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In this work, highly fluorescent copper nanomaterials were synthesized by using ascorbic
acid as a ligand. The excitation wavelength of copper nanomaterials is 367 nm, and the
emission wavelength is 420 nm. The size range is 5–6 nm. Nitrite can selectively quench
the fluorescence of copper nanomaterials. Therefore, copper nanomaterials can be used
to selectively detect nitrite ions. The linear equation is F � −32.94 c (NO2

−) + 8,455, and the
correlation coefficient is 0.9435. At the same time, we found that the fluorescence intensity
of copper nanomaterials has a good correlation with temperature (20–60°C), which shows
that they have great potential in the application of nanothermometers.
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INTRODUCTION

Nitrite, as a food additive and soil raw material, widely exists in food and environment. But excessive
nitrite in actual water will cause serious harm to public health and environment (Davis and
Compton, 2000; Kroupova et al., 2008; Wang et al., 2009; Zhao and Li, 2020; Jahan et al., 2021).
When the concentration of nitrite is higher than 4.5 mg/ml (Iii and Finke, 1999), it will damage the
nervous system, spleen, and kidney of human beings and even leads to a high risk of cancer.
Therefore, accurate detection of nitrite in drinking water sources, wastewater treatment systems, the
food industry, and environment is of great significance.

In recent years, copper nanoparticles with high fluorescence have been widely used in
biomedicine (Zhang et al., 2018), bioimaging (Satyvaldiev et al., 2018), environmental detection
(Zhong et al., 2015; Li et al., 2018), catalysis (Wang et al., 2019), and other fields due to their excellent
photoelectric properties, great biocompatibility, good stability, and low toxicity. Wang’s group
reported that copper nanoclusters were synthesized using glutathione as stabilizer and ascorbic acid
as reductant, and they detected nitrite ions by utilizing the quenching fluorescence effect (Zhou et al.,
2017). The method has been successfully applied to the detection of nitrite ions in actual water
samples. Li’s group reported that copper nanomaterials were synthesized using cysteine (Li et al.,
2015; Ashraf et al., 2019; Aziz et al., 2019; Ashraf et al., 2020; Ashraf et al., 2021; Iftikhar et al., 2021).
Based on the aggregation induction (AIE) of copper nanoclusters induced by sulfur ions, they
established a fluorescence analysis method for the determination of hydrogen sulfide. It was applied
to the detection of practical samples. Current analytical challenges faced by researchers in carrying
out nitrite detection and temperature sensing are that the methods used are not suitable for online
monitoring and in-site detection as they require fine instruments and complicated sample
pretreatment. Therefore, fluorescence sensing has emerged as a tempting analytical method, as it
does not require expensive instruments and involves a simple pretreatment procedure. Herein,
copper nanomaterials were selected because the synthesis cost of copper nanomaterials is low and the
fluorescence signal is good.
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In this study, highly fluorescent copper nanomaterials were
synthesized with ascorbic acid as a protective and reducing agent.
Nitrite ions can effectively quench the fluorescence of copper
nanomaterials and realize the detection of nitrite ions. As the
synthesized copper nanomaterials have good temperature

sensitivity, they can also be used as temperature sensors. The
fluorescence intensity of copper nanomaterials is linear at
different temperatures. Therefore, the synthesized copper
nanomaterials have great potential in ion sensing, detection,
and drug delivery.

FIGURE 1 | (A) Fluorescence spectra of copper nanomaterials; (B) TEM image of copper nanomaterials; (C) HRTEM image of copper nanomaterials; (D) size
distribution histogram of copper nanomaterials; (E) ED image of CuNPs.
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INSTRUMENT, REAGENT, AND
EXPERIMENTAL SECTION

Instrumentation
Fluorescence spectrogram was obtained by using an F-4600
fluorescence spectrophotometer (Hitachi High Tech. Company).
Transmission electron microscope (TEM) signals were obtained
by a JEOL-2100F transmission electron microscope (Japan)
operating at a voltage of 200 kV. TEM sample characterization
was carried out by dropping the sample in a carbon-coated
copper mesh dispersion solution and drying at room
temperature. An ESCALAB-250-XI X-ray photoelectron
spectroscopy (XPS) analyzer was used (Thermo Fischer Scientific).

