plane in the
image. However, this solution is often impractical. Furthermore, it is not possible to simply
“merge” multiple isolated homographies together.

?
Random
marker
selection

?

Homography
estimation

Image rectification
based on one-to-one
point correspondence

Existing homography estimation methods

Proposed homography ranking method

Select each marker
as a reference marker

Homography
estimation

Homography
estimation

Homography
estimation

Proposed
homography ranking

method

Image rectification based on
many-to-one point correspondence

Figure 1. The difference between existing homography estimation methods and the proposed
homography ranking method. In the presence of multiple markers without information about their
relative positions in the world, existing approaches can only estimate isolated homographies without
the ability to select the best one. Our method extends existing approaches by exploiting multiple
markers to rank the isolated homographies.

In this paper, we focus on exploiting information from multiple markers, i.e., multiple
groups of point correspondences. We assume that the markers are placed on the same
plane in the world over which we want to acquire the bird’s-eye view. We thus propose a
homography ranking method that can incorporate information about multiple markers to
select homography with the potentially minimal reprojection error. Therefore, the problem
lies in determining which homography potentially achieves the best reprojection accuracy
over the entire image. The proposed ranking method allows us to systematically select
the best homography according to our score function when multiple choices are available.
The outcome of our algorithm may serve as a recommendation for homography selection.
We emphasize that we are not concerned with homography estimation itself. We only
require point correspondences. Our algorithm can be implemented as an extension to
existing approaches to sort a set of already estimated homographies according to their
potential reprojection accuracy. We sidestep the need for the position information by
constraining the markers’ shape. We assume that the markers in the world, while placed
on the same plane, differ only in translation, rotation, and uniform scaling, i.e., a similarity
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transformation exists between them when viewed without perspective (see Section 3.1).
The proposed method ranks homographies using our score function that computes a single
value for each transformation matrix (see Section 3.2). The score value is used as a proxy to
measure the reprojection “quality” of a specific homography over the whole image.

This work was motivated by a real-world application of generating a bird’s-eye view
over a road from a video recording when we could not use a large marker to cover a
sufficient portion of the road. Homography estimation based on a single small marker
was inaccurate. Therefore, we tried to use multiple small markers and to measure their
relative positions. However, their position measurements were highly noisy at best. Thus,
the proposed method was used instead. Our method can also be adopted in a situation
when a marker placed at various positions on the same planar surface is visible at different
frames using a static camera. Stacking the frames onto each other yields a view with
multiple markers.

Due to the exploitation of similarity transformations, the limitation of our approach is
that it can only handle the projection from a distorted to the undistorted view of the target
plane, not between various projective perspectives of the same plane. Therefore, it serves
the removal of perspective distortion.

The experiments showed that the proposed method could systematically improve
reprojection error by selecting the best homography according to our score function. We
quantified the relative improvement in terms of reprojection accuracy ratio between the
systematic homography selection and the baseline random selection. We used a random
selection because the existing methods could not compare the “quality” of individual
homographies and were therefore left with a random selection or some subjective rules.
In practice, random selection would often be replaced by an educated guess. Without the
loss of generality, the homographies in our tests were estimated using the implementation
from the OpenCV [19] library. Thus, the main contribution of our work is as follows:

• The proposed method ranks (sorts) multiple homographies corresponding to individ-
ual markers placed on the same plane to select the “best” homography for rectification.
Our method handles the absence of position information between markers in the
world and builds on top of many-to-one point correspondences. The algorithm is
an extension of existing methods since it works with already estimated homography
matrices and does not alter them. This easy-to-implement extension is efficient, with a
quadratic algorithmic complexity in the number of markers, which is usually very low.

The rest of the paper is organized as follows. The upcoming Section 2 contains an
overview of related work. Then, in Section 3, we describe our proposed method. Section 4 is
devoted to experiments and their evaluation. We summarize our conclusions in Section 5.

2. Related Work

To the best of our knowledge, there is no work related to the same narrow use case of
homography transformation as what we deal with. In principle, our method can extend
any homography estimation approach that satisfies the requirements. Therefore, in this
section, we dissect various ways to estimate homographies and other works in which
techniques that intersect with ours were employed.

2.1. Single Homography Estimation

Homography can be estimated using at least four point correspondences [3]. However,
for this task, linear methods are sensitive to noise even if there are no outliers. To this
end, many pre-processing steps have been developed. For example, normalizing each
point set by translating the center of mass to the origin and by scaling appropriately [4].
Our goal is to tackle situations where point correspondences contain noise and thus
outliers [20]. We mention markers as a demonstration of point correspondence. A paper
that builds on fiducial markers and further homography refining is [21]. The authors
discuss square and circular markers and propose a method to make extra adjustments to
the initial homography estimate using point correspondences. Although we only focus
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on point correspondences, it is not the only way to identify a relationship between the
observed marker and its ground-truth shape. For instance, circular markers pose new
possibilities (e.g., the exploitation of vanishing lines) as well as challenges (e.g., ambiguity)
for homography estimation. For a more detailed discussion, see [11].

