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Abstract: This paper describes the process of additive manufacturing and a selection of three-dimensional
(3D) printing methods which have applications in chemical synthesis, specifically for the production of
monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the
field of catalysis. It was proven that 3D printing is a promising production method for catalysts.
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1. Introduction

Three-dimensional printing is a popular term for additive manufacturing (AM) [1]. There are
many definitions of AM in use. The official one proposed by the Technical Committee of ASTM
International in NF ISO/ASTM 52900 is worded as follows: “Additive manufacturing is a process
of joining materials to make objects from 3D (three-dimensional) model data, usually layer upon
layer, as opposed to subtractive manufacturing methodologies” [2]. Other derivative terms are in use.
One of the important ones which was used first is rapid prototyping (RP) [1]. RP is a blanket term
for a number of technologies used for manufacturing precision parts (prototypes) directly from their
digital models, in a short time frame and with low human intervention [3]. The same technologies can
be applied for the rapid manufacturing (RM) of finished products and rapid tooling (RT), a process
of fast production of processing tooling, like injection molds [4]. Advertised as a replacement for
traditional subtractive methods, 3D printing has attracted great attention from the media and the
scientific community lately [5,6].

AM can be applied in the manufacturing of monoliths, which are systems comprising functional
microchannels with a regular three-dimensional structure. They can replace conventional catalysts
and chemical reactors while helping to overcome multiple problems posed by traditional systems.
AM-developed products can be designed precisely in every detail and adapted to specific processes [7–9].
Three-dimensional printing allows the building of complex 3D structures from many different materials,
as presented in Figure 1. This technology helps to produce catalysts with the desired properties.
Many chemical and industrial processes exist which can be enhanced with 3D printing, which makes
the latter a very promising field of research [8,10,11].

In this review, we provide general information on the stages of the 3D printing process,
3D printing methods, and applications in the field of heterogeneous catalysis. We distinguish structures
manufactured directly and indirectly, including monolithic catalysts, static mixers, and reactionware.
We describe structures made of various materials such as: ceramics (Al2O3, SiO2, TiO2, other oxides,
SiC), zeolite (ZSM-5, Y), metal (steel, titanium alloy, cobalt-chromium alloy), carbon, and polymer
(methacrylate, silicone), containing some active phases. We focus on the synthesis of 3D structures and
their performance in catalytic processes.
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Figure 1. Three-dimensional-printed materials and their applications. 

2. 3D Printing Process 

2.1. Stages of 3D Printing Process 

Production of physical objects by 3D printing is a process of several stages. However, the 
individual steps are identical in most AM technologies (Figure 2). 

The actions which AM includes can be divided into data preparation operations (building of a 
digital model, conversion of the model to the STL (Stereolithography) format, model verification, and 
preparation of the printing instruction file) and the operations of producing the physical object (its 
3D printing and post-processing) [1,12]. 

2.1.1. Preparation of Object Data for 3D Printing 

The first stage is usually the development of a digital model of the object (Figure 3a). The digital 
model can be generated in a three-dimensional computer-aided design (3D CAD) system. It is done 
by geometric modeling, which includes surface and solid modeling. There are many 3D CAD 
modeling software products commercially available, like AutoDesk, AutoCAD, SolidWorks, Creo 
Parametric, FreeCAD, Rhino, and SketchUp [12–14]. A digital model can be produced by reverse 
engineering the geometric data gathered from a physical object. Physical objects can be digitized in 
3D by touch-probe technology, laser scanning, or medical imaging, like computed tomography and 
magnetic resonance imaging. Any of these methods produces a point cloud from the physical object. 
The points in the cloud must be connected with a suitable software tool. Yet another method of 3D 
CAD modeling is the application of 2D capture geometry inside the technology. A combination of 
the methods can also be used to generate a digital model [1,15]. 

The second step is to generate a facet model by converting the digital model file into a suitable 
format, and STL is the most common one [1]. STL stands for Standard Tessellation Language or 
STereoLithography. An STL file contains information about every surface of the 3D model as 
triangular sections. The vertices of each triangle are defined with Cartesian coordinates and arranged 
in a text format. The number of triangles determines the resolution of the 3D model. An 
approximation of the digital model surface represented by triangles is triangulation (or tessellation) 
(Figure 3b). If written in this format, the data can be transferred from CAD software to a 3D printer. 

Figure 1. Three-dimensional-printed materials and their applications.

2. 3D Printing Process

2.1. Stages of 3D Printing Process

Production of physical objects by 3D printing is a process of several stages. However, the individual
steps are identical in most AM technologies (Figure 2).
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is specific to the 3D printer brand and model. It is also possible to directly slice the 3D CAD model. 
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The actions which AM includes can be divided into data preparation operations (building of
a digital model, conversion of the model to the STL (Stereolithography) format, model verification,
and preparation of the printing instruction file) and the operations of producing the physical object
(its 3D printing and post-processing) [1,12].

2.1.1. Preparation of Object Data for 3D Printing

The first stage is usually the development of a digital model of the object (Figure 3a). The digital
model can be generated in a three-dimensional computer-aided design (3D CAD) system. It is done by
geometric modeling, which includes surface and solid modeling. There are many 3D CAD modeling
software products commercially available, like AutoDesk, AutoCAD, SolidWorks, Creo Parametric,
FreeCAD, Rhino, and SketchUp [12–14]. A digital model can be produced by reverse engineering the
geometric data gathered from a physical object. Physical objects can be digitized in 3D by touch-probe
technology, laser scanning, or medical imaging, like computed tomography and magnetic resonance
imaging. Any of these methods produces a point cloud from the physical object. The points in the
cloud must be connected with a suitable software tool. Yet another method of 3D CAD modeling is the
application of 2D capture geometry inside the technology. A combination of the methods can also be
used to generate a digital model [1,15].Materials 2020, 13, x 4 of 23 

 

 

Figure 3. (a) Stages of designing 3D digital model (from left); (b) tessellated model; (c) slices (layers) 
into which the model is split. 

2.1.2. Building a Physical Object 

Before an object is 3D-printed, it is necessary to set up the 3D printer by defining the build 
parameters and the physical preparation for the 3D printing cycle, which includes loading of the 
material, placement and leveling of the build platform, and preheating the 3D printing system [1,16]. 
Three-dimensional printing is an automatic process. An object is built along the Z axis defined in the 
STL models and from bottom up. A single layer is built with a defined thickness and a defined pattern 
and attached to the build platform. The second layer is built next and bound to the previous one. The 
sequence is repeated until the object is completely built. The layers can be built and bonded in many 
ways, including polymerization, melting and subsequent solidification, fusing, bonding, or 
extrusion. The layers can be manufactured from different materials, including polymers, ceramics, 
metals, or paper, and supplied in various forms: liquid, powdered, in filaments, or in sheets 
[17,18,20]. 

Once the 3D printing process ends, the object is separated from the build platform and processed 
to become finished. The object often requires cleaning by removal of excess material, which may 
include natural supports or uncured resin, and synthetic supports. An excess of powder can be 
removed by brushing, with jets of compressed air, by vacuum cleaning, application of vibration, with 
special tooling, or by immersion in a suitable solvent. Uncured resin can be removed by washing 
with a suitable solvent. Synthetic supports made of a secondary material can be melted away, 
dissolved with solvents, or removed by pyrolysis. Synthetic supports made of the primary material 
can be torn off or broken off by hand or with cutting tools. The appearance of the 3D-printed surface 
can be improved by sand blasting, shot peening, grinding, or polishing. Some 3D printing methods 
require specific post-building treatment, like drying, UV or VIS-light curing, coating, sintering, or 
infiltration [1,16,21,22]. 

2.2. 3D Printing Methods 

There are many proposals for AM process classification [1]. Already in the 1990s, AM was 
proposed to be classified by the type of processed stock material, the layer building method (1D or 
2D), and the printing technology [3]. Recently, ASTM International offered a new AM classification. 
The AM methods were grouped by the type of building and bonding of the layers of the material. 
Seven categories of AM method were defined: Vat Photopolymerization (VP), Powder Bed Fusion 
(PBF), Material Jetting (MJ), Binder Jetting (BJ), Material Extrusion (ME), Sheet Lamination (SL), and 
Directed Energy Deposition (DED) [2]. The short characteristics of each AM method are shown in 
Table 1. A detailed characterization of the AM (3D printing) methods is specified in multiple 
overview studies [10,23–28]. 
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into which the model is split.

The second step is to generate a facet model by converting the digital model file into a suitable
format, and STL is the most common one [1]. STL stands for Standard Tessellation Language or
STereoLithography. An STL file contains information about every surface of the 3D model as triangular
sections. The vertices of each triangle are defined with Cartesian coordinates and arranged in a text
format. The number of triangles determines the resolution of the 3D model. An approximation
of the digital model surface represented by triangles is triangulation (or tessellation) (Figure 3b).
If written in this format, the data can be transferred from CAD software to a 3D printer. The geometric
data produced from a physical object can be directly converted to the STL format [12–14]. STL can
be replaced with another format, like the new international standard format called AMF (Additive
Manufacturing Format), introduced by ASTM International [1].

The third stage is to generate cross-sectional data, which are instructions for the AM machine
on how to print the object [14]. The 3D printer firmware interprets the data taken from one or more
STL files to enable their preview and editing, which includes resizing, repositioning, reorientation,
addition of supports; this affects the accuracy of the printed object, its surface finish, and the time to
build and finish the object [1,13,16,17]. Some 3D printing technologies require supports to stabilize
the entire object being built, including its overhangs, and to align temporarily unbound object parts,
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ensure attachment to the build platform, or prevent deformation of the object [18]. The object(s) with
the supports are then mathematically divided (sliced) into a number of parallel horizontal planes with
a dedicated firmware algorithm of the 3D printer. The space between each two successive horizontal
planes of a definite and small thickness (usually within 25–100 µm depending on the 3D printing
technology) and a defined contour is called a slice (Figure 3c). The output file (“G-code” file) is specific
to the 3D printer brand and model. It is also possible to directly slice the 3D CAD model. Each slice is
a single layer in the 3D printing process. The layers become “the tool paths” that drive a laser, a print
head, or an extrusion tip, with which the model is printed onto an object [12–14,16,19].