Chemical Reagent
Ascorbic acid (C6H8O6); Cu(NO3)2·3H2O; ZnSO4·7H2O;
Pb(NO3)2 (analytically pure, Tianjin Wind Ship Chemical
Reagent Technology Co., Ltd.); Bi(NO3)3·3H2O; AgNO3

(analytically pure, Beijing Fuchen Chemical Reagents Co.,
Ltd.); FeCl2·4H2O (analytically pure, Beijing Shle Chemical
Plant); MnSO4·H2O (analytically pure, Beijing Chaoyang
District Chemical Four Plant); Ni(NO3)2·6H2O (analytically
pure, Beijing 5671 Chemical Plant); Al(NO3)3·9H2O
(analytically pure, Tian Jin Bo Di Chemical Co., Ltd.); sodium
citrate (analytically pure, Tian Jin Public and Private Joint
Chemical Reagent First Plant); Cd(NO3)2 (analytically pure,
Beijing Chemical Co., Ltd.); CoCl2•6H2O (analytically pure,
Shang Hai Public and Private Joint Venture Factory); NaF
(Beijing Public and Private Chemical Plant); NaCl,
Na2S2O3·5H2O, and KCl (Tian Jin North Union Fine
Chemicals Development Co., Ltd.); AgNO3 (Beijing Fuzhou
Chemical Reagents Co., Ltd.); NaNO2 (Tianjin Public and
Private Chemical Reagents First Plant); NaBr and NH4Cl
(Tian Jin People Chemical Plant); Na2SiO3.9H2O (Beijing
Yizhuang Middle School Chemical Plant); and water used in
all experiments is ultra-pure water with a resistance of 18.25 MΩ.

FIGURE 2 | (A) UV–vis spectra of CuNPs and AA; (B) FT-IR spectra of CuNPs and AA; (C) XPS of CuNPs thus obtained; (D) amplified XPS of Cu 2p electrons.
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Synthesis of CuNPs
The specificmethod for synthesizing copper nanomaterials is as follows:
first, 0.5ml of 1mmol/L copper nitrate solution and 3ml of 10mmol/L
ascorbic acid solution were mixed and stirred for 20min. Then
10mmol/L sodium hydroxide solution was used to adjust the pH of
themixed solution to 6.After that, the solutionwas transferred to a 60°C
constant temperaturewater bath for 5 h. Finally, after centrifugation, the
supernatant of copper nanomaterials was preserved at 4°C for later use.

Detection of NO2
−

Of the prepared copper nanoparticles, 450ml was placed in 1.5-ml
centrifuge tubes, and then 50ml of nitrite solution was added at
different concentrations to the centrifuge tubes. The fluorescence
intensity was measured at 365 nm after 40min reaction at room
temperature.

Copper Nanomaterials for Temperature
Sensing
The copper nanomaterial solution was placed in 1.5-ml centrifuge
tubes. The tubes were heated at different temperatures for 20 min,

and then the fluorescence intensities of the solutions were
measured with a fluorescence spectrophotometer.

RESULTS AND DISCUSSION

Characterization of Copper Nanomaterials
Figure 1A shows the excitation and emission spectra of copper
nanomaterials. It demonstrates that the synthesized copper
nanomaterials have a strong fluorescence signal, and the
maximum emission wavelength is 420 nm. The copper
nanomaterials were dropped on the nickel mesh of the carbon
support. The samples were dried and tested by TEM and energy
dispersive spectroscopy (EDS). The morphology of the prepared
copper nanomaterials was characterized by TEM (Figure 1B). As
shown in Figure 1B, the copper nanomaterials are uniformly
dispersed and have a smaller particle size. Figure 1C presents a
high-resolution transmission electron microscopy (HRTEM) image.
The crystal lattice of d � 0.3348 nm corresponding to the face-
centered cubic structure (110) of copper can be clearly seen.
Figure 1D indicates that the particle size distribution of the