If the system of equations formed by the point correspondences is overdetermined,
then methods such as RANSAC [18] are used to separate inliers from outliers. Zhu et al. [22]
developed an efficient algorithm to estimate the homography based on order-preserving
constraints. In specific use cases, it is faster than RANSAC. As shown in [17], optimization-
based approaches perform well with a large number of outliers.

Jawahar et al. [23] used object contours instead of point correspondences for ho-
mography estimation. Their algorithm started from affine transformation and iteratively
advanced towards homography. We incorporate affine (similarity) transformations in
our computations as well, but no iterative refining is involved. Chen et al. [24] proposed
an iterative approach for homography estimation using point correspondences. Their
contribution was to adopt a more reliable nonlinear geometric error rather than just an
algebraic error. A thorough discussion of various computations of errors for homographies,
including the geometric error, can be found in [25]. We employed the geometric error, too
(see Section 3.2). Likewise, Li et al. [26] measured the reprojection error using the l2-norm
and showed that it is suitable for homography estimation.

Our core idea of assessing the quality of a homography matrix in terms of removing
perspective distortion consists of measuring how accurately multiple objects with known
shapes align with the expected shape after rectification. Song et al. [27] proposed a homog-
raphy matrix evaluation method based on a geometric approach to increase the accuracy of
aerial image matching. They assessed the transformation accuracy of a given homography
by examining the shape of a transformed quadrangle. They matched the reference aerial
image with the sensed image by iteratively refining the homography governed by the
evaluation procedure. We do not have a reference image since we build on top of the
reference object instead. One way to identify degenerate homographies is to compute the
determinant or the condition number of the matrix [28]. Thus, the matrices can be assessed
in terms of their “quality”, which is the purpose of our work. We exploited this property in
one of our experiments concerning a homography optimization procedure we developed.
See Appendix A for more details.

2.2. Multiple Homography Estimation

Bose et al. [29] presented a technique for a full affine and metric rectification of the
ground plane by tracking moving objects. Their work is similar to ours in the exploitation
of multiple instances of the same object at various places and the measurement of its
properties. They estimated vanishing points based on non-parallel object trajectories to
obtain the projective transformation and then used other geometric clues to deduce the
affinity. On the other hand, several works use multiple planes to estimate a homography
or to directly utilize multiple homographies.

A common strategy is to introduce additional constraints. In our work, we focus on
one plane only with multiple already estimated homographies. Our constraints are related
to similarity transformations. Taking advantage of multiple views of several planar sur-
faces may improve the single homography estimation since isolated plane homographies
are compatible unless noise is present. In such a case, denoising constraints have to be
introduced [30]. The work of [31] inspired [32] to tackle planar mapping and tracking by
exploiting multiple frames and plane-induced homographies between them. Their system
used nonlinear optimization. Chojnacki et al. [33] estimated multiple homographies linked
together by consistency constraints. They estimated a set of homography matrices induced
by multiple planes in the 3D scene between two views. Ruiz et al. [31] remarked that
geometric constraints among multiple views could be used to recover a projective transfor-
mation. They proposed a simple 2D optimization method for the metric rectification of a
single plane from several perspective images. In their setting, the camera(s) moved and a
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single object of interest was stationary. We either utilize a single moving object or multiple
similar stationary objects in the scene under the assumption of being placed on the same
planar surface.

Park et al. [34] proposed a panorama stitching method based on multiple frames
using homography under the assumption of a static camera. The goal was to suppress
the incorrect feature point extraction caused by time-varying noise to find the proper
alignment parameters by estimating multiple homographies during a predetermined time
intervals. To evaluate the accuracy, they employed metrics based on alignment distortion
measurement. Cui [35] also highlighted the importance of homography to the segmentation
of moving objects. Their proposed method allowed for using static and moving cameras
by exploiting constraints based on multiple overlapped homographies.

Fraundorfer et al. [36] proposed a method that could recover scene planes of arbitrary
position and orientation using multiple homographies and point correspondences. They
employed iterative refining of the plane-induced homographies. We adopted a similar
approach for evaluation. The authors also created a synthetic dataset with artificial fiducial
markers in the scene. DeTone et al. [37] and Zhu et al. [22] adopted similar approaches to
generate the synthetic homography-related dataset, too.

2.3. Deep Learning-Based Approaches

Some recent approaches make use of deep learning. In [37], they trained a neural
network in a supervised manner to estimate the homography, whereas in [38], the homog-
raphy was estimated from context using unsupervised learning. Deep learning favors use
cases that pose a challenge for traditional approaches, e.g., dynamic scenes. Le et al. [39]
proposed a deep learning-based approach to identify dynamic content in images and
to estimate homography from coarse to fine using a multi-scale neural network trained
in a multi-task fashion. They avoided iterative processes such as RANSAC. They also
developed a suitable dataset as a response to the lack of available homography-related
training data. Considering content awareness, the work of Zhao et al. [40] showed that deep
learning boosts image stitching if the loss function considers image content. Homography
estimation using deep learning was exploited in [41] to improve foreground segmentation.
The majority of deep learning-based approaches still rely on four point correspondences.
However, still, emerging works that estimate the homography directly instead of explicitly
harnessing point correspondences show promising results, for instance [42].