2.1.2. Building a Physical Object

Before an object is 3D-printed, it is necessary to set up the 3D printer by defining the build
parameters and the physical preparation for the 3D printing cycle, which includes loading of the
material, placement and leveling of the build platform, and preheating the 3D printing system [1,16].
Three-dimensional printing is an automatic process. An object is built along the Z axis defined in
the STL models and from bottom up. A single layer is built with a defined thickness and a defined
pattern and attached to the build platform. The second layer is built next and bound to the previous
one. The sequence is repeated until the object is completely built. The layers can be built and bonded
in many ways, including polymerization, melting and subsequent solidification, fusing, bonding,
or extrusion. The layers can be manufactured from different materials, including polymers, ceramics,
metals, or paper, and supplied in various forms: liquid, powdered, in filaments, or in sheets [17,18,20].

Once the 3D printing process ends, the object is separated from the build platform and processed to
become finished. The object often requires cleaning by removal of excess material, which may include
natural supports or uncured resin, and synthetic supports. An excess of powder can be removed by
brushing, with jets of compressed air, by vacuum cleaning, application of vibration, with special tooling,
or by immersion in a suitable solvent. Uncured resin can be removed by washing with a suitable
solvent. Synthetic supports made of a secondary material can be melted away, dissolved with solvents,
or removed by pyrolysis. Synthetic supports made of the primary material can be torn off or broken off

by hand or with cutting tools. The appearance of the 3D-printed surface can be improved by sand
blasting, shot peening, grinding, or polishing. Some 3D printing methods require specific post-building
treatment, like drying, UV or VIS-light curing, coating, sintering, or infiltration [1,16,21,22].

2.2. 3D Printing Methods

There are many proposals for AM process classification [1]. Already in the 1990s, AM was
proposed to be classified by the type of processed stock material, the layer building method (1D or
2D), and the printing technology [3]. Recently, ASTM International offered a new AM classification.
The AM methods were grouped by the type of building and bonding of the layers of the material.
Seven categories of AM method were defined: Vat Photopolymerization (VP), Powder Bed Fusion
(PBF), Material Jetting (MJ), Binder Jetting (BJ), Material Extrusion (ME), Sheet Lamination (SL),
and Directed Energy Deposition (DED) [2]. The short characteristics of each AM method are shown in
Table 1. A detailed characterization of the AM (3D printing) methods is specified in multiple overview
studies [10,23–28].

For the production of catalysts, researchers proposed to apply 3D printers which mainly operated
by Material Extrusion (ME), in this way, they 3D-printed catalytic supports or finished catalysts [24,25].
Although inexpensive and simple, the methods do not provide satisfactory resolution, accuracy,
or surface finish of 3D-printed objects [29,32]. Technologies were suggested recently which would
provide better results, like VP: Stereolithography and Digital Light Processing [26]. Other methods
potentially viable for building catalysts include Selective Laser Sintering, Selective Laser Melting,
Binder Jetting, and Laminated Object Manufacturing [11,24,25].
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Table 1. Additive manufacturing classification by ASTM International [2,20,29–31].

Category Operating Principle Examples of
Technology Materials

Vat
Photopolymerization

(VP)

A liquid photopolymer is
selectively cured in a vat

by light-activated
polymerization.

Stereolithography,
Digital Light Processing,

Continuous Liquid
Interface Production

polymers, ceramics

Material Jetting (MJ)
Building material

droplets are deposited
selectively.

PolyJet,
Multi-Jet,

3D Plotting

polymers, ceramics,
composites, hybrid,

biological

Binder Jetting (BJ)

A liquid binding agent is
selectively deposited to

bind the powdered
material.

3D Printing
polymers, ceramics,
composites, metals,

hybrid

Material Extrusion
(ME)

The material is
selectively dispensed via

a nozzle or an orifice.

Fused Deposition
Modeling/

Fused Filament
Fabrication/

Fused Layer Modelling,
Robocasting/

Direct Ink Writing/
3D Fiber Deposition

polymers,
composites

Powder Bed Fusion
(PBF)

Thermal energy is
applied to selectively

fuse areas of the powder
bed.

Direct Metal Laser
Sintering, Selective Laser

Sintering/
Selective Laser Melting,
Electron Beam Melting

polymers, ceramics,
metals, composites,

hybrid

Sheet Lamination
(SL)

Sheets of the building
material are bound with
one another to form the

object.

Laminated Object
Manufacturing,

Ultrasound
Consolidation

polymers, ceramics,
metals, paper, hybrid

Directed Energy
Deposition (DED)

A focused flux of energy
is applied to fuse

materials by melting
during deposition.

Laser Engineered Net
Shaping,

Direct Metal Deposition,
Laser Powder

Deposition,
Electron Beam Additive

Manufacturing

metals, hybrid

2.2.1. Material Extrusion Methods (ME)

The 3D printing methods based on Material Extrusion date back to the end of the 1980s, which is
when Scott Crump developed Fused Deposition Modeling [33].

The ME technologies are based on the processes of forcing out (extrusion) of a semi-solid material
formed into a thin filament of softened or molten thermoplastic polymer, a paste, a solution, or a
polymer dispersion, under the pressure applied. The building material is deposited on a substrate
and solidified in a predefined shape, by which the material is bound to the substrate or a previously
extruded material [1,22,30,34]. Solidification can be achieved by lowering the temperature of the
material, which takes place with materials preheated to a temperature of their melting point or glass
transition (in semi-crystalline polymers and in amorphous polymers, respectively) before extrusion.
These processes require a certain amount of residual heat to enable the bonding of adjacent surfaces.
Solidification can also be triggered by chemical changes caused by a curing agent, a residual solvent,
a reaction with atmospheric oxygen, or by drying of the material while it is wet. If the material is a gel
or a paste, a residual solvent or a wetting agent must be present to ensure bonding of the new material
deposition with the material already deposited [1,34].
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In ME technologies, the building materials can be supplied in different ways. The materials to
be liquefied are fed in the form of filaments on the spools into a preheated chamber. Commercially
available filaments are produced by extrusion of a molten main thermoplastic polymer combined
with fillers, fibers, pigments, and other additives. If the material is a granulate, it is fed into a screw
extruded. Liquid materials, like pastes and solutions, are fed into a dedicated container (a cartridge).
The extrusion process is performed by controlled application of force by a step motor, a piston,
a pneumatic device, or an actuating roller. Having achieved the suitable form, the materials is extruded
via a nozzle or an aperture of the extruder head which moves along a horizontal plane to deposit the
layers of the physical object. In parallel with the layers of an object, supports can be extruded from the
same material—or a different one, if the extrusion head is provided with more than one nozzle. With the
whole layer deposited and depending on the design of the 3D design, the build platform descends or
the printing head lifts by the height equal to the thickness of the layer, after which the deposition of
the next layer begins. The sequence is repeated until the object is completely built. Once the 3D print
run is complete and the object is removed, the supports are removed mechanically or with a suitable
solvent, if made from a material different than the building material of the object [1,22,34–36].

The most popular ME method is Fused Deposition Modeling (Figure 4). A derivative of the
technology is Fused Filament Fabrication. Both are based on the extrusion of a liquefied polymer
fed to the printing system as a filament and its solidification by cooling [1,35,37]. The methods
use the following polymers: acrylonitrile-butadiene-styrene, acrylonitrile-styrene-acrylate, Nylon-12,
polycarbonate, polyetherimide, poly(lactic acid), thermoplastic polyurethane, poly(vinyl alcohol),
poly(ethylene terephthalate), and thermoplastic elastomers [29,38].
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A modification of Fused Deposition Modeling exists for building ceramic objects. Fused Deposition
of Ceramics is the extrusion of a liquid ceramic/polymer suspension, where the ceramic material is
usually 40–45% of the binder volume [36,39]. Robocasting is a process which uses aqueous suspensions,
colloid gels, and ceramic or composite pastes. The process is nearly binderless. The solidification occurs
by evaporation of the solvent. The 3D-printed objects are dried and sintered [30,36,40]. Robocasting
is also known as Robotic Deposition, as well as Direct Writing, Direct Ink Writing, and 3D Fiber
Deposition [8]. A similar technology is called Freeze-Form Extrusion Fabrication; here, however,
post-extrusion solidification occurs by freezing the deposited material [40].
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Moreover, 3D Dispensing (3D Plotting and 3D Micro Extrusion) is a group of methods where
solidification can be triggered physically or chemically. The physical triggers may include crystallization
and glass transition of thermoplastic materials, coagulation of polymer dispersions, and drying and
precipitation of polymer solutions. The chemical reactions which are viable triggers may include
cross-linking of thermosetting reactive pre-polymers and formation of ionomers and complexes of
polyelectrolytes. Another solution is 3D printing of polymers in liquid media, zero-gravity printing,
reactive printing, or 3D bioplotting. Initiators, activators, co-reactive resins, curing agents, or metallic
salts are added to a liquid medium to prompt solidification by triggering an instant chemical reaction.
Three-dimensional dispensing printing allows the deposition of many classes of materials, including
thermoset resins like epoxides, acrylics, silicones, polyurethanes; metals and oxides thereof; ceramic
materials like calcium phosphate, silicates, and bentonite; and biopolymers and hydrogels [34].