FIGURE 3 | (A) Determination of the mass ratio of the synthesized CuNPs; (B) temperature of the synthesized CuNPs; (C) time of CuNP synthesis; (D) pH of CuNP synthesis.
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copper nanomaterials is uniform, and the average diameter of the
copper nanomaterials is in the range of 5.0 ± 0.1 nm. The EDS image
and the elemental contents in the copper nanomaterials are

presented in Figure 1E. The percentage of copper was 67.72%.
The results indicated that the synthesized copper nanomaterials have
the characteristics of good fluorescence, uniform dispersion, and

FIGURE 4 | (A) Storage time; (B) irradiation time; (C) effects of the concentration of NaCl solution on the fluorescence intensity of the CuNPs.

FIGURE 5 | Selectivity of CuNPs toward I− sensing over other common metal ions (A) and anions (B). The concentration of all metal ions is 100 μmol/L.
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small particle size, which indicates that highlyfluorescent copper
nanomaterials have been successfully synthesized.

The chemical and surface properties of the copper nanoparticles
were analyzed by ultraviolet-visible (UV) spectroscopy and Fourier
transform infrared (FT-IR) spectroscopy. Figure 2A shows the
ultraviolet absorption spectra of CuNPs and ascorbic acid. There
is no obvious absorption peak of ascorbic acid but a small ultraviolet
absorption peak of CuNPs near 340 nm, which corresponds to the
fluorescence excitation wavelength of copper nanomaterials.
Figure 2B exhibits the infrared spectra of the copper
nanomaterials and ascorbic acid, which can broaden the
characteristic peaks of CuNPs. The shrinkage vibration peak of
2,524 cm−1 belonging to -OH has disappeared in the copper
nanomaterials, which proves that glutathione molecules bond to
the surface of copper nanomaterials through Cu-O. The
characteristic peaks of ascorbic acid did not appear, which proves
that the ligand exchange was complete.

XPS was used to characterize the valence state of copper in
CuNPs. The full spectrum indicated that CuNPs consist of C, O,
N, Si, and Cu (Figure 2C). Figure 2D shows that no satellite peaks

appear, whichmeans that noCu2+ exists. The strong peak of 932.3 eV
belongs to zero-valent copper’s 2p3/2, and this is consistent with
previous literature reports (Koski et al., 2012). However, it should be
noted that the binding energy of 2p3/2 of Cu(0) is similar to that of
Cu(I). Due to the charge transfer of the Cu-O bond, the valence state
of Cu nanomaterials may be between 0 and +1.

Optimization of Experimental Synthesis
Conditions
The synthesis time, temperature, molar ratio, and pH were
optimized. By adjusting the molar ratio of copper nitrate to
ascorbic acid, the appropriate drug dosage for the synthesis of
copper nanomaterials was determined. As shown in Figure 3A,
when the molar ratio of copper nitrate to ascorbic acid is 1:60, the
fluorescence intensity of copper nanomaterials is higher. Therefore,
the best molar ratio is 1:60. Figure 3B shows the effect of synthesis
temperature on fluorescence intensities. When the temperature
was changed from 30 to 90°C, the fluorescence intensities of CuNPs
first increased and then decreased. The fluorescence intensity of

FIGURE 6 | (A) Fluorescence spectra of CuNPs obtainedwith different concentrations of NO2
− (from top to bottom: 10, 30, 50, 80, 100, 120, 1,400, and 180 μmol/

L, respectively); (B) relationship between F and the concentration of NO2
−; (C) TEM of copper nanomaterials after adding NO2

−.
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CuNPs was the highest at 60°C. Therefore, the optimal synthesis
temperature of copper nanomaterials is 60°C. Figures 3C,D show
the optimum time and pH data for the synthesis of copper
nanomaterials. With the increase in time, the fluorescence
intensity of copper nanomaterials increases. When the synthesis
time is set to 5 h, the fluorescence intensity is the highest
(Figure 3C). Therefore, the optimal synthesis time of copper
nanomaterials is 5 h. As shown in Figure 3D, the fluorescence
intensity of copper nanomaterials is the highest at pH 6. Therefore,
we chose pH 6 as the best condition. Here, we synthesized CuNPs
under the above optimum conditions.

