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Abstract: In this work, polyamide 6 (PA6) composites with improved flame retardancy and thermal
conductivity were prepared with different thermal conductive fillers (TC fillers) such as aluminum
nitride (AlN) and boron nitride (BN) in a PA6 matrix with aluminum diethylphosphinate (AlPi) as
a fire retardant. The resultant halogen-free flame retardant (HFFR) and thermal conductive (TC)
PA6 (HFFR-TC-PA6) were investigated in detail with a mechanical property test, a limiting oxygen
index (LOI), the vertical burning test (UL-94), a cone calorimeter, a thermal gravimetric analysis
(TGA) and differential scanning calorimetry (DSC). The morphology of the impact fracture surface
and char residue of the composites were analyzed by scanning electron microscopy (SEM). It was
found that the thermal conductivity of the HFFR-TC-PA6 composite increased with the amount of TC
fillers. The TC fillers exerted a positive effect for flame retardant PA6. For example, the HFFR-TC-PA6
composites with the thickness of 1.6 mm successfully passed the UL-94 V-0 rating with an LOI of
more than 29% when the loading amount of AlN-550RFS, BN-SW08 and BN-NW04 was 30 wt%.
The morphological structures of the char residues revealed that TC fillers formed a highly integrated
char layer surface (without holes) during the combustion process, as compared to that of flame
retardant PA6/AlPi composites. In addition, the thermal stability and crystallization behavior of the
composites were studied.

Keywords: polyamide 6; flame retardancy; thermal conductivity; thermal conductive
fillers; composites

1. Introduction

Modified engineering materials have been widely used for electronic devices, automobiles and
aerospace applications in the past few decades [1–4]. However, the cutting-edge compact, complex
and integrated designs of devices have raised the requirements for engineering materials which have
to bear the ability to be assembled in a small integrated space, light weight, super heat dissipation,
and flame retardancy properties [5,6]. Even when metal and ceramic materials fit well in heat
dissipation and flame retardancy properties, their extreme processing conditions and high densities
lead them to be disqualified for such applications [7]. Polymer composites (e.g., polyamide 6 (PA6)),
on the other hand, which have many excellent properties, such as an ease of processing, lightweight,
good electrical insulation and tailorable mechanical properties [8,9], have been considered as the most
promising candidates for compact and integrated electronics and new energy device applications,
even if challenges regarding their thermal conductivity and fire retardancy still need to be addressed.
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Polyamide 6 (PA6) is an important engineering plastic that has been vastly used due to its
excellent mechanical properties, good heat resistance, and good chemical resistance [10–16]. PA6 can
be easily applied to automobile components, electrical connectors, switch components, high power
light emitting diodes (LEDs) field, etc. [17]. However, its applications are restricted to those fields
that require high flame retardance and thermal conductivity due to its inadequate flame retardancy,
severe flammable melt dripping, and relative low thermal conductivity [18,19]. Taking its application
in electrical products as an example, during the usage of electrical products, the high temperature
generated from circuits or other components is required to be emitted instantly, otherwise overheating
may occur, thus sacrificing performance. Therefore, it is necessary to ensure that the PA6 used for such
applications has good thermal conductivity. Additionally, the electrical components using PA6 are
required to have high flame retardancy to avoid fires during electrical breakdown or other abnormal
conditions. With these considerations, exploring the PA6 composites with both flame retardancy and
thermal conductivity is of academic significance and practical value. However, thus far, most research
has focused on either the fire retardancy or thermal conductive properties of PA6; limited reports have
combined these two properties together in single studies, which are of course significant for applications.
Yuan D. et al. [20] investigated the thermal conductivity of a PA6/PA66 1:1 blend by aluminum nitride
(AlN) and found thermal conductivity of the PA6/PA66/AlN composite with 50% AlN was 1.5 W/mK,
but the flame retardancy of the composite materials was not discussed. Zhong Y. et al. [21] reported
the effect of boron nitride (BN) on the flame retardancy and thermal stability of flame retardant PA6,
but the thermal conductivity of the flame-retardant-thermal conductive-PA6 (FR-TC-PA6) composites
was not fully discussed.

To date, varieties of halogen-free flame retardants have been proposed for polyamide,
including ammonium polyphosphate (APP) [22], melamine cyanurate (MCA) [23,24], and aluminum
diethylphosphinate (AlPi) [25,26]. Among them, AlPi is phosphorus flame retardant which has been
developed and commercialized. This material has been proven to be an effective flame retardant for
PA6 [27,28]. Wirasaputra A. et al. [25] reported that the PA6/AlPi composites passed the UL-94 (vertical
burning test) V-2 rating, and the limiting oxygen index (LOI) value reached up to 29.3% when 13 wt%
AlPi was loaded. Ma K. et al. [19] reported that when the loading of AlPi was 13 wt%, thee LOI value
of the PA6/AlPi composites increased to 30% and passed the UL-94 V-0 rating. However, these reports
only focused on the flame retardancy properties of PA6; the thermal conductivity of flame retardant
PA6 was not discussed.

