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Abstract: Finite-sample bounds on the accuracy of Bhattacharya’s plug-in estimator for Fisher
information are derived. These bounds are further improved by introducing a clipping step that
allows for better control over the score function. This leads to superior upper bounds on the rates
of convergence, albeit under slightly different regularity conditions. The performance bounds on
both estimators are evaluated for the practically relevant case of a random variable contaminated by
Gaussian noise. Moreover, using Brown’s identity, two corresponding estimators of the minimum
mean-square error are proposed.
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1. Introduction

This work considers the problem of estimating the Fisher information for the location
of a univariate probability density function (PDF) f based on n random samples Y1, . . . , Yn
independently drawn from f . To clarify, the Fisher information of a differentiable density
function f is given by

I( f ) =
∫
{ f (t)>0}

( f ′(t))2

f (t)
dt, (1)

where f ′ is the derivative of f . For the remainder of the paper, it is assumed that { f (t) >
0} = R, but an extension to the general case is not difficult. The paper considers plug-
in estimators based on kernel density estimates of f . That is, the Fisher information is
estimated by plugging a kernel density estimate of f into the right-hand side of (1).

Estimation of the Fisher information in (1) via a plug-in estimator based on kernel
density estimates was first considered by Bhattacharya in [1]. Bhattacharya showed that,
under mild conditions on f , the plug-in estimator is consistent for a large class of kernels,
and he provided bounds on its accuracy in the large (asymptotic) sample regime. These
bounds were later revised and improved by Dmitriev and Tarasenko in [2]. However, to the
best of our knowledge, no finite-sample regime bounds on the accuracy of Bhattacharya’s
estimator can be found in the literature. The paper aims at closing this gap.

Bounds on the accuracy of plug-in estimators rely on bounds on the accuracy of the
underlying density estimators. For kernel-based density estimators, such bounds have
received considerable attention in the literature. For example, Schuster [3] showed that,
under mild regularity conditions, the estimation error for higher-order derivatives can be
controlled by the estimation error for the corresponding cumulative distribution function
(CDF). The interested reader is referred to [4–8] and the references therein. In this paper,
as a preliminary result for the analysis of Bhattacharya’s estimator, the bounds in [3] are
further tightened by replacing some suboptimal constants with the optimal ones.
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A problem that arises in the performance analysis of plug-in estimators for Fisher
information is that the score function of the estimated density, that is, the ratio of the deriva-
tive of the PDF and the PDF itself, is hard to bound, especially in the tails. Bhattacharya
worked around this problem by truncating the integration range in (1), thus avoiding
evaluation of the estimated score function on these critical regions. However, in order for
the estimator to stay consistent, this truncation has to be done rather aggressively so that
the error introduced by ignoring the tails can outweigh the approximation error introduced
by the density estimate. In this paper, we propose a simple remedy that allows for a much
less aggressive truncation of the integration range and, in turn, for significantly tighter
bounds on the approximation error. Namely, we propose the clipping of the score function
whenever it exceeds a suitably chosen upper bound. In the vast majority of cases, the
corresponding clipped estimates of Fisher estimation are identical to their non-clipped
counterparts, meaning that the clipping has a negligible influence on the estimation accu-
racy. However, the knowledge that extreme values of the score would have been clipped,
had they occurred, allows for much-improved performance guarantees.

It should be explicitly stated that this paper does not address the question of how best
to estimate Fisher information. Although this question is highly interesting and relevant, it
is far beyond the scope of this work. In addition, it is not the aim of the paper to compare
the plug-in estimator to alternative estimators for the Fisher information or to claim that
it provides superior result. A variety of well-motivated parametric and nonparametric
Fisher information estimators have been proposed in the literature; see, for example, [9–11]
and the references therein. However, comparing and contrasting these estimators in a fair
manner is not straightforward and arguably constitutes a research question in its own right.
Finally, the problem of obtaining estimator-independent bounds on the sample complexity
of Fisher information falls under the umbrella of estimation of nonlinear functionals; see,
for example, [12]. Most of the commonly used information measures, such as entropy,
relative entropy, and mutual information, are nonlinear functionals, and their estimation
has recently received considerable attention; the interested reader is referred to [13–17] and
the references therein.

Despite its limited scope, we are convinced that the work presented in this paper is
useful in a wider context. First, from a theoretical point of view, it strengthens some classic
results in nonparametric estimation and, as explained above, provides bounds for the finite-
sample regime, thus filling a gap in the literature. Second, from a practical perspective, the
Fisher information typically provides useful bounds or limits on the estimation error (e.g.,
the well-known Cramér–Rao lower bound), but is not in itself the quantity of interest—an
exception is the case of estimating a random signal in additive Gaussian noise, where the
minimum mean square error (MMSE) and other relevant quantities can be expressed in term
of the Fisher information. The problem of estimating Fisher information also arises in image
processing, model selection, experimental design, and many more areas. Applications of
our results include, for example, to provide the Cramér–Rao bound and, for the case of a
random variable in additive Gaussian noise, to address the power allocation problem [18].
These connections will be discussed in more detail in Section 4. Most often, however, Fisher
information plays the role of side information, and its estimation does not warrant investing
large computational resources. This prevents the use of sophisticated estimators, which
require solving non-trivial optimization problems. In contrast, kernel density estimates are
relatively easy to compute and have been widely used in nonparametric statistics so that
efficient implementations in software or even hardware [19] are readily available. Hence,
for the foreseeable future, plug-in estimators are bound to remain a common and often the
only viable option for estimating Fisher information in practice.