Stability of CuNPs
The stability of the synthesized CuNPs was evaluated by
comparing the fluorescence intensities of CuNPs stored for
different periods and at different conditions (Figure 4).
Figure 4A shows that the fluorescence intensity of the
synthesized CuNPs measured at 5 h and 1 month after storage
remains basically unchanged. It is concluded that CuNPs can be
preserved for 1 month at 4°C. The fluorescence intensities of
CuNPs were almost unchanged when the CuNPs were exposed to
a xenon lamp for 100 min (Figure 4B). Figure 4C depicts the
effect of different concentrations of NaCl solutions on the
stability of CuNPs. It was found that the fluorescence intensity
of copper nanomaterials was independent of the concentration of
NaCl solution (up to 1 mol/L). These results indicate that the
nanomaterials have good storage and fluorescence stability.

Selectivity
To further investigate the selectivity of this method, contrast
experiments were performed using 18 metal cations (K+, Na+,
Ca2+, Hg+, Cr3+, Fe3+, Pb2+, and Bi3+) and 10 inorganic anions (F−,
Cl−, Br−, I−, S2−, and NO2

−) as the interference for detection of
nitrite ions at the concentration of interference are 100 μmol/L. As
shown in Figure 5, only nitrite ions show a strong quenching effect

on the fluorescence of CuNPs. While Cd2+, Fe3+, and Hg+ have
little effect on the fluorescence of CuNPs, other ions have no
obvious effect on it. All these results indicate that this method
possesses good selectivity for nitrite ion detection.

Detection of NO2
−

Based on the quenching effect of nitrite ions on the fluorescence of
CuNPs, we established a fluorescence quenching sensor for
accurate detection of nitrite ions. Figure 6A indicates that the
fluorescence intensities of copper nanomaterials decrease with the
increasing concentration of nitrite ions. Figure 6B shows a good
linear relationship between the quenching fluorescence intensities
of CuNPs and nitrite concentration in the range of 10 μ M–180 μ
M. The linear equation is F � −32.94 c (NO2

−) + 8,455, and the
correlation coefficient is 0.9435. Figure 6C shows the TEM image
of CuNPs after adding NO2

−. It demonstrates that the fluorescence
quenching is caused by the aggregation of nanomaterials because of
the interaction between the surface ligand (ascorbic acid) of CuNPs
and NO2

−. The results are basically consistent with previous
reports. Nitrite is a kind of food additive and is used for its
coloring and antiseptic properties. It is widely used in cooked
meat and canned animal food and is also used as an enema agent.
Nitrite is not only a carcinogen but can also cause food poisoning
when ingested at 0.2–0.5 g and can cause death at 3 g. Accurate
detection of the nitrite content in food online is a key problem.

Temperature Sensing
A temperature-sensitive sensor based on copper nanomaterials
was studied. As shown in Figure 7A, the fluorescence intensity of
copper nanomaterials varies with temperature, from 20°C to 60°C.
There is a good linear relationship between fluorescence intensity
and temperature. The calibration equation is F � − 42.62T +
7,200, and the correlation coefficient is 0.9645 (as shown in
Figure 7B). Therefore, the synthesized copper nanomaterial
shows great potential in the application of nanothermometers.

FIGURE 7 | (A) Fluorescence spectra of CuNPs obtained at different temperatures (from top to bottom: 20, 25, 30, 35, 40, 45, 50, 55, and 60°C, respectively); (B)
relationship between F and temperature.
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CONCLUSION

In summary, we synthesized a new kind of copper nanomaterial using
ascorbic acid as both protectant and reductant. Nitrite ions can
selectively quench the fluorescence of copper nanomaterials. Based
on thefluorescence quenchingmechanism, a sensor for detectingnitrite
ions was established. We also found that there is a linear relationship
between fluorescence signal and temperature in the temperature range
of 20–60°C. Therefore, our new copper nanomaterials show great
potential in the application of nanothermometers.
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