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Abstract Angiotensin II receptor blockers (ARBs) are
one of the most frequently recommended antihypertensive
drugs. Apart from their activity towards the circulatory
system, ARBs also penetrate the blood-brain barrier and
display neuroprotective effects. Kynurenic acid (KYNA)
is an endogenous metabolite of tryptophan produced by
kynurenine aminotransferase II (KAT II) in the brain.
Antagonism towards all ionotropic glutamate (GLU) re-
ceptors is the main mechanism of KYNA action. An ele-
vated brain level of KYNA is linked with memory impair-
ment and psychotic symptoms. The aim of this study was
to examine the influence of three ARBs: irbesartan,
losartan, and telmisartan on KYNA production and KAT
II activity in rat brain. The effect of ARBs on KYNA
production was analyzed in rat brain cortical slices and
on isolated KAT II enzyme. Irbesartan, losartan, and
telmisartan decreased KYNA production and KAT II ac-
tivity in a dose-dependent manner in rat brain cortex
in vitro. Molecular docking suggested that the examined
ARBs could bind to an active site of KAT II. In conclu-
sion, ARBs decrease KYNA production in rat brain by

direct inhibition of KAT II enzymatic activity. This novel
mechanism of ARBs action may be advantageous in the
treatment of cognitive impairment or the management of
schizophrenia.

Keywords Kynurenic acid . Renin-angiotensin system .

Angiotensin II type 1 receptor blockers . Arterial
hypertension . Dementia . Schizophrenia

Abbreviations
ACE Angiotensin converting enzyme
AD Alzheimer’s disease
AMPA α-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid
ARBs Angiotensin II type 1 receptor blockers
AT1R Angiotensin II type 1 receptors
AT-II Angiotensin II
COX-2 Cyclooxygenase-2
DMSO Dimethyl sulfoxide
GLU Glutamate
GPR35 G protein-coupled receptors 35
HPLC High-performance liquid chromatography
KAT Kynurenine aminotransferases
KYN Kynurenine
KYNA Kynurenic acid
NMDA N-methyl-D-aspartate
PMP 4′-Deoxy-4′-aminopyridoxal-5′-phosphate
RAS Renin-angiotensin system
RVLM Rostral ventrolateral medulla
SHR Spontaneously hypertensive rats
SPR Stroke-prone spontaneously hypertensive rats

Electronic supplementary material The online version of this article
(doi:10.1007/s12640-017-9781-2) contains supplementary material,
which is available to authorized users.

* Izabela Zakrocka
izabela.zakrocka@umlub.pl

1 Department of Experimental and Clinical Pharmacology, Medical
University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland

2 Department of Biopharmacy, Medical University of Lublin, Chodźki
4a, 20-093 Lublin, Poland

Neurotox Res (2017) 32:639–648
DOI 10.1007/s12640-017-9781-2

http://dx.doi.org/10.1007/s12640-017-9781-2
mailto:izabela.zakrocka@umlub.pl
http://crossmark.crossref.org/dialog/?doi=10.1007/s12640-017-9781-2&domain=pdf


Introduction

Arterial hypertension remains the most common cardiovascu-
lar disorder affecting nearly half of the population (ESH/ESC
Task Force for the Management of Arterial Hypertension
2013). The prevalence of hypertension is closely related with
the occurrence of stroke, myocardial infarction, kidney failure,
and higher mortality risk (Mankin 2016). Despite a variety of
antihypertensive drugs being available, an appropriate blood
pressure control is still difficult to achieve in a large group of
patients with arterial hypertension (Sarganas and Neuhauser
2016). According to the guidelines, renin-angiotensin system
(RAS) inhibitors are the most preferred hypotensive agents.
With the exception of a decrease in blood pressure, their
antiinflammatory and antioxidative properties are responsible
for end-organ protection and mortality reduction (Muñoz-
Durango et al. 2016).