3. Proposed Method
3.1. Preliminaries

A marker is an object with a known, easy-to-detect shape. This object either naturally
occurs or is artificially placed on the planar surface of the scene we want to produce a
bird’s-eye view for, i.e., to remove perspective distortion. The marker contains keypoints,
a set of distinct, independent, visual feature points, e.g., corners. Thechosen keypoints
visible in the perspectively deformed image are called the warped keypoints. The set
of the rectified keypoints in the desired image (not subjected to perspective distortion)
is produced from the warped keypoints using the homography projection. The point
correspondence is a relationship between the warped and the target keypoints, and it is
used for homography estimation. Ideally, the rectified keypoints match the target keypoints.
See Figure 2 for details.

The goal of homography estimation is to find the 3× 3 homography matrix

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (1)

with 8 DoF [4]. A single vector uT =
[
ux, uy, 1

]
, representing a warped keypoint in

homogeneous coordinates, is mapped onto the rectified keypoint ũT =
[
ũx, ũy, 1

]
by the

homography H using the transformation sũ ≈ Hu, with s being the scale factor.
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Figure 2. Visualization of relationships in our established terminology. The diagram also shows
the hierarchical dependence of individual terms. Dotted elements represent processes with arrows
denoting their input and output.

Without stating otherwise, a similarity transformation denotes a limited affine trans-
formation with 4 DoF consisting of translation, rotation, and uniform scaling (Equation (5)). Let
K1 and K2 be sets of feature keypoints belonging to objects O1 and O2. We say that objects
O1 and O2 are similar if there exists a similarity transformation ψ such that K1 = ψ(K2)
and K2 = ψ−1(K1). For example, O1 and O2 may be rectangles of different sizes but with
an identical aspect ratio.

Let m be the number of markers and k be the number of keypoints of each marker.
Each ith marker is described by a 3× k matrix W(i) containing its warped keypoints as

W(i) =

x(i)1 x(i)2 . . . x(i)k
y(i)1 y(i)2 . . . y(i)k
1 1 . . . 1

, i = 1, . . . , m. (2)

The target keypoints are specified analogically by the 3 × k matrix T. Only one
specification is sufficient due to many-to-one correspondence. The ordering of keypoints
needs to match the warped keypoints defined above. Thus,

T =

x̃1 x̃2 . . . x̃k
ỹ1 ỹ2 . . . ỹk
1 1 . . . 1

, (3)

with the point correspondence being

x(i)j ' x̃j, y(i)j ' ỹj, i = 1, . . . , m, j = 1, . . . , k. (4)

3.2. Homography Ranking Algorithm

Our method utilizes multiple similar markers (see Figure 3). The input is point corre-
spondences and homographies estimated for each marker. Each marker is selected exactly
once as a reference marker. All remaining markers are in the role of auxiliary markers.
The reference marker’s homography is used to perform the perspective transformation to
rectify all markers. To rank which reference markers’ homography yields the best repro-
jection, we exploit auxiliary markers. Auxiliary markers are subsequently mapped onto
the target marker using similarity transformations (Equation (5)). We then convert the
transformed keypoints to homogeneous coordinates and measure the reprojection error as
the mean Euclidean distance between the rectified and the target keypoints (7). The aim is
to minimize this quantity. The optimal similarity matrices are just auxiliary and redundant
after the algorithm ends.
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Figure 3. A system diagram describing the general idea behind our method. (a) The input consists of
a many-to-one point correspondence specified by geometrically similar markers and information
about the shape of the target marker. (b) We assume that the isolated homographies corresponding
to each independent marker are provided on the input as well. (c) The algorithm processes each
marker by applying its homography matrix to the image to produce a rectified image. Subsequently,
it computes optimal similarity matrices corresponding to the auxiliary markers. The computation
of the score function makes use of these transformations. The obtained score values then serve for
comparison to rank (sort in ascending order) the homographies. The homography ranked first is
considered the “best” candidate for the minimal reprojection error over the entire image.