A simple and effective method to enhance the thermal conductivity of a polymer matri, is to directly
incorporate thermally conductive (TC) fillers, such as aluminum nitride (AlN) [20], boron nitride
(BN) [29], alumina (Al2O3) [30], silicon carbide (SiC) [31], carbon nanotubes [32], and graphene [33].
Research has been conducted to evaluate the properties of the polymer/TC composites, and strategies
have been proposed to improve the thermal conductivity of the polymer/TC composites by improving
the dispersion of TC fillers in a polymer matrix. For example, Nikoo G. et al. [34] used the relationship
between normalized storage modulus and angular frequency as a method to compare the degree of
dispersion of BN particles in a PA6 and cyclic olefin copolymer (COC) matrix; they found that BN
particles had a better dispersion in the PA6 matrix than in the COC matrix due to better compatibility
between PA6 and BN. Tang D. et al. [35] studied the dispersion of KH550-modified BN in an epoxy
matrix and its effect on the thermal conductivity and mechanical properties of the composite; it was
found that KH550-BN could be more uniformly dispersed in the matrix than pristine BN, and the
epoxy/KH550-BN composite had a relatively higher thermal conductivity. In addition, different
processing methods have been found to have different effects on the thermal conductivity of composites.
It has been found that the fillers in the melt are oriented by the flow during extrusion stretching or
injection molding, and this leads to different thermal conductivities for anisotropic fillers [36].

As inorganic fillers, TC fillers may have either favorable or unfavorable effect on the flame
retardancy of polymer composites, but reports on related research are limited. Almeras X. et al. [37]
investigated the effect of fillers (talc and calcium carbonate) on the fire performance of a
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polypropylene/ammonium polyphosphate/polyamide-6 blend. It was found that the fire performance
strongly depended on the nature of the fillers used, as talc increased and calcium carbonate decreased
the flame retardancy performance of the corresponding composites.

In this study, we prepared halogen-free flame retardant (HFFR)-TC-PA6 composites bearing both
a high thermal conductivity and excellent flame retardancy for potential application in an electrical
field. The HFFR-TC-PA6 composites with fire retardant AlPi and different types of TC fillers were
compounded by using extrusion and injection molding, and the effect of TC fillers on the mechanical
properties, thermal conductivity, flame retardance properties and thermal behavior of the HFFR-TC-PA6
composites were investigated.

2. Experimental

2.1. Materials

Commercial grade PA6 pellets (1013B) were sourced from Ube Industries, Ltd., Tokyo, Japan.
The flame retardant aluminum diethylphosphinate (AlPi) Exolit OP1230 was purchased from Clariant
Co., Frankfurt, Germany. Thermal conductive filler (TC filler) aluminum nitride (two grades AlN,
a spherical AlN-550RFS with an average particle size of 55 µm and aspherical AlN-300SFS with an
average particle size of 10 µm) and boron nitride (two grades BN, a BN-NW04 with an average particle
size of 0.5 µm and BN-SW08 with an average particle size of 6 µm) were purchased from Global Top
Trading Co., Ltd. (Kunshan, China).

2.2. Preparation of HFFR-TC-PA6 Composites

The composites of HFFR-TC-PA6 were prepared by melt mixing through a twin-screw co-rotating
extruder (model AK36, L/D ratio = 40, Nanjing Keya Chemical Complete Equipment Co., Ltd, Nanjing,
China). The mixing ratios are given in Table 1. Firstly, PA6 was dried under vacuum at 100 ◦C for
24 h, while AlPi, AlN-550RFS, AlN-300SFS, BN-SW08 and BN-NW04 were all dried at 80 ◦C for 24 h
before use. Secondly, the dried PA6, AlPi, and the TC fillers were mixed in a high-speed mixer at a
speed of 1200 rpm for 2 min, the mixtures were fed into twin-screw extruder, the temperature profiles
were set to 220, 225, 230, 240, 240, 240, 240, 240, 240 and 240 ◦C, from hopper to die, and then the
extrudates were pelletized after cooling. After drying at 110 ◦C for 24h, the HFFR-TC-PA6 pellets
were injection-molded to standard testing bars by using an injection molding machine (model TW-25V,
clamping force 25 tons, Dongguan Taiwang Machinery Co., Ltd. Dongguan, China). The temperature
profiles were set to 220 ◦C (hopper), 230 ◦C and 240 ◦C (nozzle).