ME printing methods provide many benefits. Fused Deposition Modeling provides simple
processing, relatively low-cost machines, a multitude of inexpensive and non-toxic stock materials,
and printing with more than one material simultaneously. Fused Deposition Modeling has several
drawbacks, like relatively poor accuracy and rough surfaces. A typical XY-plane resolution of a
printer is 400 µm only, which is dependent on the nozzle orifice diameter. The objects are prone to
develop structural defects and reduced mechanical strength; the mechanical performance often reveals
anisotropic effects. The printing process is protracted if the Z axis resolution is high (for lower layer
thickness) [1,30,31,35,41].

2.2.2. Vat Photopolymerization Methods (VP)

Vat Photopolymerization methods are often termed stereolithographic, because they originate
from Stereolithography, a technology invented in the 1980s by Charles Hull [42,43]. This technology
comprises the curing (solidification) of a photosensitive liquid and multifunctional prepolymer (resin)
in the presence of photoinitiators and light radiation, which supplies the energy to trigger a chemical
chain reaction of polymerization. This process results in the binding of a large quantity of small
molecules, which form a highly cross-linked polymer which is non-melting and non-soluble [44].

The stereolithographic methods use acrylic resins, methacrylate resins, epoxy resins, vinyl ethers,
and ceramic or metallic powders suspended in the resin medium. Aside from a monomer or an
oligomer, the resins include diluents, chain transfer agents, photoinitiators, and additives [42,44].

VP 3D printing is done in a resin-filled vat in which the build platform is immersed. The printing
pattern is displayed on the resin surface. By exposure to light radiation, the resin solidifies in the
pattern and down to a defined depth as a set of elementary volumes called voxels. This is when the
resin is bonded to the build platform. Next, the platform is repositioned and the built layer is coated
with liquid resin. The pattern of the next layer is displayed; the resin solidifies and bonds to the
previous layer. It happens so because the curing depth is slightly more than the distance by which the
build platform travels along the Z axis. Both steps, the shift of the build platform and the curing of the
preset pattern in the layer of resin, are repeated in sequence until the finished object is built [44,45].

Depending on how the energy input is delivered (how the process is initiated), two classes
of process are defined: single and two-photon. The single-photon processes include conventional
stereolithography, where UV light and photosensitive resins are used, IR stereolithography, where IR
light and thermosetting resins are used, stereo-thermal-lithography, where UV and IR light is used to
build multi-material structures, and a VIS-light printing method. The two-photon absorption method is
applied to build micro- and nanoscale structures within the volume of the resin. It applies femtosecond
laser light pulses [44].

Conventional single-photon methods are divided into two approaches: direct or laser writing,
which is a vector scanning with the laser beam, and mask-based writing, which is irradiation of the
entire photopolymer-filled vat surface with a flood lamp and a dynamic mask applied, done most
often with a digital micromirror device (DMD). A DMD is an array of micro-sized mirrors which can
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be rotated into active or inactive position. This allows the light to be reflected only from a specific
portion of the array (the active mirrors) to reproduce a defined image [44,46].

VP printing machines may vary in configuration, i.e., the motion of the build platform. In the
bottom-up method, the build platform is just below the surface of the resin. An exposed thin layer of
the resin is irradiated from the top, by which it is cured on top of the structure. The build platform
moves down by a defined step and thus it is flooded with a layer of fresh resin. The top-down method
is becoming popular. In this case, the build platform is immersed in the resin from the top, leaving only
a thin layer of resin between the build platform and the vat bottom. The resin is irradiated from the vat
bottom, which is a transparent non-adhering plate. With the irradiated resin layer cured, the build
platform goes up by a defined step and the liquid volume of the resin in the vat fills the gap between
the build platform and the vat bottom [42,45]. Conventional Stereolithography uses the bottom-up
approach and laser radiation (Figure 5). Digital Light Processing uses the top-down method and
projector light (Figure 6). Although the structure being built top-down is exposed to higher mechanical
forces because it must be separated from the bottom plate once the layer is irradiated, this approach has
several advantages over the bottom-up systems. The object does not require recoating, the irradiated
surface is always smooth and only small volumes of resin are required for each layer, and the irradiated
layers are not exposed to the atmosphere, which reduces oxygen inhibition and the overall 3D printing
cycle duration [45].
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Once the printed structure is cleaned of surplus uncured resin and the supports are removed
(if any), the workpiece is most often cured with UV light to achieve full conversion of the reactive
chemical groups and improve the mechanical performance [18,45].

Yet another version of VP is Continuous Liquid Interface Production. This method works by
photopolymerization, but the resin is cured continuously. Here, the 3D printers resemble the Digital
Light Processing printers [34]. The innovative feature is the dead zone, a thin layer of uncured resin
between the printed workpiece and the vat bottom. The dead zone is formed by application of a
UV-transparent, oxygen-passing window in the base of the vat. Below the window, a constant supply
of pure oxygen is provided. The UV transparency of the window allows the laser beam to penetrate
the resin vat and cure the resin, while permeation by oxygen allows the gas to penetrate the resin vat
to inhibit polymerization. The dead zone ensures a constantly fresh layer of resin under the object
being printed. The build platform moves continuously [42].

An interesting area of AM is ceramic Stereolithography. It is a method of additive manufacturing
of high-quality ceramic objects by photo-cross-linking a resin material loaded with ceramic powder.
Following the building process, the binder is burned away and the part is sintered. Unlike injection
molding of ceramic objects, stereolithography allows the production of structures with much more
complex geometric features with reduced cost and time when compared to the production of ceramic
objects with matrices [25,47].

The drawbacks of VP technologies include applicability to a limited choice of materials, high costs
of processing equipment, chemical waste, the need for finish processing, built object shrinkage,
a compromise between high throughput and high resolution, and not perfectly smooth object surfaces.
The 3D printing process is relatively slow because of the slow photopolymerization process and the
multi-stage mechanism of building. It is not so with Continuous Liquid Interface Production, which is
the fastest VP method since it does not include a resin coating step. An advantage of stereolithographic
methods is the high resolution of objects. Irradiation by a projector helps to achieve higher resolution,
defined by the pixel size, not by the spot size of the laser beam. It also provides the higher working
speed, since the whole area of each layer is irradiated at the same time. The typical resolution ranges
of the systems are 20–100 µm in Digital Light Processing, 50–100 µm in Stereolithography, and 75 µm
in Continuous Liquid Interface Production [34,42,45].

2.2.3. Other Methods

Powder bed fusion is a process in which thermal energy is applied to selectively fuse areas of
a powder bed. Thermal sources such as lasers and electron beams are used to induce the fusion of
powder particles. Most processes utilize the following fusion mechanisms: liquid-phase sintering
(metals, composites) and full melting (metals, polymers). Solid-state sintering and chemically induced
binding (ceramics) are also possible [1].

In the process of Selective Laser Sintering, the powder is spread on a built platform by a roller.
The laser beam scans the preheated powder selectively and sinters the powder particles based on
3D CAD data to form the slice cross-section. The surrounding loose powder is a support. Then, the
building platform is lowered by one layer thickness and the next layer of the powder is spread, leveled,
and scanned by the laser beam. The process repeats until the complete object is printed. The process
of Selective Laser Melting is similar. Instead of sintering, alloy powder particles are melted and
resolidified. Electron Beam Melting uses the focused electron beam for melting metals and alloys
powders in a vacuum chamber at high temperature [48].

Material Jetting involves processes in which droplets of a liquid material are deposited selectively
and converted to a solid geometry. The droplets are dispensed in a continuous stream or a drop on
demand mode. Printers use two single jets or print heads with many nozzles, like inkjet printers, in order
to deposit layers of a building material and a support material. During the printing processes, the print
head or the substrate moves, creating an object layer by layer. The phase change of the printed material
usually takes place as a result of solidification of the melted material, e.g., thermoplastic polymer, wax,
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metal, which is cooled by giving off heat to the environment. This is typical of the Thermojet process.
In addition, the curing of a photopolymer in the process of photoinitiated polymerization with UV light
is used in the PolyJet and Multi-Jet technologies (e.g., Projet printer). The evaporation of the liquid
part of a solution or slurry of the ceramic material and other chemical reactions are also possible [1].

The best resolution, accuracy, and finish quality of object surfaces can be produced with Vat
Photopolymerization and Material Jetting technologies [29,32]. The least expensive 3D printing
devices work by Material Extrusion. They work fast and are easy to operate [31,41]. All these
features have driven the high interest of researchers in VP, MJ, and ME. For over a decade, 3D-printed
structures have been researched, mainly those produced by ME, for their feasibility in various areas of
chemical processing.

3. 3D Printing Applications in Heterogeneous Catalysis

Today, AM technologies are applied in many fields, like medicine, which includes dentistry
and pharmacy, as well as food processing, automotive manufacturing, art, architecture, education,
entertainment, engineering, automation, robotics, electronics, and the aerospace industry [22,32,35].
A great number of AM applications exist in chemistry and derivative fields, like electrochemistry [49],
analytical chemistry [50], and biotechnology [51]. This work focuses on AM applications in the field
of catalysis.

3.1. Directly Produced Structures

Three-dimensional printing coupled with CAD helps to develop unique monolithic structures
which are otherwise impossible to produce with traditional methods [24]. Three-dimensional printing
enables direct synthesis of monolithic catalyst supports and finished catalysts, static mixers, and more.

The catalytic active phase can be integrated with the monolithic structure already during 3D
printing or deposited on a finished object. Many applications require finishing, like in metallic and
oxide catalyst synthesis. The finishing process includes drying and sintering to remove the binder and
decompose the precursors. Sometimes, the products require reduction of metal ions. In carbon-based
material synthesis, finishing is required to carbonize carbon precursors, like thermosetting resins or
starch [24].

In recent years, different types of 3D printers have been applied to produce monolithic structures
from doped polymeric materials, carbon materials, metals, metal oxides, and zeolites. The catalytic
performance of the materials has been tested in many processes, like hydrocarbon transformation [24].