Let r be the index of the reference marker. The 3× 3 matrices describing similarity
transformations are contained in a set S =

{
S(i) | i = 1, . . . , m

}
, such that

S(i) =



1 0 0
0 1 0
0 0 1

 if i = r

[
R(i)

2×2 T(i)
2×1

01×2 1

]
if i 6= r

, (5)

for i = 1, . . . , m, where

R(i)
2×2 =

s(i) · cos
(

θ(i)
)
−s(i) · sin

(
θ(i)
)

s(i) · sin
(

θ(i)
)

s(i) · cos
(

θ(i)
) , T(i)

2×1 =

[
t(i)x

t(i)y

]
. (6)

This transformation (except for the identity) consists of 4 DoF: single rotation angle
θ(i), two x and y translation coefficients t(i)x , t(i)y , and a scale coefficient s(i). A full affine
transformation with 6 DoF would be responsible for horizontal and vertical scales, shear
and rotation, and x and y offsets [43]. The application of homography that rectifies an
image produces a frontal plane that is related to the ground-truth plane by similarity
transformation [3,44]. Thus, we do not include the shear and we only support uniform
scaling (see Appendix A.1 for explanation).

Since all of the markers share the same planar surface, any homography has to provide
a valid perspective projection, but all perspective projections are subjected to different
noise. Our goal is to quantify which homography estimation provides the best perspective
projection for the whole plane in the image. To do so, we propose a score function based
on the aforementioned constraints. The score function computes a score for individual
homographies in conjunction with estimated similarity matrices corresponding to auxiliary
markers as

F (H,S) = 1
m

m

∑
i=1

∥∥∥h
(

S(i)HW(i)
)
− T

∥∥∥
F
, (7)
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where ‖·‖F denotes the Frobenius norm. The function h(·) converts points to homogeneous
coordinates as

h

x1 x2 . . . xk
y1 y2 . . . yk
z1 z2 . . . zk

 =

x1/z1 x2/z2 . . . xk/zk
y1/z1 y2/z2 . . . yk/zk

1 1 . . . 1

. (8)

Now, we describe the proposed Algorithm 1 for homography ranking. Assume a set
of warped markers described by warped keypoints and a single target marker described
by target keypoints. These objects are linked by a many-to-one point correspondence.
Additionally, assume that homographies have been estimated for each marker in isolation.
Our algorithm ascendingly ranks the input set of all pairs

(
W(i), T

)
, i = 1, . . . , m, by how

well each ith marker preserves the target shape of all the markers in the image after
removing the perspective distortion. This objective is measured by the score function
defined in Equation (7). The algorithm evaluates all markers as candidates for the reference
marker. In each iteration, it computes optimal similarity matrices for the auxiliary markers
in the rectified plane, i.e., after applying the perspective projection induced by the current
homography. The aim is to find a homography with a minimal score. The algorithmic
complexity is quadratic in the number of markers; thus, Θ(m(m− 1) + mlog2(m)) '
Θ
(
m2).

Algorithm 1 Homography ranking.

1: H̄ ← array[m] . homographies
2: s← array[m] . scores
3: for i← 1, . . . , m do
4: H̄[i]← HOMOGRAPHY(W(i), T) . perspective
5: S̄(i) ← I3×3

6: S̄ ←
{

S̄(i)
}

. similarity matrices
7: for all j : {1, . . . , m} − {i} do
8: S̄(j) ← SIMILARITY(H̄[i] ·W(j), T)
9: S̄ ← S̄ ∪ S̄(j)

10: end for
11: s[i]← F

(
H̄[i], S̄

)
. Equation (7)

12: end for
13: ω← ARGSORT(s) . indirect sort
14: return H̄, ω

It is important to note that the two functions used in this pseudocode to compute
the homography and similarity matrices stand for arbitrary methods that produce the
required transformations.

Our score function (7) is just a proxy for the reprojection error computed over the
whole image. Since we utilize only a small subset of points from the entire image, which
may be subjected to noise, the assumption that the “best” homography is the one our
method ranks as first may not hold in every case. In very few cases, the marker that
achieves the lowest score function value does indeed reconstruct the remaining markers
the best but not the overall image. However, our experiments show that our method
consistently preserves its performance under various conditions.

4. Experiments

We evaluated the proposed homography ranking algorithm in various conditions.
We tested cases involving various similarity transformations applied to original markers
as well as noisy point correspondence, e.g., errors in marker detection since these are the
expected problems in real-world scenarios.
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4.1. Implementation Details

Our proposed algorithm can extend any homography estimation method that exploits
point correspondences. For demonstration, we adopted time-tested implementations from
the OpenCV 4.4.0 library [19]. Each homography was estimated by the findHomography()
function, which employs the DLT [45] algorithm for k = 4 and the RANSAC [18] algorithm
for k > 4, where k is the size of the point correspondences set. Each optimal similarity trans-
formation between two 2D point sets was estimated by the estimateAffinePartial2D(),
which also utilizes RANSAC for robustness. We always used default parameters.

4.2. Dataset Creation

We created a synthetic dataset to simulate the presence of markers in the scene sub-
jected to perspective distortion. Our experiments were based on a pixel-wise comparison
of the reprojection error. The synthetic dataset covered multiple setups named the test
scenarios. For each test scenario, we generated t different samples, which we refer to as
test instances. We set t = 1 000. Table 1 contains description of the generated test scenarios.
To create test instances (within test scenarios), we employed the procedures described
below (see Figure 4).