Table 1. Mixing ratios of different materials in composites.

Name of Composite PA6/AlPi/TC Filler TC Filler Content (wt%)

S0 90:10:0 0%
10% AlN-550RFS 90:10:11.11 10%
20% AlN-550RFS 90:10:25 20%
30% AlN-550RFS 90:10:42.86 30%
40% AlN-550RFS 90:10:66.67 40%
50% AlN-550RFS 90:10:100 50%
30% AlN-300SFS 90:10:42.86 30%
50% AlN-300SFS 90:10:100 50%

30% BN-SW08 90:10:42.86 30%
50% BN-SW08 90:10:100 50%
30% BN-NW04 90:10:42.86 30%
50% BN-NW04 90:10:100 50%
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2.3. Characterization

Mechanical properties were evaluated by tensile, flexural and Izod impact tests. Tensile and
flexural tests were performed on an MTS-CMT 6104 universal mechanical tester (MTS, Eden Prairie, MN,
USA). The dimension of the type 1A dumbbell-shaped specimens for tensile test was 150 × 20 × 4.0 mm
in accordance with ISO 527: 2019, the speed of the test was 50 mm/min, the dimensions of rectangular
bars for the flexural test were 80 × 10 × 4.0 mm in accordance with ISO 178: 2016, and the speed of the
test was 2 mm/min. The notched Izod impact test was carried out with the MTS-ZBC 8400-B impact
tester (MTS, Eden Prairie, MN, USA), the dimensions of the specimens with a type A notch were
80 × 10 × 4.0 mm in accordance with ISO 180: 2016. Each value of the mechanical properties was an
average of five specimens.

The vertical burning test was performed according to UL-94, and the dimensions of all specimens
were 125 × 13 × 3.0 mm and 125 × 13 × 1.6 mm. The limiting oxygen index (LOI) values were measured
according to ISO 4589-2: 2017, and the dimensions of all samples were 80 × 10 × 4.0 mm. According to
ISO 5660-1: 2015, the fire behavior of the samples was measured by a cone calorimeter device. Samples
having size of 100 × 100 × 3.0 mm were exposed to a radiant cone (50 kW/m2). The plaques were
placed in the sample holder with a retainer frame, and the top surface of the sample was directly
exposed the heat source.

The thermal conductivity of the HFFR-TC-PA6 composite was measured using the steady state
heat flow method and conducted on a Longwin instrument (model LW-9389, Longwin company,
Dongguan, China). Measurements were performed according to ASTM D5470-17, and the dimensions
of the samples were 27 × 27 × 5 mm. This method is based on idealized heat conduction between two
parallel, isothermal surfaces separated by a test specimen of uniform thickness. The thermal gradient
imposed on the specimen by the temperature difference between the two contacting surfaces causes
the heat flow through the specimen. This heat flow is perpendicular to the test surface and is uniform
across the surfaces with no lateral heat spreading. The thermal conductivity was calculated using the
following equation:

λ =
Qh + Qc

2
·

L
∆T

(1)

where λ is the thermal conductivity of the material, Qh is the heat flow in hot meter bar, Qc is the heat
flow in cold meter bar, L is the thickness of the sample, and ∆T is the temperature difference between
the upper surface and lower surface of the sample.

Thermogravimetric (TG) experiments were conducted on a TA instruments (model Q50,
TA Instruments, Newcastle, DE, USA) with a nitrogen flow rate of 40 mL/min. Samples (~2 mg) were
heated in Al2O3 pans from 40 to 700 ◦C at a heating rate of 20 ◦C/min. The onset decomposition
temperature, T5%, at which 5 wt% of the original weight was lost, and Tmax, at which the products
possessed the maximum weight loss rate, were recorded together with the residue weight.

The morphologies of the HFFR-TC-PA6 composites were obtained from fracture surfaces from the
impact test by using a scanning electron microscope (SEM, HITACHI S-550, Tokyo, Japan) operated at
a 10 kV accelerating voltage. Samples were sputter-coated with gold before test.