3.1.1. Monolithic Catalysts

Ceramic and Zeolitic Monoliths

• Al2O3 monoliths

The first monolithic structures built with 3D printers were ceramic support structures of aluminum
oxide manufactured by a direct fabrication technique: Robocasting. They were first produced in 2003.
The ceramic supports were sintered, following by coating with a layer of a hexaaluminate material,
BaMn2Al10O19-α. Catalysts made entirely of hexaaluminate were also 3D-printed. Their catalytic activity
was determined in a process of methane combustion. The robocast lattices of BaMn2Al10O19-α/Al2O3

converted approximately six times more methane at 600 ◦C than a cordierite honeycomb monolith,
produced by conventional extrusion, with the same amount of active catalytic phase. The increase
in the active phase content in the monolith improved the methane conversion to 45% at 600 ◦C.
The robocast monolith of BaMn2Al10O19-α provided methane conversion of 89% at 600 ◦C and 100% at
700 ◦C [52].

Robocasting was applied to build monolithic supports based on α-Al2O3 and coated with γ-Al2O3

and Pt. A specially designed geometry of the catalyst helped to achieve high conversion of carbon
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monoxide (at up to 100%) in oxidation reaction of high flow rate. The catalysts supported on
commercially available cordierite honeycomb structures performed worse [53].

Robotic Deposition of an ink loaded with powdered Al2O3 and a Cu(II) salt, followed by sintering
of the built object, produced a woodpile porous system with Cu in a matrix of Al2O3. The Cu/Al2O3

monolithic structures were characterized by excellent catalytic performance in Ullmann reactions (the
synthesis of imidazoles, benzimidazoles, and N-aryl amides). The structures provided high yields of
transformation into N-aryl compounds (78–94%) with a short reaction time (of 2 to 4 h). The great
chemoselectivity of the transformation was noted, along with great recyclability; the systems recovered
from the reaction were reusable at least in 10 more reactions without a high loss of yield [54].

A controlled-porosity monolith made from Al2O3 by Robotic Deposition was applied as a
Lewis’ acid in the reactions of synthesis of 1,4-dihydropyridine and 3,4-dihydropyrimidin-2(1H)-one
compounds. The 3D-printed catalysts provided remarkable efficacy, with extremely good yields in
Biginelli and Hantzsch reactions with short reaction times under solvent free conditions (70–95% of
yield over 30 min). The monolith was also recyclable and reusable up to 10 times without any loss of
activity [55].

• SiO2 monoliths

Monolithic silica supports were produced by Robotic Deposition followed by sintering [56,57].
The support surface was modified by silanization and metalation to produce Pd/SiO2 and Cu/SiO2

catalysts. The performance of the catalysts was tested in bicatalytic heterogeneous reactions of
transformation in solutions based on Cu-catalyzed azide−alkyne cycloaddition and Pd-catalyzed
cross-coupling (the reactions of Sonogashir, Stille, and Suzuki). The applied monolithic structures
enable rapid generation of substituted benzyl-1,2,3-triazoles. The catalysts demonstrated stable
performance. They could be recycled and reused at least 10 times [56]. In another research
project, the surfaces of 3D-printed silica supports were functionalized with a polyimide-palladium
composite. The monolithic catalysts were applied as the first component in a tricatalytic system
for multistep in-solution one-pot transformations. The remaining components of the tricatalytic
system were ferritic Cu(I) magnetic nanoparticles and a 3D-printed (manufactured by Fused
Deposition Modeling) polypropylene capsule-containing Cu(II) loaded onto polystyrene-supported
triazabicyclo[4.4.0]-dec-5-ene. The system was tested in a sequence of the following reactions:
Chan-Lam’s azidation, Cu-catalyzed alkyne-azide cycloaddition, and Suzuki reaction. The substituted
1,2,3-triazoles were produced with a high reaction efficiency and without any special additives or
intermediate isolation. All tested catalysts were readily recovered and reused in multiple reaction
cycles [57].

• Zeolite monoliths

Robocasting was applied in AM of ZSM-5 zeolite-based structured catalysts which vary in
architecture. The structures were intended for MTO (methanol to olefins) conversion. As the
3D-printing filament diameter was decreased, the stability and activity of the resulting catalyst was
improved in the MTO process; as the macroporosity of the monolithic structure increased, the stability
increased while the catalytic activity was reduced. The modification of structural features slightly
affected the selectivity. A ZSM-5 catalyst with a binder system of silica and aluminophosphate and
featuring zig-zag channels in the direction of flow provided selectivity to C2-C4 olefins at up to 68.9%
with a methanol conversion of 90% at 450 ◦C. The catalyst exhibited better activity and stability than a
monolith with straight channels [58].

Another research team used a laboratory-scale 3D printer to extrude zeolite catalysts based on
HZSM-5, HY, and ZSM-5 doped with various metal oxides [59–64]. An MTO process was performed
to test the monoliths made of HZSM-5, including monoliths which also contained amorphous silica
integrated with the structure and monoliths surface-coated with SAPO-34 zeolite. The application of
3D-printed catalysts instead of powdered catalysts improved the selectivity to light olefins. The ethylene
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to propylene ratio could be adjusted with the layers of SAPO-34. The highest methanol conversion
which reached 100% was achieved with the HZSM-5 monolith coated with SAPO-34. The lowest
conversion was shown by the HZSM-5/SiO2 monolith without SAPO-34. The tested monoliths
demonstrated better stability than a powdered HZSM-5 catalyst [59]. An MTO process was also
used to test a series of ZSM-5 monoliths doped with oxides of Ce, Cr, Cu, Ga, La, Mg, Y, and Zn.
The addition of Cr, Mg, and Y to the monolith did not result in a significant drop in methanol conversion.
The addition of Zn and Mg provided the best selectivity to light olefins. An extremely promising
version was a monolithic Mg/ZSM-5 catalyst, which enabled selectivity to ethylene and propylene at
24% and 33%, respectively, with a methanol conversion of 95% at 400 ◦C and with a reduced amount
of coke deposition [60]. Another series of ZSM-5 monolithic structures with oxides of Ga, Cr, Cu,
Zn, Mo, and Y was tested in a process of methanol conversion to hydrocarbons in an atmosphere
of nitrogen and carbon dioxide. The yield of light olefins was enhanced over all doped monoliths
used in the N2 atmosphere. With N2 replaced with CO2 and with the reaction maintained at 400 ◦C,
the selectivity to ethylene decreased, while the selectivity to propylene was almost constant. The Y
and Zn-doped monoliths proved a higher selectivity of light olefins and BTX compounds (benzene,
toluene, and xylene) in the absence and presence of CO2, respectively [61]. The catalytic performance
of the monolithic structures 3D-printed with HZSM-5 and HY zeolites, including a version with the
surface modified by SAPO-34, was also tested by n-hexane cracking. The HZSM-5 monolith had
more stable activity and higher selectivity to light olefins than its powdered counterpart, with the
highest selectivity of 53.0% determined at 650 ◦C. The HY monolith could produce light olefins with a
selectivity of 57.9% at 600 ◦C. The addition of the SAPO-34 increased the activity in all tested monoliths
and markedly improved the selectivity to BTX in comparison to the HY monoliths. The selectivity was
27.5% for the SAPO-34-coated HY monolith catalyzing at 600 ◦C [62]. The ZSM-5 monoliths with the
matrix laden with Cr, Cu, and Ni provided high selectivity to BTX in the n-hexane cracking process,
whereas the ZSM-5 monolith doped with Y provided higher selectivity to light olefins. The temperature
and reaction time significantly changed the distribution of the reaction products. The maximum
selectivity to light olefins was achieved at approx. 50% by running the reaction with the ZSM-5
monolith doped with Y [63]. Structured monoliths with hierarchical porosity and controlled type and
density of acid sites, such as HZSM-5 with or without a SAPO-34 layer on the surface, were obtained.
The catalytic performance in the conversion of methanol to dimethyl ether indicated that the selectivity
toward dimethyl ether was favored by the HZSM-5 monolith (DME (dimethyl ether selectivity) of 96%,
methanol conversion of 70% at 180 ◦C) compared to the powder catalyst and the HZSM5@SAPO-34
monolith. The SAPO-34 growth resulted in further conversion to higher hydrocarbons [64].

• TiO2 monoliths

Monolithic structures were manufactured by the Robocasting technique from a paste of titanium
dioxide nanoparticles in an acidic medium. These structures were processed next by low-temperature
chemical sintering. The TiO2 monoliths developed high photocatalytic activity in an air purification
reaction of decomposition of acetaldehyde to CO2 and H2O. The concentration of removed acetaldehyde
varied with its amount in the gas. The yield for 5000 ppmv acetaldehyde was 40–58%, while for 70,000
ppmv, the removal yield was approx. 8% [65].

Au/TiO2 monolithic catalysts were prepared using a technique similar to Fused Deposition
Modeling from a paste containing TiO2 and nanoparticles of Au, or by deposition of Au on the
ready-printed TiO2 monolith. In the process of hydrogen photoproduction from a water and ethanol
mixture in the gaseous phase, the monoliths impregnated with Au after 3D printing (so-called
post-impregnated) provided higher efficiency—here, the monoliths had a total concentration of Au
100 times lower than the monoliths 3D-printed from the Au-doped paste, while the amount of Au
on the surface of the microfilaments was similar in both monolith versions. The rates of hydrogen
photoproduction for the post-impregnated monoliths were 2 to 3 orders of magnitude higher. The lower
the monolith filament diameter was, the higher the efficiency of hydrogen photoproduction was.
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The best photoactivity, determined at 0.24 mol H2 min−1 gAu
−1, was achieved with the post-impregnated

titanium monolith 3D-printed with filaments 200 µm in diameter [66].