Table 1. Description of the test scenarios in our synthetic dataset with corresponding settings and results for the top-ranked
homography. One row represents one test scenario. Four visually separated groups (from top to bottom) are related to
experiments shown in Figures 6–9.

Shape Markers Transl. Rotation Scale Noise Top Relative Improvement Top Absolute Improvement
Median Mean Stdev Median Mean Stdev

square 6 no no no no 62.80% 59.63% 19.64% 0.00029 0.00030 0.00014
square 6 yes no no no 62.65% 59.00% 19.72% 0.00028 0.00029 0.00013
square 6 no yes no no 66.42% 63.17% 19.11% 0.00041 0.00043 0.00020
square 6 no no yes no 63.38% 58.51% 23.97% 0.00024 0.00025 0.00015

square 6 yes yes yes no 67.82% 63.66% 20.30% 0.00035 0.00037 0.00019
square 6 yes yes yes yes 64.11% 59.26% 22.12% 22.07813 24.31773 15.00850

5-poly 6 yes yes yes yes 74.67% 71.19% 21.98% 69.55532 336.26534 685.74274
7-poly 6 yes yes yes yes 71.02% 65.63% 22.99% 46.79390 135.65737 395.75257
9-poly 6 yes yes yes yes 68.97% 65.57% 21.98% 44.97627 115.12189 309.27201

square 3 yes yes yes yes 46.91% 41.36% 31.58% 14.77504 18.11548 20.67457
square 5 yes yes yes yes 59.03% 53.91% 24.56% 19.76285 22.53333 16.00804
square 7 yes yes yes yes 66.19% 62.41% 19.98% 23.87681 27.13637 32.28533
square 9 yes yes yes yes 69.86% 66.09% 18.18% 25.66452 26.68378 11.69754

We organized the creation of our dataset to allow for complete reproducibility of the
reported results. Thanks to the synthetic nature of our data, fixing the seed for the used
pseudo-random generator was sufficient. The source code for running the experiments is
freely available (see the online Supplementary Materials at the end).

4.2.1. Image Initialization

Each test instance was initialized as a blank 1024× 768 image. This image served for
m randomly generated copies of the same shape (marker) placed in a 3× 3 grid, where
0 < m ≤ 9. We used a uniform border with 20% size of the corresponding side to prevent
the generated shapes from reaching outside of the image. We experimented with a different
number of markers. From the set of 3× 3 possible anchors, we chose m randomly, onto
which we placed the generated markers. We also studied the effect of 3, 5, 7, and 9 out
of 9 possible markers, given that all of the similarity transformations and noise were
applied. Regarding marker shapes, we tested squares or convex, equilateral polygons
with a tight bounding box of size 100× 100 pixels (covering approximately 1.3% of the
image). However, other similar shapes could be used, too. Their centroids were evenly
distributed over the image, whilst the grid cells served as anchors. We adopted random
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generators from a uniform probability distribution. These settings represented the default
configuration. Subsequently, we applied further transformations to the generated markers
and the image.

4.2.2. Similarity Transformation

We showed the effect of similarity transformations before applying the perspective
transformation. The translation and rotation demonstrate that markers could be posi-
tioned arbitrarily in a real environment provided that they shared the same planar surface.
The change in scale showed that markers could be of different sizes.

To simulate a similarity transformation, we applied random rotation from the interval
[0, 360) degrees with the origin in the marker center. Then, we generated a random coordi-
nate shift from interval [−20, 20] pixels for translation in the x and y directions. However,
an identical translation had to be applied to the entire marker to prevent distortion. Then,
uniform scaling was performed with the origin in the marker center with a scale factor
randomly generated from the interval [0.8, 1.5]. Due to this range, a ratio of the marker to
image area ranged from 1.0% to 1.9%.

4.2.3. Perspective Distortion

We simulated a 3D rotation of an image around its center to represent a change in
perspective on the plane that contained several markers. We rotated the image around its
center in the x, y, and z axis by a random angle from interval [−20, 20] degrees to achieve
a change in perspective. The original keypoints were transformed along with the entire
image, producing the warped keypoints.

4.2.4. Noisy Point Correspondence

To simulate a noisy point correspondence, we applied a random noise (translation) to
each x and y coordinate of the warped keypoints from the interval [−2, 2] pixels. At this
stage, each keypoint was modified in isolation to achieve the distortive effect. Thanks to
the perspective deformation, the generated random shift represented different levels of
noise depending on how much the image had been warped. This step imitated errors in
the marker detection, leading to a noisy point correspondence.