Differential scanning calorimeter (DSC) analysis was carried out on DSC-60A, Shimadzu
instruments. The specimen was heated from 40 to 260 ◦C at a heating rate of 10 ◦C/min, held for 3 min,
cooled to 40 ◦C at a rate of 10 ◦C/min, and then finally reheated to 260 ◦C at a heating rate of 10 ◦C/min.
The degrees of crystallinity of PA6 in the resulting composites were calculated as follows:

Xc =
∆Hm

pi · ∆H0
m

(2)

where ∆Hm is the melting enthalpy, obtained from melting peak of second heating curve of PA6, pi is
weight percent of PA6, and ∆H0

m is 100% crystalline enthalpy of PA6, which is 230 J/g [20].
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3. Results

3.1. Effect of TC Fillers on the Mechanical Properties and Thermal Conductivity of HFFR-TC-PA6 Composites

The mechanical properties of HFFR-TC-PA6 with different AlN amounts are summarized in
Table 2. These are averaged values along with standard deviations of five samples. As shown in
Table 2, the tensile strength, flexural strength, and notched Izod impact strength of HFFR-TC-PA6
gradually decreased as the amount of AlN increased. The tensile strength, flexural strength,
and notched Izod impact strength for the S0 composite were 61.16 MPa, 98.50 MPa and 8.99 KJ/m2,
respectively, which decreased down to 37.51 MPa, 63.84 MPa and 6.11 KJ/m2, respectively, when 50 wt%
AlN-550RFS was incorporated, thus presenting reductions of 38.67%, 35.19%, and 32.04%, respectively.
Such reductions in mechanical properties could be primarily attributed to the poor compatibility
between AlN particles and PA6, resulting in an uneven dispersion or agglomeration of particles in the
polymer matrix and weak microstructures, which is beneficial for stress concentration, crack generation
and propagation. The flexural modulus, however, gradually increased with increasing AIN amount,
which was 2840 MPa for the S0 composite and presented up to a 58.91% enhancement when the
50 wt% AlN-550RFS was incorporated. Such an increase in flexural modulus may have been due to the
rigidity of fillers, which improve the overall flexural resistance of composites. A similar trend was also
observed in the HFFR-TC-PA6 composites filled with AlN-300SFS.

Table 2. Mechanical properties and thermal conductivity of the halogen-free flame retardant (HFFR)
and thermal conductive (TC) polyamide 6 (PA6) (HFFR-TC-PA6) composite with different amounts of
spherical aluminum nitride (AlN)-550RFS and non-spherical AlN-300SFS.

Name of
Composite

Tensile Strength
(MPa)

Flexural
Strength (MPa)

Flexural
Modulus (MPa)

Notched Izod
Impact (KJ/m2)

Thermal Conductivity
(W/mK)

S0 61.16 ± 1.94 98.50 ± 4.67 2840 ± 73 8.99 ± 0.15 0.310
10% AlN-550RFS 55.61 ± 0.60 94.24 ± 3.07 3151 ± 68 7.42 ± 0.4 0.365
20% AlN-550RFS 49.85 ± 1.47 90.26 ± 0.47 3282 ± 77 7.03 ± 0.16 0.404
30% AlN-550RFS 46.04 ± 0.64 88.99 ± 2.90 3911 ± 151 6.77 ± 0.13 0.468
40% AlN-550RFS 41.78 ± 1.38 85.93 ± 1.15 4438 ± 852 6.44 ± 0.3 0.572
50% AlN-550RFS 37.51 ± 0.89 63.84 ± 0.17 4513 ± 188 6.11 ± 0.09 0.739
30% AlN-300SFS 40.54 ± 0.11 73.99 ± 1.98 3207 ± 135 7.01 ± 0.41 0.505
50% AlN-300SFS 33.50 ± 0.81 64.33 ± 1.03 4457 ± 279 5.31 ± 0.13 0.799

It is well known that the performance of material largely depends on the microstructures.
The pristine AlN-550RFS and AlN-300SFS, and the fracture surfaces of the HFFR-TC-PA6 composites
were analyzed using SEM, as shown in Figure 1. As seen in Figure 1a,b, the raw AlN-550RFS has
a relatively regular spherical morphology, while the raw AlN-300SFS presented irregular shapes.
In Figure 1c, the S0 composite without AlN had a rocky pattern fracture surface, thus indicating
a fast fracture mechanism and a brittle fracture. Figure 1d,e shows the micrograph of the 30%
AlN-550RFS and 30% AlN-300SFS composites, respectively. It can be observed that AlN particles
had a weak filler-matrix interface, and voids left by the separation of the filler particles from the
matrix resin could be observed. Figure 1f,g presents the micrograph of 50% AlN-550RFS and 50%
AlN-300SFS, respectively, which shows that a large number of AlN particles fell off from the PA6
matrix during the impact test, and the gap between the filler and the PA6 matrix resin was obvious,
thus indicating a poor compatibility. Furthermore, it can also be seen from Table 2 that with the same
filler amount, the HFFR-TC-PA6 composite with AlN-550RFS had better mechanical properties than the
HFFR-TC-PA6 composite with AlN-300SFS. The reason for this may be that the AlN-300SFS, which has
a smaller particle size, tends to more easily aggregate, which results in the increase of defects in the
composites and further leads to a decrease of mechanical properties [38].
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Figure 1. SEM micrographs of (a) AlN-550RFS, (b) AlN-300SFS, (c) S0, (d) 30% AlN-550RFS composites,
(e) 30% AlN-300SFS, (f) 50% AlN-550RFS composites, and (g) 50% AlN-300SFS composites.