• Other monoliths

Silicon carbide monolithic catalysts doped with nanoparticles of iron were built by Robocasting
and post-treated at a high temperature. In the wet peroxide oxidation of phenol, the Fe/SiC monoliths
provided good catalytic activity, high efficiency of H2O2 decomposition, and long-term stability
(350 h) [67].

PtO2-WO3 catalysts with complex shapes were manufactured via Digital Light Processing from
a solution composed of resin and metal salts. The objects were then pyrolyzed to produce oxides.
The 3D catalysts were tested for the hydrogenation of alkynes and nitrobenzene and showed excellent
activity in these catalytic reactions, i.e., in the hydrogenation of phenylacetylene, the conversion was
full after 6 h, while the selectivity towards styrene was 82% [68].

Metallic Monoliths

The method of three-dimensional fiber deposition was applied to print monoliths by extrusion
from a paste loaded with powdered metallic alloys. Once sintered, the monoliths were used as
supports of catalysts for different reactions [69–71]. Structures of Ti6Al4V alloy were alkali-treated
and coated with a layer of ZSM-5 zeolite. A dope of Fe was used to gain catalytic activity in a
reaction of nitrous oxide decomposition. The catalyst doped with 10% of Fe revealed the highest
catalytic activity with stable performance. Over 160 h of the process at 600 ◦C, the loss of conversion
was less than 5%. A proper geometry of the monolith was developed which improved the N2O
conversion at the processing temperature (with up to 100% at 800 ◦C) [69]. Monoliths made from
316L stainless-steel were coated with layers of ZSM-5 combined with silica. The porous catalysts were
tested in a methanol-to-olefin conversion process. At 250 ◦C, high selectivity to dimethyl ether was
achieved with a catalyst which featured straight channels. However, in the process run at 350 ◦C,
structured catalysts were effective in converting methanol to olefins even at high feed rates of methanol.
The monolith with tortuous channels provided the highest yield of light olefins, reaching approximately
40%. The methanol conversion in the process run with structural catalysts was higher than with
a packed bed [70]. The catalytic performance of 316L stainless-steel monolithic structures coated
with Ni/Al2O3 catalyst was tested in a reaction of carbon dioxide methanation. In comparison to a
conventional powdered Ni/Al2O3 catalyst, the monolithic catalysts provided higher CO2 conversion,
especially at high temperatures, like 90% at above 370 ◦C. In addition, the monoliths exhibited higher
stability; in the presence of one of these monoliths, the process run for 53 h at 350 ◦C had stable
conversion at approx. 80%. The best results were achieved with a zigzag architecture 3D catalyst,
which gave CO2 conversion of 91% and selectivity to CH4 of 98% at 400 ◦C [71].

The composite inks loaded with gold and silver were used to print 3D structures by direct ink
writing. The alloy structures formed by processing at a high temperature were immersed in a nitric
acid bath to remove Ag. This produced monolithic nanoporous gold. The catalysts were tested in a
reaction of selective partial oxidation of methanol to methyl formate and CO2 at a high temperature.
The 3D-printed structures had selectivity to methyl formate (70–90%) comparable to that of the Au
nanoparticles. While comparing the reaction rate per the catalyst mass, the 3D-printed catalyst
outperformed nanoparticles by two times for this metric [72].

Carbon Monoliths

Carbon monoliths were produced by 3D printing of carbon source materials (doped with additives)
by extrusion followed by pyrolysis (carbonization) in an inert gas shield of nitrogen [73,74]. By Solid
Free Forming with an ink loaded with metal precursors, poly(vinyl alcohol), and starch, the Ni and
Mo-doped carbon structures were developed. The carbon scaffold contained up to 25 wt.% of the
catalyst material. A reaction of syngas conversion to higher alcohols was performed. At high flow
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rates of the syngas feed (6000 h−1), the CO conversion dropped quickly to 16% with pelleted catalysts,
while the structured catalysts converted 35% of the CO [73].

Direct Ink Writing was applied to print monoliths from ink loaded with starch, gelatine, and SiO2

as a hard template. Following a process of carbonization and template removal, the carbon monoliths
were applied to catalyze the liquid-phase selective oxidation of benzyl alcohol. The monolithic structure
had a significant impact on the reaction rate. High conversion was achieved with high selectivity to
benzaldehyde [74].

Polymeric Monoliths

Polymeric monolithic structures were obtained by 3D printing with the use of photosensitive
liquid resin mixed with carbon or silica. The active CuO/CeO2 phase was then deposited by dip
coating. Modification of the channel wall design was necessary to anchor a large amount of the active
phase. Thermal treatment in air was needed to recover the activity of the active phase. The monoliths
demonstrated good catalytic activity, stability, and reusability in the preferential oxidation of CO in the
presence of O2 and H2 with He balance. The maximum CO conversion was 97% at 150 ◦C (slightly
lower than that of the powdered catalyst), with a temperature delay of 25 ◦C. After several reuse cycles,
the activity of the supported catalyst increased [75].

Devices of well-defined shapes, including woodpile and holed structures, were designed and
synthesized using thiourea-embedded resin and a stereolithography 3D printer. These structures were
then used to catalyze the addition of N–Me–indole to trans-β-nitrostyrene (Friedel–Crafts alkylation).
The printed organocatalytic materials promoted the formation of the desired product with a yield up
to 79%, but the reaction times were longer than in homogeneous processes [76].

Three-dimensional polymeric structures have found applications in biocatalysis. Catalytically
active living materials being composites of live yeast cells in a polymer matrix of F127-dimethacrylate
were 3D-printed by direct writing and underwent photochemical cross-linking. The produced cubic
structures demonstrated metabolic activity during fermentation of glucose. Ethanol was produced
with a yield of approx. 90%. No significant reduction in catalytic activity was found over 2 weeks of
batch processing [77].

3.1.2. Static Mixers

Structural catalysts include monoliths and static mixers. Static mixers are open cross-flow
structures characterized by intense radial mixing. They provide high-efficiency transport of mass
and heat through the whole cross-section and even in conditions of laminar flow. The very narrow
residence time distribution makes the flow pattern close to the plug-flow. Given the twisted flow path
of reactants in the structures, the pressure drop is higher than in monoliths of the same voidage but
remains relatively low [78].

Researchers designed and produced a 3D structure by Selective Laser Sintering. The structure
was a combination of a catalyst carrier (a static mixer) and a reactor, forming a porous structured
reactor. The carrier was coated with a layer of Al2O3 and ZnO, and Pd nanoparticles. The porous
structured reactor applied instead of a conventional batch reactor in a process of solvent-free
selective hydrogenation of 2-methyl-3-butyn-2-ol to 2-methyl-3-buten-2-ol resulted in slightly improved
selectivity (up to 97.6%) and yield (up to 97.3%) [79].

Another research team proposed manufacturing of static mixers by Electron Beam Melting from
the alloys of Ti6Al4V, CoCr [80], 316L stainless-steel [81–83]. Layers of catalytically active metals were
deposited on the static mixers. Various catalytic systems of the static mixers were fitted inside steel
tubular flow reactors [80–83]. The catalytic mixers coated with Pt and Ni were tested in a series of
processes of alkenes and carbonyl hydrogenation. The increase in reactor pressure in the vinyl acetate
hydrogenation reaction with Pt/Ti6Al4V and Ni/CoCr catalysts improved the conversion. The Pt
catalyst brought the conversion to 83.2–92.1% at 20–24 bar. A high conversion of cinnamaldehyde
(88.7%) was achieved in reaction with a Pt catalyst [80]. The steel systems coated with a Pd or Ni layer
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were tested in the hydrogenation of alkenes, alkynes, carbonyls, nitrogen compounds, nitriles, imines,
and halides. Hydrogenation by feeding gaseous H2 had conversion above 75% in most reactions, and in
several cases, the conversion was full. It was found that, in some cases, the hydrogenation selectivity
could be influenced by modifying the operating parameters of the reactor. Depending on the actual
pressure and flow rate in the reactor with a Ni static mixer, phenylacetylene was hydrogenated to
styrene or ethylbenzene. A similar phenomenon was found during hydrogenation of cinnamaldehyde
in reaction with a Pd static mixer [81]. The systems coated with Pd and Ni were tested in reductive
amination of aldehydes and ketones (i.e., functional amine synthesis). Usually, only one synthesis
product was formed without any side products with a high conversion (>90%). In those processing
runs where the intermediate compound formation stage was slow, a two-step procedure was applied
which included an additional flow reactor to increase the total conversion. For example, when the
synthesis of N-benzylaniline was switched to the two-step procedure with a Pd catalyst, the conversion
was improved from 12% to 84% [82]. Pd static mixers were also applied in the production of an
intermediate compound for an antimicrobial drug, linezolid, by reduction of substituted nitrobenzene
to a corresponding amine. This hydrogenation process helped with the production of the chemical
compound at a yield of 0.5 kg a day, which is three times the output of the current flow reaction
methods. Another advantage was the lack of necessary removal or recovery of the catalyst [83].

For processes in a batch reactor, the following solution was proposed: a mixture of Pd/SiO2

and polypropylene powders was processed by Selective Laser Sintering to build 3D porous catalytic
objects intended to work as magnetic stir bar covers. In hydrogenation of styrene and phenylacetylene,
the catalytic activity of the magnetic stir bar covers was similar to powdered Pd/SiO2 catalysts, but they
did not perform as well in hydrogenation of cyclohexene [84].

3.1.3. Other Structures for Catalytic Applications and Similar Fields

Catalysts are usually produced by binding a catalytic material somehow with the catalyst support;
it is also possible to bind catalytic materials with the inner surfaces of reaction vessels (reactionware)
with complex geometric features. Various 3D printing technologies are used for the production of
reactionware. Two approaches exist: integration or functionalization. Integration involves including
the catalyst species within a valid build material before the 3D printing process or using it as the
building material outright. Functionalization consists in coating a 3D-printed structure with an active
catalytic phase at the stage of 3D print postprocessing [8]. The application of 3D printing helps to build
batch reactors and flow reactors. Aside from application in chemical synthesis, fluidic devices are often
used in the chemical analysis of small volumes of substances and called micro- or millifluidics [85].