Studies on RAS revealed the occurrence of tissue RAS and
its paracrine function (Baltatu et al. 2011). The presence of
RAS in the brain began to attract the attention of neuroscien-
tists. First information about renin-like enzyme forming an-
giotensin in the brain was published by Ganten et al. (1971).
Apart from its role in water and electrolyte homeostasis, brain
RAS is linked with the development of epilepsy (Pereira et al.
2010), Alzheimer’s disease (AD) (Hajjar and Rodgers 2013),
Parkinson’s disease (Labandeira-García et al. 2014), and neu-
ropathic pain (Muthuraman and Kaur 2016). Active compo-
nents of RAS are synthesized from angiotensinogen present
primarily in glial cells (Intebi et al. 1990). The main receptors
responsible for angiotensin II (AT-II) action are AT-II type 1
receptors (AT1R) which dominate in astroglial cells (Sumners
et al. 1994). Activation of central AT1R byAT-II is linkedwith
the pathogenesis of hypertension (Toney and Porter 1993).
Reduction of AT-II synthesis and inhibition of AT1R are the
main goals of antihypertensive therapy. Since other enzymes,
e.g., tonin, may produce AT-II from angiotensin I or
angiotensinogen (Kondo et al. 1980), AT1R blockers
(ARBs) seem to provide better control over RAS activity than
angiotensin converting enzyme (ACE) inhibitors.

Kynurenic acid (KYNA), an endogenous metabolite of
tryptophan, was discovered in the nineteenth century in the
dogs’ urine by Justus von Liebig (1853). In the brain, KYNA
production from precursor kynurenine (KYN) takes place
mainly in astrocytes (Guillemin et al. 2000). Among
kynurenine aminotransferases (KAT) catalyzing KYNA syn-
thesis, KAT II has a dominant role in this process
(Nematollahi et al. 2016). It is well established that the main
mechanism of KYNA action is the blockade of ionotropic
glutamate (GLU) receptors, N-methyl-D-aspartate (NMDA),
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA), and kainate (Schwarcz and Stone 2017). Non-
competitive antagonism towards the α7 nicotinic acetylcho-
line receptors (Beggiato et al. 2013) or activation of G protein-

coupled receptors 35 (GPR35) (Stone et al. 2013) are other
effects of KYNA. GLU injected into the rostral ventrolateral
medulla (RVLM) was shown to elevate blood pressure and
heart rate in anesthetized rats (Willette et al. 1987). KYNA,
as a GLU antagonist, was proven to lower blood pressure after
central administration (Araujo et al. 1999; Ito et al. 2000).

Considering that ARBs have been shown to abolish central
pressor GLU effect (Vieira et al. 2010), the goal of the present
study was to examine the influence of three ARBs, irbesartan,
losartan, and telmisartan, on KYNA synthesis and KAT II
activity in rat brain cortex in vitro. In addition, the available
crystal structure of the human KAT II (hKAT II) in complex
with its substrate KYN and 4′-deoxy-4′-aminopyridoxal-5′-
phosphate (PMP) enabled us to predict a possible binding site
for the studied ARBs.

Materials and Methods

Animals

Experiments were performed on male Wistar rats (weight
150–200 g) obtained from an accredited breeder (Brwinów,
Poland). Animals were kept under standard laboratory condi-
tions at room temperature, 12-h light-dark cycles, and in cages
with food and water available ad libitum. Procedures were
conducted between 7 a.m. and 1 p.m. All animals were
adapted to laboratory conditions for 7 days before tests were
carried out. Procedures were accepted by the I Local Ethics
Committee for Animal Experiments in Lublin and are in
agreement with Directive 2010/63/EU on the protection of
animals used for scientific purposes.

Chemical Substances

The following chemicals were purchased from Sigma-
Aldrich: L-kynurenine (sulfate salt), irbesartan, losartan potas-
sium, telmisartan, dimethyl sulfoxide (DMSO), sodium chlo-
ride, potassium chloride, magnesium sulfate, calcium chlo-
ride, sodium phosphate monobasic, sodium phosphate diba-
sic, glucose, distilled water, Trizma base, acetic acid, pyridox-
al 5′-phosphate, 2-mercaptoethanol, pyruvate, and glutamine.
Substances of the highest purity used for high-performance
liquid chromatography (HPLC) were obtained from J. T.
Baker Chemicals and Sigma-Aldrich.