A comparative analysis of the data in Table 2 shows that the thermal conductivity was a function of
the weight fraction of AlN in the HFFR-PA6 composites. The thermal conductivity increased along with
the increase of the AlN-550RFS amount. The thermal conductivity of 30% AlN-550RFS was 0.468 W/mK,
similar to that (~0.5 W/mK) reported in the literature for the PA6/AlN composite with 30 wt% AlN [16],
and this reveals the reliability and repeatability of the experiments. When the AlN-550RFS content was
50 wt%, the thermal conductivity of the HFFR-TC-PA6 composite increased to 0.739 W/mK, which was
238% higher than that of the S0 composite. It can be seen from Figure 1d,e that isolated particles were
dispersed in the PA6 matrix when 30 wt% AlN-550RFS was incorporated, while overlapped particles
were observed for the HFFR-TC-PA6 composite with 50 wt% AlN-550RFS, which formed connected
paths for thermal transfer, resulting in a higher thermal conductivity. Compared to AlN-300SF,
AlN-S550RFS presented a lower thermal conductivity due to a smaller contact area between the
spherical AlN, which had more difficulty forming a conductive path than other forms of AlN [39].

The effects of two different types of BN fillers (BN-NW04 and BN-SW08) on the mechanical
properties and thermal conductivity of the HFFR-TC-PA6 composite were also evaluated,
as summarized in Table 3. The tensile and flexural strengths of HFFR-TC-PA6 composites filled
with BN-NW04 (particle size was 0.5 µm) slightly decreased with the increase of the BN-NW04 amount
from 30 to 50 wt%. On the contrary, the tensile strengths of the HFFR-TC-PA6 composites filled with
BN-SW08 (particle size was 6µm) were equivalent for both 30 and 50 wt% BN-SW08 with the uncertainty
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of error, while the composite with 50 wt% BN-SW08 presented a 10.53% higher flexural strength.
The HFFR-TC-PA6 composite filled with 30 wt% BN-NW04 showed significantly higher tensile and
flexural strengths as well as thermal conductivity than the HFFR-TC-PA6 composite filled with 30 wt%
BN-SW08. This may have been induced by much smaller particle sizes, which increased the interfacial
contacting area between the matrix and fillers, thus reducing the stress concentration or improving
thermal transfer efficiency [40]. However, 50 wt% of BN particles with different particle sizes did not
present obvious differences in tensile strength and thermal conductivity, which may be attributed to
over-concentrated BN loadings that diminished the influence of particle size. The morphology of two
types of BN and fracture surfaces of the HFFR-TC-PA6 composites are presented in Figure 2. As shown
in Figure 2a,d, both BN particles had similar circular flake-like shapes but different sizes, i.e., an average
particle size of 6 µm for BN-SW08 and 0.5 µm for BN-NW04. The SEM morphologies of composites
illustrate that all the BN particles were well dispersed without obvious aggregation observed.

Table 3. Mechanical properties and thermal conductivity of HFFR-TC-PA6 with different boron nitride
(BN) amounts.

Name of
Composite

Tensile Strength
(MPa)

Flexural
Strength (MPa)

Flexural
Modulus (MPa)

Notched Izod
Impact (KJ/m2)

Thermal Conductivity
(W/mK)

30% BN-SW08 48.62 ± 0.97 92.17 ± 0.33 6065 ± 360 7.60 ± 0.34 0.567
50% BN-SW08 49.78 ± 1.08 101.88 ± 3.35 6567 ± 402 No data* 0.930
30% BN-NW04 58.65 ± 0.69 96.67 ± 1.24 5469 ± 137 4.79 ± 0.22 0.690
50% BN-NW04 51.14 ± 0.95 93.65 ± 0.54 8651 ± 570 No data* 0.910

No data*: The samples are too brittle to get notched Izod impact data.
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Figure 2. SEM images of (a) raw BN-SW08, (b) 30% BN-SW08, (c) 50% BN-SW08, (d) raw BN-NW04,
(e) 30% BN-NW04, and (f) 50% BN-NW04.