A system was developed in which a catalyst was 3D-printed into the structure of a reactionware
piece made from an acetoxysilicone material. It was done by Robocasting an acetoxysilicone polymer
paste doped with Pd/C. The catalyst was tested in hydrogenation of styrene to ethylbenzene, where the
hydrogen source was Et3SiH. Quantitative conversion of styrene was observed in 30 min of the reaction
at room temperature [86].

An integrated reactionware was manufactured and complete with reagents, catalysts, and purification
apparatus for performing the following reactions: Diels–Alder cyclization, imine formation, and imine
hydrogenation to a corresponding secondary amine. The base of the reactor structure was 3D-printed by
Fused Filament Fabrication from polypropylene. The catalyst components were printed over by Robotic
Deposition at specific locations of the structure. Acetoxysilicone polymer doped with montmorillonite
K10 or Pd/C was used as the building material. The yields of the compounds were slightly lower than
those of the compounds synthesized in standard laboratory glassware [87].

A number of 2D and 3D structures were printed for application in photochemical processes.
Thin films of TiO2 were printed with a modified office inkjet printer on glass plates. The photocatalytic
activity was confirmed in the reactions of decomposition of 2,6-dichloroindophenol [88], methyl
orange [89], and methylene blue [90,91]. The active films for the third reaction were also produced by
Robotic Deposition of hybrid inks doped with TiO2 [92]. Three-dimensional fiber networks of Al2O3
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ink were also produced by robotic printing. The structures were cured with UV light and sintered.
When a layer of TiO2 nanoparticles was deposited on the ceramic networks, they demonstrated
photocatalytic activity in the reaction of formaldehyde decomposition similar to that of powdered
TiO2 catalyst [93]. The mesh-form catalysts were also produced by Fused Deposition Modeling from
low density polyethylene filaments with deposited TiO2. These catalysts were applied as floating
photocatalysts in the degradation of organic pollutants in wastewater and they were found to be
efficient in the removal of ofloxacin [94]. Porous 3D structures were built by indirect inkjet printing with
CaSO4. Once impregnated with SiO2 and TiO2, the structures were tested in a process of degradation
of wastewater pollutants. It was demonstrated that the photocatalysts helped to achieve more than
50% and nearly 90% of methylene blue conversion over 1 h and 5 h of irradiation, respectively [95].
Structures of various shapes built by Fused Filament Fabrication from polymer nanocomposites, i.e.,
ABS (acrylonitrile-butadiene-styrene) doped with TiO2, proved to be efficient photocatalysts in the
degradation of rhodamine 6G [96].

AM technologies were used to make 3D catalytic structures for electrochemical processes,
like electrolysis of water [8]. Steel structures of various designs were built by Selective Laser
Melting [97–99]. Oxygen was generated with IrO2 [97,98] or NiFe [99]-coated structures. Hydrogen
was generated with Pt, Ni [98], or Ni-MoS2 [99]-coated structures. Fused Deposition Modeling was
applied to build carbon electrodes of graphene and poly(lactic acid). To make them useful in the
production of hydrogen gas, they were activated [100] and coated with MoS2 [101].

Researchers 3D-printed many structures from materials which, once sintered, developed properties
potentially significant to catalyst applications, like cellular structures built by bioplotting with metallic
or oxide forms of Fe and Ni [102] or periodic structures based on ZnO and built by Robocasting [103].

3.2. Indirectly Produced Structures

Another solution proposed was to apply 3D printing in the indirect synthesis of catalysts, with the
use of printed matrices (molds) [104]. This method is called “casting” and is used in the synthesis of
ceramic materials mainly for medical applications. Polymeric matrices are built by Fused Deposition
Modeling, Stereolithography, or Thermojetting, filled with ceramic material, and sintered to burn away
the matrix [105].

The indirect production of monolithic catalysts by the application of 3D printing also consists in
replication of the 3D-printed matrices (templates) (Figure 7). Templates were printed with a polymer
material on a high-resolution 3D printer which used Digital Light Processing. The cleaned and cured
templates were filled with a paste of corundum (α-Al2O3) and sodium silicate solution; in some
versions, other active components were used. The filled templates were dried and calcined at over
800 ◦C, which set the ceramic structure and removed the polymer material. In this way, non-porous
ceramic monoliths were produced. Monolithic structures were the reverse replicas of the templates
used for the production process. Some of the monoliths were additionally coated with one or more
active catalytic components by impregnation [106,107]. Three-dimensional printing made it possible
to build templates for monolithic catalysts with purpose-designed structures. The method allowed
precise replication of the template structure and control over the monolith architecture on a scale of
microns to prevent loss of geometric features and shrinkage [107].

Monoliths with a 3D system of channels were thus synthesized. The monoliths varied in the
size of main channels. The catalysts contained Mn and/or Na2WO4 and were intended for oxidative
coupling of methane (OCM). The Mn-Na2WO4 catalysts were active and selective in the tested process,
providing high selectivity to C2+ hydrocarbons at 67–70% and conversion at 23–25%. These results
were similar to those provided by the best Mn-Na2WO4/SiO2 powdered catalysts reported so far in the
reference literature. The catalysts also revealed excellent stability during 20 h of the process. The size
of the monolith channels significantly affected the catalytic performance, especially the distribution of
the products of the process [107].
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Monoliths with zeolite layers were also produced. The monolithic catalysts were dedicated for a
process of gaseous phase α-pinene isomerization. The catalysts were synthesized on supports formed
by corundum-silicate monoliths (without any doping) in the same way as above and functionalized
by deposition of Mordenite Framework Inverted (MFI) zeolite layers with various atomic ratios of
Si/Al. The activity of ZSM-5-coated monoliths increased with acidity (the number of acid sites),
i.e., with reduction of the Si/Al ratio within the deposited layer. The highest α-pinene conversion
was produced by the catalyst coated with a layer of ZSM-5 Si/Al = 30. The monoliths suffered partial
deactivation over time, but it was possible to restore the initial activity by regeneration in an oxidative
environment [108].

The monoliths prepared in the assistance of 3D printing with MFI zeolite layers were also used in
the total oxidation of volatile organic compounds (VOCs) [109]. It was found that the deposition of
cobalt by ion-exchange or impregnation techniques leads to the formation of highly dispersed Co3O4

spinel particles, resulting in excellent catalytic activity in the total oxidation of toluene. Moreover,
the stability tests revealed that the obtained monolithic catalysts can work for a long time without
noticeable changes in toluene conversion and selectivity to CO2.

Other research teams synthesized ceramic [110] and carbon [111] monoliths for catalytic
applications by using methods similar to the ones discussed above. Microstereolithography was
used to print the polymer templates. The templates were filled with cordierite paste, thermally
processed, and sealed with Al2O3. The resulting monoliths had a honeycomb structure, with a different
architecture of channels. In the last step of production, an active phase of CuO/CeO2 was loaded on
these supports. The monolithic catalysts were tested by CO oxidation with excessive oxygen and
preferential CO oxidation in an H2-rich mixture (CO-PROX). The catalyst with asymmetric channels
achieved higher conversion in both reactions and improved the reaction rates [110].

Polymer templates were synthesized with a 3D ME printer. The printed templates were filled
with a paste of phenol-formaldehyde resin, followed by solvothermal polymerization, and the residues
of the templates was removed with a solvent. Next, calcination was run under a nitrogen atmosphere.
The resulting carbon supports which varied in architecture had Ni-Al2O3 layers deposited. The obtained
monolithic catalysts were tested in a process of CO methanation. To produce high catalytic performance,
monoliths with straight channels with a diameter of approx. 0.67 mm were used. The monoliths
with tortuous channels approx. 0.84 mm in diameter enhanced the catalytic activity. Compared



Materials 2020, 13, 4534 18 of 23

with conventional powdered catalysts, the 3D-printed monolithic ones presented higher catalytic
performance for the syngas to methane process [111].

4. Conclusions

Additive manufacturing technologies are promising processes because of their high efficiency, ease
of application, and adaptability. The intensive development of new AM technologies, the decreasing
proportion of price to resolution, as well as the elaboration of new building materials have led to many
promising constructional, biomedical, consumer, and scientific applications.

In the field of catalysis, AM technologies were extensively explored to fabricate a variety of
heterogeneous catalysts and supports. Three-dimensional printed structures can be optimized in terms
of geometry and chemical composition as required by the target product to improve mass and heat
transfer as well as their catalytic performance. This review describes some promising results connected
with the architecture design of catalysts.

Currently, two approaches to the preparation of catalytic structures are being investigated. The first
solution is direct production of materials, layer-by-layer, using inks containing catalytic materials
or catalyst precursors. In the second indirect preparation method, a typical printed model made of
polymer resin is used as a template (negative replica) to prepare a catalyst. Both approaches have
advantages and disadvantages.

Further development is necessary in the following directions:

• improvement of the feedstock materials (reduction of temperatures and the number of
post-processing operations),

• printing techniques (improvement of the resolution and the ability to create multilayer materials
at once),

• control of porosity of catalytic materials prepared by AM,
• better control of acid-base and redox properties of catalysts,
• optimization of catalyst design.
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Poznań, Poland, 2016; pp. 72–78. ISBN 978-83-65362-38-4.

24. Zhou, X.; Liu, C. Three-dimensional Printing for Catalytic Applications: Current Status and Perspectives.
Adv. Funct. Mater. 2017, 27, 1701134. [CrossRef]

25. Parra-Cabrera, C.; Achille, C.; Kuhn, S.; Ameloot, R. 3D printing in chemical engineering and catalytic
technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018, 47, 209–230. [CrossRef]

26. Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [CrossRef]
27. Rossi, S.; Puglisi, A.; Benaglia, M. Additive Manufacturing Technologies: 3D Printing in Organic Synthesis.