Experiments Conducted on Cortical Slices

Experiments on cortical slices were performed as previously
described by Turski et al. (1989). After the rats’ decapitation,
their brains were removed from the skulls and placed on ice.
Brain cortex was immediately separated from the white matter
and cut with a McIlwain tissue chopper (Mickle Laboratory
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EngineeringCo.Ltd.,USA).Cortical slices (size1mm×1mm)
were placed into incubation wells (10 slices in each well),
filled with 1 ml of oxygenated Krebs-Ringer buffer at
pH 7.4. The incubation lasted 2 h at 37°C in the presence of
10 μM L-KYN and one of four drug concentrations (0.01,
0.05, 0.1, or 1 mM).Minimum six wells were used to examine
each drug concentration. The incubation was ended by placing
the samples into an ice-cold bath. Obtained supernatants were
centrifuged (15,133×g for 15 min) and applied to ion ex-
change resin Dowex 50 W+ column. Eluted KYNAwas sep-
arated by the HPLC (Thermo Fisher Scientific HPLC system,
ESA catecholamine HR-80, 3 μm, C18 reverse-phase col-
umn) and quantified fluorometrically. The resulting peak
was compared with the authentic KYNA. Experiments were
conducted at least three times to achieve comparable results.

Evaluation of Kynurenine Aminotransferase Activity

Analysis of KAT II activity was performed according to the
method by Guidetti et al. (1997). To examine KAT II activity,
the brain cortex was homogenized in dialysate buffer made
from 5 mM Tris-acetate buffer at pH 8.0, 50 μM pyridoxal 5′-
phosphate, 10 mM 2-mercaptoethanol, and distilled water.
Prepared homogenate was centrifuged (15,133×g for
15 min) and the supernatant dialyzed for 12 h at 8 °C using
cellulose membrane dialysis tubing (dialysis tubing cellulose
membrane, average flat width 10mm; Sigma-Aldrich) in 4 l of
the dialysate buffer. Afterwards, the enzyme preparation was
incubated in the reaction mixture containing incubation solu-
tion, 2 μML-KYN, and solutions of tested drugs (at 0.01, 0.05
0.1, and 1 mM concentration). The reaction pH was 7.0 (op-
timal pH for KAT II). L-glutamine was added to inhibit KAT I
activity. Three probes were used for each drug concentration.
The incubation lasted for 2 h at 37 °C and was ended by
transferring the samples to an ice-cold bath. Supernatants were
centrifuged and KYNA content analyzed, as described
previously.

Statistical Analysis

Data were presented as a percentage of control values. Mean
and standard error of the mean (SEM) were calculated.
Statistical analysis was performed using one-way analysis of
variance (ANOVA) with a post hoc Tukey-Kramer test.
P < 0.05 was considered statistically significant. All calcula-
tions were made with the GraphPad InStat program, version
3.06.

Molecular Docking of ARBs and Kynurenine to KAT II

The available crystal structure of the hKAT II in complex with
its substrate kynurenine and co-factor PMP at 1.95 Å atomic
resolution (PDB ID: 2R2N) (Han et al. 2008) was used to

perform the molecular docking. More specifically, each stud-
ied ligand (i.e., irbesartan, losartan, and telmisartan) (Molfile)
was imported from the ChEMBL Database and optimized
using the semi-empirical method AM1, and then transferred
for the subsequent step of ligand docking. Molegro Virtual
Docker (v 6.0.0, Molegro ApS, Aarhus, Denmark) was used
for docking simulations of flexible ligands into the rigid KAT
II target. The docking space (a sphere of 20 Å diameter) was
defined to cover KYN (substrate), and the co-factor (PMP).
KYN was then removed and each ARB was docked to the
KAT II structure. The actual docking simulations were per-
formed using the following settings: number of runs = 100,
maximal number of poses returned = 10. Additional docking
was performed for KYN to check the correctness of the
docking procedure. The lower energy conformations were se-
lected from each cluster of superposed poses for each studied
ligand.