3.2. Effect of TC Fillers on Flame Retardancy of HFFR-TC-PA6 Composites

To evaluate the effects of different TC fillers on the flame retardancy for HFFR-TC-PA6, LOI and
vertical burning (UL-94) tests were conducted, and the data are summarized in Table 4. The LOI
values increased from 24.5% to 30% when AlN-550RFS was incorporated from 0% to 40 wt% in the
HFFR-TC-PA6 composites. Figure 3 illustrates the digital photos of the burning residue after the
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LOI test. For the S0 composite, the burning area of the sample was much larger than composites
with AlN-550RFS which form obvious smaller and compacter char after the LOI test. The vertical
burning test (UL-94) measures the flammability and flame spread of plastic materials exposed to
a small flame [41]. During the test, a V-0 rating can be achieved when the materials extinguished
in less than 10 s after both the first and second flame implementations, which requires the flame
retardant to work in an instant period [19,42]. In the UL-94 test, the S0 composite without the TC fillers
passed the V-2 rating, composites containing 10–20 wt% AlN-550RFS passed either the V-0 rating for
3.2 mm-thick specimens or the V-2 rating for 1.6 mm-thick specimens. When the AlN-550RFS content
increased to 30 wt% or higher, the V-0 rating was also obtained for 1.6 mm specimens. The burning
residues of the samples after the UL-94 tests are shown in Figure 4.No obvious char layer could be
observed for the S0 composite due to the dripping mechanism, which was similar for the 1.6 mm thick
specimens of composites with 10~20 wt% AlN-550RFS [38]. As shown in Figure 4d,e, composites
with 30, 40 and 50 wt% AlN-550RFS presented obvious car layers that were also slowly burnt during
the test. After combining the results of the LOI and UL-94 tests, it can be seen that the addition of
AlN-550RFS is beneficial for the improvement the flame retardancy of the HFFR-TC-PA6 composites.
Figure 5 shows the char residue morphology of composites after the UL-94 test. As seen in Figure 5a,
there was almost no char layer for the S0 composite, and a large area of the bare polymer matrix could
be seen. On the contrary, it can be observed that the surface morphology of the 30% AlN-550RFS
and 50% AlN-550RFS composites presented uniform and compact char layers. This suggests that the
incorporation of AlN-550RFS could deposited on the combustion interface, which could effectively
prevents heat and flammable gas transfer and consequently enhance the flame retardancy of the
HFFR-TC-PA6 composites.

Table 4. Flame retardancy of HFFR-TC-PA6 with different TC fillers.

Name of Composite
Flame Retardancy

LOI, % UL94 (3.2 mm) Dripping (3.2 mm) UL94 (1.6 mm) Dripping (1.6 mm)

S0 24.5 V2 No V2 Yes
10% AlN-550RFS 26 V0 No V2 Yes
20% AlN-550RFS 26.5 V0 No V2 Yes
30% AlN-550RFS 29 V0 No V0 No
40% AlN-550RFS 30 V0 No V0 No
50% AlN-550RFS 30 V0 No V0 No
30% AlN-300SFS 28 V0 No V2 Yes
50% AlN-300SFS 29.5 V0 No V0 No

30% BN-SW08 31 V0 No V0 No
50% BN-SW08 40 V0 No V0 No
30% BN-NW04 30 V0 No V0 No
50% BN-NW04 37 V0 No V0 No
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In order to understand the effects of TC fillers on the thermal stability and decomposition 
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Figure 5. SEM photographs of char layer after the UL-94 test of (a) S0, (b) 30% AlN-550RFS, and (c)
50% AlN-550RFS.

The LOI and vertical burning (UL-94) test results for the composites filled with AlN-300SFS,
BN-SW08 and BN-NW04 are also summarized in Table 4. For all these composites, the LOI values
increased with the increase of filler amount from 30 to 50 wt%. Compared with composites with AlN,
the LOI values for composites with BN seemed to be more influenced by BN amount, which as they
presented significant enhancement when BN increased from 30 to 50 wt%. All the composites filled
with BN passed the V0 rating. Similar to AlN-550RFS, all the composites filled with AlN-300SFS,
BN-SW08 and BN-NW04 presented obvious char layers, as shown in Figure 6.
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3.3. Thermal Analysis