ChemCatChem 2018, 10, 1512–1525. [CrossRef]
28. Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf.

Technol. 2013, 67, 1721–1754. [CrossRef]
29. Lee, J.Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials.

Appl. Mater. Today 2017, 7, 120–133. [CrossRef]
30. Bikas, H.; Stavropoulos, P.; Chryssolouris, G. Additive manufacturing methods and modeling approaches:

A critical review. Int. J. Adv. Manuf. Technol. 2016, 83, 389–405. [CrossRef]
31. Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and

prospective. Compos. Part B Eng. 2017, 110, 442–458. [CrossRef]

http://dx.doi.org/10.1081/CR-120001807
http://dx.doi.org/10.1039/C7CY00615B
http://dx.doi.org/10.1038/s41570-019-0097-z
http://dx.doi.org/10.1002/advs.201700187
http://dx.doi.org/10.1016/0010-4485(95)00035-6
http://dx.doi.org/10.1021/ac403397r
http://dx.doi.org/10.1038/nprot.2016.041
http://www.ncbi.nlm.nih.gov/pubmed/27077333
http://dx.doi.org/10.1021/acsbiomaterials.6b00121
http://www.ncbi.nlm.nih.gov/pubmed/28025653
http://dx.doi.org/10.1108/13552540310502185
http://dx.doi.org/10.1016/j.mattod.2017.07.001
http://dx.doi.org/10.1016/j.jmapro.2009.03.002
http://dx.doi.org/10.1007/s00170-018-1932-y
http://dx.doi.org/10.1002/adfm.201701134
http://dx.doi.org/10.1039/C7CS00631D
http://dx.doi.org/10.1021/acsapm.8b00165
http://dx.doi.org/10.1002/cctc.201701619
http://dx.doi.org/10.1007/s00170-012-4605-2
http://dx.doi.org/10.1016/j.apmt.2017.02.004
http://dx.doi.org/10.1007/s00170-015-7576-2
http://dx.doi.org/10.1016/j.compositesb.2016.11.034


Materials 2020, 13, 4534 20 of 23

32. Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.;
Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput. Aided
Des. 2015, 69, 65–89. [CrossRef]

33. Crump, S.S. Apparatus and Method for Creating Three-Dimensional Objects. U.S. Patent 5121329, 9 June 1992.
34. Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive

Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [CrossRef]
35. Nadgorny, M.; Ameli, A. Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and

Devices. ACS Appl. Mater. Interfaces 2018, 10, 17489–17507. [CrossRef]
36. Travitzky, N.; Bonet, A.; Dermeik, B.; Fey, T.; Filbert-Demut, I.; Schlier, L.; Schlordt, T.; Greil, P. Additive

manufacturing of ceramic-based materials. Adv. Eng. Mater. 2014, 16, 729–754. [CrossRef]
37. Low, Z.X.; Chua, Y.T.; Ray, B.M.; Mattia, D.; Metcalfe, I.S.; Patterson, D.A. Perspective on 3D printing of

separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 2017,
523, 596–613. [CrossRef]

38. Gross, B.; Lockwood, S.Y.; Spence, D.M. Recent advances in analytical chemistry by 3D printing. Anal. Chem.
2017, 89, 57–70. [CrossRef]

39. Hwa, L.C.; Rajoo, S.; Noor, A.M.; Ahmad, N.; Uday, M.B. Recent advances in 3D printing of porous ceramics:
A review. Curr. Opin. Solid State Mater. Sci. 2017, 21, 323–347. [CrossRef]

40. Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng.
2013, 8, 215–243. [CrossRef]

41. Dixit, C.K.; Kadimisetty, K.; Rusling, J. 3D-printed miniaturized fluidic tools in chemistry and biology. Trends
Anal. Chem. 2018, 106, 37–52. [CrossRef] [PubMed]

42. Manapat, J.Z.; Chen, Q.; Ye, P.; Advincula, R.C. 3D Printing of Polymer Nanocomposites via Stereolithography.
Macromol. Mater. Eng. 2017, 302, 1–13. [CrossRef]

43. Hull, C. Apparatus for Production of Three Dimensional Objects by Stereolithography. U.S. Patent 4575330,
11 March 1986.

44. Bártolo, P.J. Stereolithographic processes. In Stereolithography Materials, Processes and Applications; Bártolo, P.J.,
Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–36. ISBN 9789004310087.

45. Melchels, F.P.W.; Feijen, J.; Grijpma, D.W. A review on stereolithography and its applications in biomedical
engineering. Biomaterials 2010, 31, 6121–6130. [CrossRef]

46. Chartrain, N.A.; Williams, C.B.; Whittington, A.R. A review on fabricating tissue scaffolds using vat
photopolymerization. Acta Biomater. 2018, 74, 90–111. [CrossRef]

47. Hinczewski, C.; Corbel, S.; Chartier, T. Ceramic suspensions suitable for stereolithography. J. Eur. Ceram. Soc.
1998, 18, 583–590. [CrossRef]

48. Singh, D.D.; Mahender, T.; Raji, A. Powder bed fusion process: A brief review. Mater. Today Proc. 2020, in
press. [CrossRef]

49. Zhang, F.; Wei, M.; Viswanathan, V.V.; Swart, B.; Shao, Y.; Wu, G.; Zhou, C. 3D printing technologies for
electrochemical energy storage. Nano Energy 2017, 40, 418–431. [CrossRef]

50. Palenzuela, C.L.M.; Pumera, M. (Bio) Analytical chemistry enabled by 3D printing: Sensors and biosensors.
Trends Anal. Chem. 2018, 103, 110–118. [CrossRef]

51. Krujatz, F.; Lode, A.; Seidel, J.; Bley, T.; Gelinsky, M.; Steingroewer, J. Additive Biotech—Chances, challenges,
and recent applications of additive manufacturing technologies in biotechnology. New Biotechnol. 2017, 39,
222–231. [CrossRef] [PubMed]

52. Stuecker, J.N.; Miller, J.E.; Ferrizz, R.E.; Mudd, J.E.; Cesarano, J. Advanced Support Structures for Enhanced
Catalytic Activity. Ind. Eng. Chem. Res. 2004, 43, 51–55. [CrossRef]

53. Ferrizz, R.M.; Stuecker, J.N.; Cesarano, J.; Miller, J.E. Monolithic Supports with Unique Geometries and
Enhanced Mass Transfer. Ind. Eng. Chem. Res. 2005, 44, 302–308. [CrossRef]

54. Tubío, C.R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitián, F.; Sotelo, E.; Gil, A. 3D printing of a heterogeneous
copper-based catalyst. J. Catal. 2016, 334, 110–115. [CrossRef]

55. Azuaje, J.; Tubío, C.R.; Escalante, L.; Gómez, M.; Guitián, F.; Coelho, A.; Caamaño, O.; Gil, A.; Sotelo, E.
An efficient and recyclable 3D printed α-Al2O3 catalyst for the multicomponent assembly of bioactive
heterocycles. Appl. Catal. A Gen. 2017, 530, 203–210. [CrossRef]

http://dx.doi.org/10.1016/j.cad.2015.04.001
http://dx.doi.org/10.1021/acs.chemrev.7b00074
http://dx.doi.org/10.1021/acsami.8b01786
http://dx.doi.org/10.1002/adem.201400097
http://dx.doi.org/10.1016/j.memsci.2016.10.006
http://dx.doi.org/10.1021/acs.analchem.6b04344
http://dx.doi.org/10.1016/j.cossms.2017.08.002
http://dx.doi.org/10.1007/s11465-013-0248-8
http://dx.doi.org/10.1016/j.trac.2018.06.013
http://www.ncbi.nlm.nih.gov/pubmed/32296252
http://dx.doi.org/10.1002/mame.201600553
http://dx.doi.org/10.1016/j.biomaterials.2010.04.050
http://dx.doi.org/10.1016/j.actbio.2018.05.010
http://dx.doi.org/10.1016/S0955-2219(97)00186-6
http://dx.doi.org/10.1016/j.matpr.2020.08.415
http://dx.doi.org/10.1016/j.nanoen.2017.08.037
http://dx.doi.org/10.1016/j.trac.2018.03.016
http://dx.doi.org/10.1016/j.nbt.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/28890405
http://dx.doi.org/10.1021/ie030291v
http://dx.doi.org/10.1021/ie049468r
http://dx.doi.org/10.1016/j.jcat.2015.11.019
http://dx.doi.org/10.1016/j.apcata.2016.11.031


Materials 2020, 13, 4534 21 of 23

56. Díaz-Marta, A.S.; Tubío, C.R.; Carbajales, C.; Fernández, C.; Escalante, L.; Sotelo, E.; Guitián, F.; Barrio, V.L.;
Gil, A.; Coelho, A. Three-Dimensional Printing in Catalysis: Combining 3D Heterogeneous Copper and
Palladium Catalysts for Multicatalytic Multicomponent Reactions. ACS Catal. 2018, 8, 392–404. [CrossRef]

57. Díaz-Marta, A.S.; Yañez, S.; Tubio, C.R.; Barrio, V.L.; Piñeiro, Y.; Pedrido, R.; Rivas, J.; Amorin, M.;
Guitian, F.; Coelho, A. Multicatalysis combining 3D-printed devices and magnetic nanoparticles in one-pot
reactions: Steps forward in compartmentation and recyclability of catalysts. ACS Appl. Mater. Interfaces
2019, 11, 25283–25294. [CrossRef]

58. Lefevere, J.; Mullens, S.; Meynen, V. The impact of formulation and 3D-printing on the catalytic properties of
ZSM-5 zeolite. Chem. Eng. J. 2018, 349, 260–268. [CrossRef]