Results

Evaluation of KYNA Production in Brain Cortical Slices
In Vitro

De novo production of KYNA in rat brain slices in vitro under
standard conditions was 3.41 ± 0.07 pmol/well. All analyzed
ARBs, irbesartan, losartan, and telmisartan decreased KYNA
production in rat brain cortical slices in vitro (Fig. 1). At the
concentration of 0.5 and 1 mM irbesartan decreased KYNA
production to 66% (P < 0.001) and 42% (P < 0.001) of the
control value, respectively (Fig. 1a). Losartan at the concen-
tration of 0.5 and 1 mM inhibited KYNA synthesis to 51%
(P < 0.001) and 37% (P < 0.001) of the control value, respec-
tively (Fig. 1b). Telmisartan at 0.1 and 0.5 mM concentration
decreased KYNA production to 62% (P < 0.001) and 57%
(P < 0.001) of the control value, respectively (Fig. 1c).

Evaluation of KAT II Activity in Brain Cortical
Homogenates In Vitro

The mean activity of KAT II under standard conditions was
19.17 ± 1.15 pmol of KYNA per test tube. Irbesartan at 0.5
and 1 mM concentration inhibited KAT II in rat brain cortical
homogenates in vitro to 45% (P < 0.001) and 25% (P < 0.001)
of the control value, respectively (Fig. 2a). Losartan decreased
KAT II activity in rat brain cortical homogenates in vitro at the
concentration of 0.01, 0.1, 0.5, and 1 mM to 59% (P < 0.001),
10% (P < 0.001), 6% (P < 0.001), and 1% (P < 0.001) of the
control value, respectively (Fig. 2b). Telmisartan at 0.1 and
0.5 mM concentration decreased KAT II activity in rat brain
cortical homogenates in vitro to 63% (P < 0.05) and 32%
(P < 0.01) of the control value, respectively (Fig. 2c).
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Molecular Docking of ARBs and Kynurenine to KAT II

The molecular docking results showed that each studied ARB
(structures presented in Fig. 3) binds to the KAT II active site.
In addition, our results suggested a similar KYN orientation
within the KAT II active site as determined in the three-
dimensional crystal structure (Han et al. 2008) of KAT II with
KYN (PDB ID: 2R2N). This confirmed the correctness of the
docking procedure. Our findings suggest two orientations of
losartan and irbesartan at the enzyme active site, and one pro-
posal for telmisartan (Fig. 4 and Table S1). More specifically,
in both orientations, losartan interacts with the residues indi-
cated for KYN, including Ile19 (A), Arg20 (A), Gly39 (A),
Leu40 (A), Tyr74 (A), Leu293 (A) from one subunit, and
Tyr142 (B), Ser143 (B), Asn202 (B), Tyr233 (B), Phe355
(B), Phe387 (B), and Arg399 (B) from the opposite subunit.
In addition, this molecule interacts with additional residues
(mostly the same for both orientations). In orientation 1, the
hydrogen bond interactions suggested by the docking are
formed between the tetrazole moiety of losartan and Asn202
(B) Ser143 (B), and Arg399 (B); between losartan imidazole
moiety and Ser17 (A), Arg20 (A), Ser77 (A), and Leu293 (A);
as well as between losartan and water molecule (Fig. 4a and

Table S1). In orientation 2, tetrazole moiety is oriented in the
opposite direction compared to orientation 1. More specifical-
ly, the hydrogen bonds are formed between tetrazole moiety of
losartan and Ser17 (A), Thr142 (B), and Ser143, and between
losartan imidazole moiety and Asn202 (B), Gly39 (A), Pro41
(A), and Tyr233 (B), as well as between losartan and water
molecule (Fig. 4b). In orientation 2, two additional hydrogen
bonds are suggested between losartan and PMP (co-factor)
bound to the KAT II active site (Fig. 4b and Table S1).