4.3. Evaluation Methodology
4.3.1. Error Computation

We evaluated the accuracy of our method by measuring the reprojection error using the
Euclidean distance between the original and the rectified pixel positions. To obtain an error
over the entire image, we computed the error for each pixel. Let w and h be the width and
height of the image, respectively. The 3D rotation of a point in the image around the image
center that produces perspective distortion is represented by ϕ(·). Let gT

i,j = [j, i, 1] be the
original (ground-truth) pixel position at the ith row and jth column, and let wi,j = ϕ

(
gi,j
)

be the analogically defined warped pixel position, for i = 1, . . . , h, j = 1, . . . , w. We then
compute the 2D reprojection error grid (a h× w matrix) for the given homography H as

ξwh =

e(w1,1, g1,1) . . . e(w1,w, g1,w)
. . . . . . . . .

e(wh,1, gh,1) . . . e(wh,w, gh,w)

, (9)

where
e(w, g) = ‖Hw− g‖2. (10)

To express the reprojection error as a single number for the whole image, we adopted an
arithmetic mean of all the values in the error grid above, so

ξreproj =
1

wh

h

∑
i=1

w

∑
j=1

e
(
wi,j, gi,j

)
. (11)
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Image initialization

Marker shape definition Blank image

Markers generating

Target keypoints

Similarity transformation

Translation

Rotation

Uniform scaling

Perspective distortion

3D image rotation

Noisy point correspondence

Random keypoint translation

Original image (keypoints)

Warped image (keypoints)

Noisy keypoint positions

Figure 4. The description of how each one of the t test instances in a specific test scenario is created.
The input is a blank w× h image over which m markers are initialized in a uniform grid, which
produces the original marker keypoints. Depending on the test scenario, a particular subset of
similarity transformations is applied to the entire image. Subsequently, warped keypoints are
modified by random noise to simulate noisy point correspondence.

4.3.2. Evaluation Algorithm

On the input, we have m markers (Section 4.2) and thus an m-to-1 point correspon-
dence. Each marker provides its unique homography. Our goal is to quantify the relative
improvement in the reprojection error over the baseline when the kth ranked homography
is used for rectification. Even though we are primarily concerned only with the single, top-
performing homography, we evaluate the entire ranking to demonstrate stable behavior.

We evaluated our homography ranking in terms of reprojection error improvements
against the existing approaches based on the isolated homography estimation represented
by OpenCV [19] implementation. Since our method provides a ranking, we compare our
performance against a random marker selection based on uniform probability distribution.
We refer to this performance as the “baseline”, an unbiased marker selection. To obtain
the aforementioned baseline, we evaluated the reprojection error (11) for each marker
in isolation and computed the arithmetic mean of these values. When we executed our
proposed algorithm, we obtained the full ordering of markers by their score value computed
using the proposed criterion (7). We expected that, if the first marker is used to rectify the
image, then the reprojection error is minimal (and lower than the baseline error). If any
subsequent marker in the given order is used instead, the reprojection error increases.

We computed the relative improvement in % for each kth homography according
to the baseline performance. Each test scenario was evaluated separately. For each test
instance, we obtained a k-dimensional vector, where its elements represented percentual
improvement at each kth position. We represented our data as a t × k matrix, where t
was the number of test instances. We treated each column separately to compute the
statistics. Our evaluation algorithm is described in Algorithm 2. For simplicity, we show
an evaluation of a single instance.
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Algorithm 2 Evaluation algorithm.

1: H̄, ω← RANKHOMOGRAPHIES( ) . Algorithm 1
2: eb ← 0 . baseline
3: e← array[m] . reprojection errors
4: p← array[m] . relative improvements
5: for i← 1, . . . , m do
6: e[i]← ξreproj . Equation (11)
7: eb ← eb + e[i]
8: end for
9: eb ← eb/m . mean reprojection error

10: for i← 1, . . . , m do
11: k← ω[i] . position of i-th best homography
12: p[i]← (eb − e[k])/eb . relative improvement
13: end for
14: return p

4.4. Results

Figure 5 shows how the reprojection error varies with respect to the marker position.
We can see that the marker position can be deduced by looking at the heatmap representing
the pixel-wise reprojection error over the image. The transformation achieves the best accu-
racy in the marker neighborhood and steadily decreases for more distant pixels. However,
not all markers are subjected to the same pattern of error variation. This observation was
the core motivation for our solution. We aim to choose the marker that minimizes the
pixel-wise reprojection error within the region of the image that is as broad as possible.
That is why we evaluate our method by computing the reprojection error over each pixel,
not just the keypoints.
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Figure 5. Distribution of pixel-wise reprojection error. The heat map together with corresponding
contours demonstrate the varying distance between the ground truth and rectified pixel position after
removing the perspective distortion. The bold square represents the reference marker. We show the
result of (a) the “best” marker and (b) the “worst” marker. This test scenario includes all similarity
transformations as well as noise in point correspondence.