In order to understand the effects of TC fillers on the thermal stability and decomposition behaviors
of the HFFR-TC-PA6 composites, thermogravimetric analyses (TGA) were carried out. The mass loss
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curves of the AlPi, TC fillers and HFFR-TC-PA6 composites in nitrogen atmosphere are presented
in Figures 7–9. The relevant thermal decomposition data are summarized in Table 5. As shown
in Figure 7a, all four TC fillers remained unchanged in the tested temperature range, indicating a
high thermal stability [43]. It can be seen from Table 5 that the initial decomposition temperature
(T5%) of neat AlPi was 394 ◦C. According to previous reports, the initial decomposition temperature
(T5%) of PA6 is about 400 ◦C [42]. With the incorporation of AlPi into the PA6 matrix, the initial
decomposition temperature of PA6/AlPi (S0 composite) decreased to 377 ◦C. This phenomenon can be
explained by the fact that AlPi catalyzed the degradation of PA6 and reduced the thermal stability of
the S0 composite [44]. With the addition of AlN-550RFS, as shown in Figure 8 and Table 5, the initial
decomposition temperature of the composites significantly increased. This could be attributed to the
high thermal stability of AlN-550RFS. As presented in Figure 8b, the incorporation of AlN-550RFS
remarkably decreased the maximal mass loss rate, and the rate of mass loss rate was further decreased
with the increase of AlN-550RFS. As shown in Figure 9, the initial decomposition temperature of the
composite with 30 wt% BN-SW08 reduced from the 377 ◦C of the S0 composite to 352 ◦C, indicating
that the incorporation of BN-SW08 into FRPA6 stimulated the decomposition of FRPA6 at an early
stage. However, composites with either AlN-300SFS or BN-NW04 had similar thermal behaviors to
composites with AlN-550RFS. Additionally, all TC fillers rarely changed the peak temperatures of
composites—around 450 ◦C.
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Table 5. TG data of the HFFR-TC-PA6 composites’ TC fillers ratios.

Name of Composite T5% (◦C) Tmax (◦C) The Char Residues at 700 ◦C (%)

AlPi 394 434 31.7
S0 377 447 1.2

10% AlN-550RFS 377 450 8.8
20% AlN-550RFS 386 448 20.3
30% AlN-550RFS 391 447 29.9
40% AlN-550RFS 395 447 38.6
50% AlN-550RFS 400 445 49.5
30% AlN-300SFS 391 446 30.7

30% BN-SW08 352 441 30.8
30% BN-NW04 391 455 31.5

3.4. Flammability Behavior

A cone calorimeter based on the oxygen consumption principle is a useful instrument to evaluate
the combustion performance of polymeric materials. In order to clearly understand the effect of the TC
filler on the flame retardancy of HFFR-TC-PA6, cone calorimetric analyses were performed. The data
are summarized in Table 6, including time-to-ignition (TTI), peak heat release rate (PHRR), time of
peak heat release rate (tPHRR), total heat release (THR), total smoke rate (TSR), and mean effective heat
combustion (MEHC), along with deduced quantities of the maximum value of the average rate of
heat emission (MARHE). Figure 10 illustrates the heat release rate (HRR) and total heat release (THR)
curves of all the samples.

The TTI is used to determine the influences of a filler or flame retardant on ignitability, which can
be measured from the onset on an HRR curve [19]. As listed in Table 6, the presence of AlN-550RFS
increased the TTI, while AlN-550RFS mainly enhanced the complex viscosity of composites and
effectively retarded the heat diffusion into the PA6 matrix and the release of combustion gas [45].
Such phenomenon has also been observed in previous work [46,47].

Table 6. Cone calorimetric data of the testing samples with a heat flux of 50 KW/m2.

Name of
Composite TTI(s) PHRR

(KW/m2) tPHRR(s) THR
(MJ/m2)

TSR
(m2/m2)

MEHC
(MJ/kg)

MAHRE a

(KW/m2)

S0 34 797 105 67 945 26.2 393
10% AlN-550RFS 36 625 110 64 876 25.8 368
20% AlN-550RFS 39 535 120 77 1055 25.1 339
30% AlN-550RFS 45 520 120 71 938 25.6 327
40% AlN-550RFS 43 503 145 66 790 26.1 304
50% AlN-550RFS 43 451 150 60 732 25.8 287

a AHRE is defined as average rate of heat emission which is calculated from the division of cumulative heat emission
and time; MAHRE denotes the maximum value of AHRE.
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Figure 10. Cone calorimetric results of the experimental samples at an external heat flux of 50 kW/m2 as
a function of burning duration: (a) heat release rate (HRR) curves and (b) total heat release (THR) curves.