59. Li, X.; Rezaei, F.; Rownaghi, A.A. 3D-printed zeolite monoliths with hierarchical porosity for selective
methanol to light olefin reaction. React. Chem. Eng. 2018, 3, 733–746. [CrossRef]

60. Li, X.; Rezaei, F.; Rownaghi, A.A. Methanol-to-olefin conversion on 3D-printed ZSM-5 monolith catalysts:
Effects of metal doping, mesoporosity and acid strength. Microporous Mesoporous Mater. 2019, 276, 1–12.
[CrossRef]

61. Magzoub, F.; Li, X.; Al-Darwish, J.; Rezaei, F.; Rownaghi, A.A. 3D-printed ZSM-5 monoliths with metal
dopants for methanol conversion in the presence and absence of carbon dioxide. Appl. Catal. B Environ.
2019, 245, 486–495. [CrossRef]

62. Li, X.; Li, W.; Rezaei, F.; Rownaghi, A. Catalytic cracking of n-hexane for producing light olefins on 3D-printed
monoliths of MFI and FAU zeolites. Chem. Eng. J. 2018, 333, 545–553. [CrossRef]

63. Li, X.; Alwakwak, A.A.; Rezaei, F.; Rownaghi, A.A. Synthesis of Cr, Cu, Ni, and Y-Doped 3D-Printed ZSM-5
Monoliths and Their Catalytic Performance for n-Hexane Cracking. ACS Appl. Energy Mater. 2018, 1,
2740–2748. [CrossRef]

64. Magzoub, F.; Li, X.; Lawson, S.; Rezaei, F.; Rownaghi, A.A. 3D-printed HZSM-5 and 3D-HZM5@SAPO-34
structured monoliths with controlled acidity and porosity for conversion of methanol to dimethyl either.
Fuel 2020, 280, 118628. [CrossRef]

65. Elkoro, A.; Casanova, I. 3D Printing of Structured Nanotitania Catalysts: A Novel Binder-Free and
Low-Temperature Chemical Sintering Method. 3D Print. Addit. Manuf. 2018, 5, 220–226. [CrossRef]

66. Elkoro, A.; Soler, L.; Llorca, J.; Casanova, I. 3D printed microstructured Au/TiO2 catalyst for hydrogen
photoproduction. Appl. Mater. Today 2019, 16, 265–272. [CrossRef]

67. Quintanilla, A.; Casas, J.A.; Miranzo, P.; Osendi, M.I.; Belmonte, M. 3D-Printed Fe-doped silicon carbide
monolithic catalysts for wet peroxide oxidation processes. Appl. Catal. B Environ. 2018, 235, 246–255.
[CrossRef]

68. Wang, X.; Guo, W.; Abu-Reziq, R.; Magdassi, S. High-Complexity WO3-Based Catalyst with Multi-Catalytic
Species via 3D Printing. Catalysts 2020, 10, 840. [CrossRef]

69. Van Noyen, J.; De Wilde, A.; Schroeven, M.; Mullens, S.; Luyten, J. Ceramic processing techniques for catalyst
design: Formation, properties, and catalytic example of ZSM-5 on 3-dimensional fiber deposition support
structures. Int. J. Appl. Ceram. Technol. 2012, 9, 902–910. [CrossRef]

70. Lefevere, J.; Gysen, M.; Mullens, S.; Meynen, V.; Van Noyen, J. The benefit of design of support architectures
for zeolite coated structured catalysts for methanol-to-olefin conversion. Catal. Today 2013, 216, 18–23.
[CrossRef]

71. Danaci, S.; Protasova, L.; Lefevere, J.; Bedel, L.; Guilet, R.; Marty, P. Efficient CO2 methanation over Ni/Al2O3

coated structured catalysts. Catal. Today 2016, 273, 234–243. [CrossRef]
72. Zhu, C.; Qi, Z.; Beck, V.A.; Luneau, M.; Lattimer, J.; Chen, W.; Worsley, M.A.; Ye, J.; Duoss, E.B.;

Spadaccini, C.M.; et al. Toward digitally controlled catalyst architectures: Hierarchical nanoporous
gold via 3D printing. Sci. Adv. 2018, 4, 9459. [CrossRef] [PubMed]

73. Konarova, M.; Aslam, W.; Ge, L.; Ma, Q.; Tang, F.; Rudolph, V.; Beltramini, J.N. Enabling Process Intensification
by 3D Printing of Catalytic Structures. ChemCatChem 2017, 9, 4132–4138. [CrossRef]

74. Zhou, X.; Liu, C. Jun three-dimensional printing of porous carbon structures with tailorable pore sizes.
Catal. Today 2018. [CrossRef]

75. Chaparro-Garnica, C.Y.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; Bueno-López, A. Design
of Monolithic Supports by 3D Printing for Its Application in the Preferential Oxidation of CO (CO-PrOx).
ACS Appl. Mater. Interfaces 2019, 11, 36763–36773. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/acscatal.7b02592
http://dx.doi.org/10.1021/acsami.9b08119
http://dx.doi.org/10.1016/j.cej.2018.05.058
http://dx.doi.org/10.1039/C8RE00095F
http://dx.doi.org/10.1016/j.micromeso.2018.09.016
http://dx.doi.org/10.1016/j.apcatb.2019.01.008
http://dx.doi.org/10.1016/j.cej.2017.10.001
http://dx.doi.org/10.1021/acsaem.8b00412
http://dx.doi.org/10.1016/j.fuel.2020.118628
http://dx.doi.org/10.1089/3dp.2017.0164
http://dx.doi.org/10.1016/j.apmt.2019.06.007
http://dx.doi.org/10.1016/j.apcatb.2018.04.066
http://dx.doi.org/10.3390/catal10080840
http://dx.doi.org/10.1111/j.1744-7402.2012.02781.x
http://dx.doi.org/10.1016/j.cattod.2013.05.020
http://dx.doi.org/10.1016/j.cattod.2016.04.019
http://dx.doi.org/10.1126/sciadv.aas9459
http://www.ncbi.nlm.nih.gov/pubmed/30182056
http://dx.doi.org/10.1002/cctc.201700829
http://dx.doi.org/10.1016/j.cattod.2018.05.044
http://dx.doi.org/10.1021/acsami.9b12731
http://www.ncbi.nlm.nih.gov/pubmed/31535557


Materials 2020, 13, 4534 22 of 23

76. Rossi, S.; Puglisi, A.; Raimondi, L.M.; Benaglia, M. Stereolithography 3D-Printed Catalytically Active Devices
in Organic Synthesis. Catalysts 2020, 10, 109. [CrossRef]

77. Saha, A.; Johnston, T.G.; Shafranek, R.T.; Goodman, C.J.; Zalatan, J.G.; Storti, D.W.; Ganter, M.A.; Nelson, A.
Additive Manufacturing of Catalytically Active Living Materials. ACS Appl. Mater. Interfaces 2018, 10,
13373–13380. [CrossRef]

78. Cybulski, A.; Moulijn, J.A. The present and the future of structured catalysts: An overview. In Structured
Catalysts and Reactors; Cybulski, A., Moulijn, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–18.
ISBN 9780824723439.

79. Elias, Y.; von Rohr, P.R.; Bonrath, W.; Medlock, J.; Buss, A. A porous structured reactor for hydrogenation
reactions. Chem. Eng. Process. 2015, 95, 175–185. [CrossRef]

80. Avril, A.; Hornung, C.H.; Urban, A.; Fraser, D.; Horne, M.; Veder, J.-P.; Tsanaktsidis, J.; Rodopoulos, T.;
Henry, C.; Gunasegaram, D.R. Continuous flow hydrogenations using novel catalytic static mixers inside a
tubular reactor. React. Chem. Eng. 2017, 2, 180–188. [CrossRef]

81. Hornung, C.H.; Nguyen, X.; Carafa, A.; Gardiner, J.; Urban, A.; Fraser, D.; Horne, M.D.; Gunasegaram, D.R.;
Tsanaktsidis, J. Use of Catalytic Static Mixers for Continuous Flow Gas-Liquid and Transfer Hydrogenations
in Organic Synthesis. Org. Process Res. Dev. 2017, 21, 1311–1319. [CrossRef]

82. Genet, C.; Nguyen, X.; Bayatsarmadi, B.; Horne, M.D.; Gardiner, J.; Hornung, C.H. Reductive aminations
using a 3D printed supported metal (0) catalyst system. J. Flow Chem. 2018, 8, 81–88. [CrossRef]

83. Gardiner, J.; Nguyen, X.; Genet, C.; Horne, M.D.; Hornung, C.H.; Tsanaktsidis, J. Catalytic Static Mixers for
the Continuous Flow Hydrogenation of a Key Intermediate of Linezolid (Zyvox). Org. Process Res. Dev.
2018, 22, 1448–1452. [CrossRef]

84. Lahtinen, E.; Turunen, L.; Hänninen, M.M.; Kolari, K.; Tuononen, H.M.; Haukka, M. Fabrication of porous
hydrogenation catalysts by Selective Laser Sintering 3D printing technique. ACS Omega 2019, 4, 12012–12017.
[CrossRef] [PubMed]

85. Capel, A.J.; Rimington, R.P.; Lewis, M.P.; Christie, S.D.R. 3D printing for chemical, pharmaceutical and
biological applications. Nat. Rev. Chem. 2018, 2, 422–436. [CrossRef]

86. Symes, M.D.; Kitson, P.J.; Yan, J.; Richmond, C.J.; Cooper, G.J.T.; Bowman, R.W.; Vilbrandt, T.; Cronin, L.
Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 2012, 4, 349–354.
[CrossRef]

87. Kitson, P.J.; Symes, M.D.; Dragone, V.; Cronin, L. Combining 3D printing and liquid handling to produce
user-friendly reactionware for chemical synthesis and purification. Chem. Sci. 2013, 4, 3099–3103. [CrossRef]
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