Results of the molecular docking indicate almost the same
orientations of irbesartan (Figs. 3 and 4c) within KAT II active
site as described for losartan (Figs. 3 and 4a). In orientation 1, the
same residues are shown for irbesartan as for losartan binding,
whereas a reduced number of hydrogen bonds are suggested. In
particular, the hydrogen bonds are formed between tetrazolemoi-
ety of irbesartan and Asn202 (B) and Arg399 (B); between
irbesartan imidazole moiety and Ser17 (A), Ser77 (A), and
Arg20 (A); as well as between irbesartan and water molecule
(Fig. 4c and Table S1). Although two additional hydrogen bonds
are suggested between irbesartan (in orientation 2) and PMP (co-
factor) (Fig. 4d and Table S1), the reduced number of hydrogen
bonds [i.e., one between tetrazolemoiety of the ligand andArg20
(A), and between ligand imidazole moiety and Arg399 (B) and

Fig. 1 Influence of irbesartan (a), losartan (b) and telmisartan (c) on
KYNA production in rat brain cortical slices in vitro. Data are
expressed as a percentage of the control production, mean ± SEM,

n = 6, ANOVA with post hoc Tukey-Kramer test, and triple asterisks
indicate P < 0.001 vs. control
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Asn202 (B) (Fig. 4d)] is suggested for irbesartan bound to the
KAT II active site.

Finally, the molecular docking data suggest that telmisartan
binds to the same site as previously indicated for losartan and
irbesartan at the KAT II active site. However, there are few
more residues not involved in losartan and irbesartan binding.
In addition, a lower number of hydrogen bonds is suggested,
including that formed between the ligand and Pro16, Ser17,
Ser143, and Arg399 (Fig. 4e and Table S1).

Discussion

The present study shows that all examined ARBs, irbesartan,
losartan, and telmisartan, reduce KYNA production in brain
cortical slices in vitro. Moreover, all analyzed ARBs decrease
the activity of KAT II in brain cortical homogenates in vitro.
KAT II is a crucial enzyme involved in KYNA synthesis that
uses KYN as a substrate. The crystal structure of the native
complex of KAT II with KYN (Han et al. 2008) provided an
important molecular basis for a comprehensive understanding
of the substrate binding and catalysis in KAT II, thus enabling
us to study the possible binding of ARBs (i.e., irbesartan,

losartan, and telmisartan) to this enzyme. Docking simulations
suggest that all studied ARBs bind to the KAT II active site. In
addition, all ligands interact mostly with the same amino acids,
including residues indicated for the KYN complex with KAT II
(PDB ID: 2R2N). Finally, a higher number of hydrogen bonds
are suggested for losartan, the compound experimentally deter-
mined to be the most potent inhibitor among tested ARBs.

Most studies on the pathogenesis of arterial hypertension
have focused primarily on the peripheral mechanisms of blood
pressure regulation, with lesser interest on the central nervous
system. Among known pressor agents, AT-II and GLU play
pivotal roles in the brain centers involved in blood pressure
control in both normotensive and spontaneously hypertensive
rats (SHR) (Muratani et al. 1991). Moreover, the location of
AT1R in the central nervous system is strongly related to the
cardiovascular regulation centers (Tagawa et al. 2000). The
link between brain angiotensinergic and glutamatergic signal-
ing was presented by Vieira et al. (2010). The major sympa-
thetic output pathway for the tonic and reflex control of blood
pressure, which uses GLU as the transmitter, arises from the
rostral ventrolateral medulla (RVLM) (Colombari et al. 2001).
Injection of AT-II into the RVLM of unanesthesized rats was
shown to exaggerate pressor response toGLU.Administration

Fig. 2 Influence of irbesartan (a), losartan (b) and telmisartan (c) onKAT
II activity in rat brain cortex in vitro. Data are expressed as a percentage of
the control KYNA production, mean ± SEM, n = 3, ANOVAwith post

hoc Tukey-Kramer test, and single asterisk indicates P < 0.05 vs. control,
double asterisks indicate P < 0.01 vs. control, and triple asterisks indicate
P < 0.001 vs. control

Neurotox Res (2017) 32:639–648 643



of losartan into the RVLM reduced an increase in blood pres-
sure caused by both GLU and AT-II (Vieira et al. 2010).
Additionally, it is speculated that AT-II takes part in GLU
pressor responses by presynaptic increase of GLU input into
the RVLM (Kumagai et al. 2012).