HRR measures the heat release per unit surface area of a burning specimen, which is considered to
have a significant influence on fire hazard [48]. On the other hand, PHRR is regarded as an important
parameter for the assessment of a real fire hazard [49]. As shown in Table 6, the PHRR value for
the S0 composite was 797 kW/m2, which decreased down to 520 (34.8%) and 451 kW/m2 (43.4%)
for 30% AlN-550RFS and 50% AlN-550RFS composites, respectively. The HRR curves of the S0 and
HFFR-TC-PA6 composites with varied AlN-550RFS amounts are presented in Figure 10a. It can be
seen that both the S0 and 10% AlN-550RFS composites presented higher heat release rates and shorter
overall combustion times, indicating a fierce burning, while higher AlN-550RFS amounts presented a
lower heat release rate and longer overall combustion times. To evaluate the fire hazard of the samples,
MAHRE was introduced. The MAHRE values for the HFFR-TC-PA6 composites decreased with
increasing AlN-550RFS amounts, suggesting an enhanced fire safety. Furthermore, the dependence of
the THR curves on the AlN-550RFS amount was not obvious, as shown in Figure 10b.

The MEHC value reveals the burning rate of volatile gases in gaseous phase flame during
combustion, where a lower MEHC value indicates the exerting flame retardant effect in the gaseous
phase [10]. As shown in Table 6, the MEHC values of the HFFR-TC-PA6 composites were similar
to that of the S0 composite, indicating that the gaseous phase combustion was basically not affected
by AlN-550RFS.

Moreover, the effect of the TC filler types on the cone calorimetric performance of the HFFR-TC-PA6
composites was also investigated. As shown in Table 7, the TTI of 30% AlN-550RFS and 30% AlN-300RFS
were similar but obviously lower than those of 30% BN-SW08 and 30% BN-NW04. This may have been
due to the higher complex viscosity of the BN-filled HFFR-TC-PA6 composites. Figure 11a reflects the
HRR curves of the S0 and HFFR-TC-PA6 composites that carried TC fillers. As it can be seen that all
the TC fillers significantly reduced the PHRR values, with the lowest value, 309 kW/m2, observed for
the 30% BN-SW08 composite.

Table 7. Cone calorimetric data of the testing samples with a heat flux of 50 KW/m2.

Name of
Composite TTI(s) PHRR

(KW/m2) tPHRR(s) THR
(MJ/m2)

TSR
(m2/m2)

MEHC
(MJ/kg)

MAHRE
(KW/m2)

S0 34 797 105 67 945 26.2 393
30%AlN-550RFS 45 520 120 71 938 25.6 327
30%AlN-300RFS 46 536 120 79 1145 26.0 310

30%BN-SW08 62 309 100 63 896 25.6 181
30%BN-NW04 70 418 115 61 738 26.2 221
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3.5. DSC Analyses of the Composites

The crystallization behavior of the S0 and HFFR-TC-PA6 composites were investigated using DSC,
as presented in Figure 12 and summarized in Table 8. The crystallization temperature (Tc) of S0 was
185.5 ◦C, which increased by 4.2 to 7.1 ◦C with the incorporation of TC fillers, and the increasement was
influenced by filler type and filler amount. However, the crystallization (Xc) and melting temperature
of S0 did not appear to be influence by filler type and filler amount, which were around 20% and
220 ◦C, respectively.
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Figure 12. (a) Differential scanning calorimeter (DSC) cooling curves of the HFFR-TC-PA6 composites
and (b) the second heating curves of the HFFR-TC-PA6 composites.

Table 8. DSC results of the HFFR-TC-PA6 composites.

Name of Composite TC (◦C) Tm (◦C) ∆Hm (J/g) Xc (%)

S0 185.5 220.3 41.9 20.2
10% AlN-550RFS 189.7 219.6 36.1 19.4
30% AlN-550RFS 191.1 218.8 31.7 21.9
30% AlN-300RFS 191.0 219.6 31.7 21.9

30% BN-SW08 192.6 218.9 30.8 21.2
30% BN-NW04 192.6 219.0 30.1 20.6

4. Conclusions

Four types of TC fillers have been reported that have an obvious flame-retardant efficiency
for the PA6/AlPi composites. The specimen with a thickness of 1.6 mm can pass the UL-94 V-0
flammability rating, and its LOI values exceeded 29% when the loading of TC fillers was more
than 30 wt%. The incorporation of TC fillers promoted the formation of an integrated char layer.
The thermal conductivity of the HFFR-TC-PA6 composite with 50 wt% BN-SW08 was 0.93 W/mK,
which was 200% more than that of the composite without TC fillers. The thermal stability of the
composites was improved with the addition of thermal conductive fillers. Finally, these thermal
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conductive fillers were found to play an important role in heterogeneous nucleation, resulting higher
crystallization temperatures.
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