All tested scenarios depict similar trends, as shown on the plots in Figures 6–9. The box
plots extend from the lower to upper quartile values, with the thin and thick lines rep-
resenting the median and mean, respectively. The plots discussed further show relative
improvements over the baseline OpenCV [19] method. We evaluated relative improve-
ments for the sake of interpretability. For better comprehension, we present Table 1. It
contains individual test scenarios and their corresponding top performances in percents.
Conversely, the reprojection error in absolute terms is difficult to interpret without addi-
tional context. Nevertheless, to highlight the differences in reprojection errors, we also
provide absolute values in Table 1. The presence of noise shifted the errors by multiple
magnitudes but still preserved the pattern of distribution.
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4.4.1. Influence of Similarity Transformations

In this test scenario, we tested each allowed similarity transformation in isolation,
i.e., translation, rotation, and uniform scaling. Figure 6 demonstrates that the relative
improvement was circa equal in all situations. Moreover, we show that the proposed
method is practically invariant to similarity transformations allowing the markers to be
in arbitrary positions in a plane. When all similarity transformations were utilized, our
method performed even better, showing its stability and robustness.
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Figure 6. Influence of similarity transformation on the reprojection error.

4.4.2. Influence of Noise

In Figure 7, we can see the effect of a noisy point correspondence that simulated an
inaccurate keypoint detection. The ranking method preserved the trend of the relative
improvement in the presence of noise. The absolute reprojection error demonstrated that,
unless noise was present, the errors varied on sub-pixel levels, so they were practically zero.
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Figure 7. Influence of noise applied to the warped keypoints representing a noisy point correspondence.

4.4.3. Influence of Variable Shapes

We expected that the relative improvement of our method should be invariant to
variable shapes as long as they were similar. Figure 8 demonstrates that, with an increasing
number of keypoints, our method consistently preserved its capabilities. Introducing more
complicated shapes than just rectangles did not exacerbate the outcome of the algorithm.
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Figure 8. Results for different marker shapes.

4.4.4. Influence of Number of Markers

We tested a variable number of markers to demonstrate that our method preserved its
improvement. Figure 9 shows that, the greater the set of markers, the better the relative
improvement of our method. Even when we used just three markers, the proposed method
achieved a 46.91% median relative improvement. While it is beneficial to use a larger
number of markers, we believe that the improvement we can obtain from an increasing
number of markers has a logarithmic trend. On the extreme side, if we used only one
marker, there would be no improvement since there would be only one homography to
choose from.
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Figure 9. Influence of a different number of markers on reprojection error. We experimented with
(a) three, (b) five, (c) seven, and (d) nine markers.

5. Conclusions

In this paper, we proposed a method that builds on top of existing approaches for
homography estimation that utilize point correspondences. Our method systematically
ranks a set of homography matrices according to our proposed score function. Each
homography in this set belongs to a specific marker. These markers are objects of known
shape either naturally occurring or purposely placed in the scene.

This method is based on three assumptions. The first is that the markers are geo-
metrically similar, i.e., they differ only in translation, rotation, and uniform scale in the
real world. The second is that the shape of at least one of them is known. The third is
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that these markers are placed on the same planar surface in the scene. Our approach
shows a way to relate all of the markers to each other in a single score function without
knowing their relative positions in the scene. Our method only handles transformation
from a distorted to the undistorted view of the target plane. Thus, it serves the removal of
perspective distortion.

We exploited the properties of homography and similarity transformations and ex-
pressed them in a single score function. This function stands at the core of our contribution.
Its value is used as a proxy to rank homographies according to their reprojection error over
the entire image using only markers’ keypoints. The usual use case would be to select
the homography with the lowest score, i.e., the highest-ranked matrix, to perform the
image rectification.

We demonstrated that the proposed solution is robust in the presence of noise in
the point correspondences. These correspondences can be either algorithmically found
using feature-matching algorithms (e.g., SIFT [46] and SURF [47]) or annotated manually.
However, even human annotations are often inaccurate. We also showed the robustness of
our method to a varying number of markers and a change in shape.

All of our test scenarios demonstrated the following trend. On average, the homogra-
phy with the highest score improved the relative performance to the baseline performance
the most (both median and mean above 60%). The lowest-ranked homography often led to
a lot worse performance (median and mean around −90%). These values varied slightly
across different setups. The shape and number of markers had the greatest influence.
All of the improvements in between steadily decreased and reached 0% improvement
at around 2/3 m, where m is the number of markers. A general claim is that the first
half of ranked homographies yields a better reprojection compared with the baseline on
average. The baseline performance was given by an average OpenCV [19] reprojection
error under the assumption of no prior preference of specific markers, hence the random
marker selection.

Our algorithm is invariant to the underlying homography estimation method. It can
thus serve as an extension to approaches that handle point correspondences, either as part
of run time or a post-processing stage. Moreover, it is computationally very efficient, as it
scales well with a quadratic complexity Θ

(
m2).