Referring to this, KYNA (GLU antagonist) is claimed to be a
hypotensive agent. Mills et al. (1990) reported that intrathecal
KYNA administration decreased blood pressure, especially in
anesthetized SHR and stroke-prone spontaneously hypertensive
rats (SPR), with less noticeable effect in normotensive rats.
What is more, lower KYNA content and decreased brain KAT
activity in SHRs were observed (Kapoor et al. 1994). Ito et al.
(2000) showed that KYNA injected into the RVLM of anesthe-
tized SHR effectively reduced mean arterial pressure. The role
of KYNA in blood pressure control was further emphasized by
the discovery of a missense KAT I mutation E61G, which ac-
counts for the reduced activity of KAT I as well as decrease in
KYNA production in SHR (Kwok et al. 2002). Additionally,
Mizutani et al. (2002) presented in SHR brainstem a higher
expression of kynureninase, another enzyme involved in KYN
degradation. Since the increased expression of kynureninase in
SHR is thought to decrease the KYN level (Mizutani et al. 2002)
andKYN is a precursor of KYNA, a decreasedKYNA level can
be expected in hypertensive rats. Interestingly, both an increase
of mean arterial pressure and of splanchnic sympathetic nerve

activity, evoked by AT-II administration into RVLM, were re-
duced by local administration of candesartan as well as KYNA
(Kido et al. 2004). Considering the hypotensive activity of
KYNA in the brain, the fact that all tested ARBs decreased the
synthesis of this GLU antagonist is unexpected.

If ARBs decrease KYNA content in the brain and KYNA
exerts neuroprotective and anticonvulsant activity (Schwarcz
et al. 1987), an intensification of neurodegenerative processes
and proconvulsant action of ARBs should be expected. To the
contrary, ARBs are reported to be neuroprotective and anti-
convulsant. Telmisartan, candesartan, losartan, and valsartan
significantly reduced GLU-induced neuronal injury and apo-
ptosis in cultured rat primary cerebellar granule cells (Wang
et al. 2014). Losartan prevented neuronal loss and inhibited
cognitive impairment in the pilocarpine-induced status epilep-
ticus in rats (Sun et al. 2015) and exerted neuroprotection in
the CA1 area of the hippocampus in the kainate model of
temporal lobe epilepsy in rats (Tchekalarova et al. 2014).
Moreover, losartan decreased seizure severity inWistar audio-
genic rats (Pereira et al. 2010) and prevented the development
of delayed recurrent spontaneous seizures in two rat models of
vascular injury (Bar-Klein et al. 2014).

In opposition to this, an elevated content of KYNA was
linked with AD occurrence. Baran et al. (1999) reported sig-
nificant KYNA increase in the putamen and caudate nucleus

Fig. 3 Molecular structures of
ARBs (i.e., irbesartan, losartan,
and telmisartan) and KYN
(physiological KAT II substrate)
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Fig. 4 Molecular docking of losartan, irbesartan, and telmisartan to the
crystal structure of KAT II (PDB ID: 2R2N). All ligand binding sites
overlap the KYN binding pocket. Two different ligand orientations are
suggested for losartan (a, b) and irbesartan (c, d), and one for telmisartan
(e). Ligand and co-factor are rendered in stick mode; residues involved in
each ligand and PMP binding are shown in cyan and green, respectively.
Residues from chain A are labeled with an asterisk to differentiate chain
A from chain B residues. Black solid lines indicate hydrogen bonds as

well as salt bridges formed between each ligand and amino acid residues,
blue solid lines between ligands and water molecules, and yellow solid
lines indicate the hydrogen bonds formed between losartan (b) or
irbesartan (d) and the co-factor. All residues involved in hydrogen
bonding are marked in red. Oxygen atoms are colored red, nitrogens
blue, phosphorus yellow, and chlorine green. All hydrogen atoms are
hidden (color figure online)
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of AD brain, compared to other brain regions. In addition, this
elevated KYNA level correlated with a significant increase in
KAT I activity in both nuclei (Baran et al. 1999). Malkova
et al. (2015) showed that intracerebral KYNA infusion im-
paired object recognition memory in macaques. Importantly,
reduction of brain KYNA by PF-04859989, a brain-
penetrable inhibitor of KAT II, improved cognitive function
in rodents and nonhuman primates (Kozak et al. 2014).