Supplementary Materials: The following are available online at https://github.com/mondrasovic/
homography_ranking, accessed on 26 August 2021.
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Appendix A

Appendix A.1. Method Details

In this part, we provide more mathematical details concerning our score function de-
fined in Equation (7). It is based on the idea that the knowledge of the homography allows

https://github.com/mondrasovic/homography_ranking
https://github.com/mondrasovic/homography_ranking
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us to remove the perspective distortion and to then apply any similarity transformation,
i.e., translation, rotation, and uniform scaling [44]. We can transform the perspectively
distorted view of the plane into a rectified form where parallelism and the ratio of lengths
and angles are preserved.

A homography is a perspective projection between different views of a planar surface;
hence, a 3D-to-2D transformation is reduced to a 2D-to-2D transformation. However, if the
planar surface is frontal, i.e., it is perpendicular to the optical axis of the camera, then
homography reduces to similarity transformation. Consequently, if we rectify the image,
then the only allowed transformations are similarity transformations that we exploit in
the computation of our score function. Moreover, this also explains why the shear has to
be omitted.

Let pT = [x, y, z, 1] be an arbitrary point that lies on a frontal plane given in world
coordinates. Suppose that the optical axis of the camera is represented by the Z-axis. Then,
pT = [x, y, 0, 1]. A projection of the point p onto a point [ũ, ṽ, 1]T in the image plane using
the pinhole camera model is given by

ũ
ṽ
1

 ≈
 f 0 0 0

0 f 0 0
0 0 1 0




r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1




x
y
0
1

, (A1)

which simplifies to ũ
ṽ
1

 ≈
 f r11 f r12 f tx

f r21 f r22 f ty
r31 r32 tz

x
y
1

, (A2)

where f is the scale (focal length); rij for i, j = 1, . . . , 3 specifies the rotation; and tx, ty, and
tz denote the translation. The 3D rotation is reduced to a 2D rotation:ũ

ṽ
1

 ≈
 f cos(θ) − f sin(θ) f tx

f sin(θ) f cos(θ) f ty
0 0 tz

x
y
1

, (A3)

yielding a similarity transformation. Therefore, our score function needs to encompass the
same similarity transformations that could affect the objects on the planar surface in the
real world.

Consider the following hierarchy of transformations: similarity, affine, and projective.
A projective transformation can be decomposed into a chain of transformations, where
each matrix is given by a transformation that is higher in the hierarchy than the previous
one [3,29]. Specifically, a homography H may be decomposed into similarity, affinity, and
projectivity as follows:

H = HSHAHP =

[
sR t
0T 1

][
K 0
0T 1

][
I 0

vT v

]
, (A4)

such that v 6= 0 [3].
Our score function exploits the transformation of the plane into a frontal plane that

is related to the ground-truth plane by similarity. It uses a homography followed by
a similarity transformation to quantify the reprojection error for keypoint rectification.
Besides the empirical evidence, the transformation using a homography followed by a
similarity transformation has a simple theoretical justification.

The similarity matrix is a special case of the homography matrix. According to
Equation (A4), it may be decomposed as

S = H(S)
S H(S)

A H(S)
P = H(S)

S · I · I. (A5)
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A composition of linear transformations gives us

H′ = SH = H(S)
S H =

(
H(S)

S HS

)
HAHP = H′SHAHP, (A6)

which is a homography transformation, too.

Appendix A.2. Joint Optimization

Our score function defined in (7) evaluates the reprojection error of multiple markers
when a similarity transformation is applied after rectification. Given the homography
ranking approach introduced in Algorithm 1, we observe that the required transformation
matrices can be either retrieved from the input or estimated in isolation at run time. We
attempted to perform a joint optimization where the homography matrix H, together with
the set of similarity matrices S , were estimated simultaneously. Thus, all DoFs were treated
as decision variables.

Our optimization objective function was the unmodified score function from Equation (7).
We used the L-BFGS algorithm implemented in PyTorch [48], which is an iterative method
for solving unconstrained nonlinear optimization problems [49] with good performance
for non-smooth optimizations [26,50]. It utilizes the first-order gradients and the estimated
inverse Hessian matrix. We obtained the gradients using automatic differentiation [48].
The initial estimates for the homography and the similarity matrices were obtained using
the OpenCV [19] implementations (see Section 4.1).

The optimization was unstable because the algorithm was allowed to update all of
the unknowns simultaneously, which led to exploding gradients. We thus split the opti-
mization into two parts: isolated refining of the homography while having the coefficients
for similarity transformations frozen. Then, the roles changed, and similarity transforma-
tions were refined while keeping the homography untouched. This sometimes resulted
in degenerate homography matrices, i.e., their determinant was negative or very close to
zero [28]. We then expanded the objective by adding a penalty term for the determinant
value. It stabilized the optimization, improved convergence, and produced usable homo-
graphies. However, this joint optimization brought either no or just a minor improvement
(approximately 3%) in the reprojection error. Moreover, the computational overhead was
substantial. We believe that, since the proposed score function incorporates all of the
markers, it brings the greatest improvement by itself. Further refinement of the involved
transformations will probably have diminishing returns.
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