In this study, ARBs inhibited KAT II activity and re-
duced the production of KYNA in rat cortical slices.
According to the hypothesis that KYNA produces cogni-
tive impairment, it can be expected that ARBs would pos-
itively affect the memory processes. Indeed, losartan im-
proved cerebrovascular function in a mouse model of AD
(Papadopoulos et al. 2017). Danielyan et al. (2010) have
proved in a transgenic mouse model of AD that losartan
given intranasally exerts a neuroprotective effect in con-
centrations much lower than that needed to decrease
blood pressure. Moreover, enhancing memory effects
were observed in humans treated with ARBs. Losartan
improved cognitive function, mainly immediate and de-
layed memory in elderly hypertensive humans (Fogari
et al. 2003) and in healthy young adults (Mechaeil et al.
2011). Accumulated data unequivocally indicate the ben-
eficial effect of ARBs in memory impairment. However,
the mechanism of such ARBs’ action is unknown. Our
results imply that the decrease in KYNA production by
ARBs may be responsible for the improving effect of
these drugs on cognition.

Apart from memory improvement, ARBs may be benefi-
cial in the treatment of psychotic disorders by decreasing
KYNA production. High KYNA content, especially in the
central nervous system, has been reported in patients with
schizophrenia (Plitman et al. 2017). The reason for such an
observation is unknown. One of the possible explanations is
the involvement of RAS. It has been shown that RAS hyper-
activity results in the alteration of central dopaminergic neu-
rotransmission (Labandeira-García et al. 2014). The effect of
ARBs was evaluated in drug induced animal schizophrenia
models. Marchese et al. (2016) reported that losartan given
intracerebroventricularly partially prevented the impairing ef-
fect of amphetamine in the inhibitory avoidance response of
Wistar rats. In addition, losartan diminished amphetamine-
induced hyperactivity in Wistar rats (Paz et al. 2014). Thus,
it can be postulated that the antipsychotic effects of ARBs are
linked with reduced brain KYNA concentration. To support
this hypothesis, selective cyclooxygenase-2 (COX-2) in-
hibitors have also been proven to lower KYNA concentra-
tion in rat brain in vitro (Schwieler et al. 2006), as well as
reduce amphetamine-induced behavioral changes in rats
(El-Sayed El-Sisi et al. 2016). As a result, celecoxib is
postulated as an adjunct therapy for patients with schizo-
phrenia (Müller et al. 2010).

This study reports for the first time that ARBs inhibit KAT
II activity and reduce KYNA production in cortical slices. The
decrease of KYNA production in cortical slices can be ex-
plained by the inhibition of KAT II activity. Since the activity
of KATs was investigated in partially purified enzymes, it can
be concluded that the investigated ARBs, irbesartan, losartan,
and telmisartan, are KAT inhibitors. This statement is further
supported by our docking simulations which suggest that all
studied ARBs bind to the KAT II active site.

Experimental data suggest that all analyzed ARBs can
reach the central nervous system after peripheral administra-
tion (Zhuo et al. 1994; Culman et al. 1999; Kishi et al. 2012).
Thus, it can be concluded that all examined ARBs can reach
the central nervous system after systemic administration and
affect KYNA production in the brain cortex.

This study has some limitations. Among the analyzed
ARBs, only losartan potassium is water soluble, whereas
irbesartan and telmisartan were dissolved in DMSO.
Because of the limited solubility, the influence of telmisartan
on KYNA production was examined up to 0.5 mM
concentration.

In conclusion, the obtained results demonstrate that ARBs
decrease KYNA synthesis in the brain cortex in vitro by inhi-
bition of KAT II. In addition, we suggest that each studied
ARB may bind to the KAT II active site, inhibit enzyme ac-
tivity, and subsequently block KYNA production. Further
in vivo studies are needed to confirm the presented in vitro
findings.
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