The paper is organized as follows: Section 2 revisits Bhattacharya’s estimator. In
particular, Theorem 1 provides explicit and tighter non-asymptotic bounds on its conver-
gence rate, improving the results in [1,2]. Furthermore, Theorem 2 provides an alternative
bound under the additional assumption that the density function is upper bounded within
any given interval. The explicit non-asymptotic results enable us to see that the sample
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complexity of Bhattacharya’s estimator is considerable and that the potentially unbounded
score function is a critical bottleneck for tighter bounds. Section 3 proposes a “harmless”
modification of Bhattacharya’s estimator, namely, a clipping of the estimated score func-
tion, which is shown to be sufficient to remedy its large sample complexity. In particular,
Theorem 3 shows that the clipped estimator has significantly better bounds on rates of
convergence, albeit with slightly different assumptions on the PDF. Section 4 evaluates the
convergence rates of the two estimators for the practically relevant case of a random vari-
able contaminated by additive Gaussian noise. Moreover, using Brown’s identity, which
relates the Fisher information and the MMSE, consistent estimators for the MMSE are
proposed and their rates of convergence are evaluated in Proposition 1. Section 5 concludes
the paper.

Notation

The expected value and variance of a random variable X are denoted by E[X] and
Var(X), respectively. The gamma function is denoted by Γ(·). Estimators of a PDF f based
on n samples are denoted by fn. No notational distinction is made between an estimator,
which is a random variable, and its realizations (estimates), which are deterministic. How-
ever, the difference will be clear from the context or will be highlighted explicitly otherwise.
The nth derivative of a function F : R→ R is denoted by F(n); the first-order derivative is
also denoted by F′ to improve readability.

2. Bhattacharya’s Estimator

In this section, we revisit the asymptotically consistent estimator proposed by Bhat-
tacharya in [1] and produce explicit and non-asymptotic bounds on its accuracy.

Bhattacharya’s estimator is given by

In =
∫ kn

−kn

( f ′n(t))
2

fn(t)
dt, (2)

where kn ≥ 0 determines the integration interval as a function of the sample size n and the
unknown functions f and f ′ are replaced by their kernel estimates, that is,

fn(t) =
1
n

n

∑
i=1

1
a0

K
(

t−Yi
a0

)
, (3)

f ′n(t) =
1
n

n

∑
i=1

1
a1

K′
(

t−Yi
a1

)
. (4)

Here, a0, a1 > 0 are bandwidth parameters, and K : R→ R denotes the kernel, which
is assumed to satisfy certain regularity conditions that will be discussed later in this section.

2.1. Estimating a Density and Its Derivatives

In order to analyze plug-in estimators, it is necessary to obtain rates of convergence
for fn and f ′n, that is, the kernel estimators of the density and its derivative. The following
result, which is largely based on the proof by Schuster in [3], provides such rates. The proof
in [3] makes use of the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality for the empirical
CDF. The next lemma refines the result in [3] by using the best possible constant for the
DKW inequality shown in [20].

Lemma 1. Let r ∈ {0, 1} and

vr =
∫ ∞

−∞

∣∣K(r+1)(t)
∣∣dt, (5)

δr,ar = sup
t∈R

∣∣∣E[ f (r)n (t)
]
− f (r)(t)

∣∣∣. (6)
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Then, for any ε > δr,ar and any n ≥ 1, the following bound holds:

P
[

sup
t∈R

∣∣∣ f (r)n (t)− f (r)(t)
∣∣∣ > ε

]
≤ 2e

−2n a2r+2
r (ε−δr,ar )

2

v2
r . (7)

Proof. See Appendix A.

2.2. Analysis of Bhattacharya’s Estimator

The following theorem is a non-asymptotic refinement of the result obtained by
Bhattacharya in Theorem 3 of [1] and Dmitriev and Tarasenko in Theorem 1 of [2].

Theorem 1. Assume that there exists a function φ : R→ R such that

sup
|t|≤x

1
f (t)
≤ φ(x), ∀x ∈ R. (8)

Then, provided that

sup
|t|≤kn

∣∣∣ f (r)n (t)− f (r)(t)
∣∣∣ ≤ εr, r ∈ {0, 1}, (9)

and
ε0φ(kn) < 1, (10)

the following bound holds:

|I( f )− In| ≤
4ε1knρmax(kn) + 2ε2

1knφ(kn) + ε0φ(kn)I( f )
1− ε0φ(kn)

+ c(kn), (11)

where

ρmax(kn) = sup
|t|≤kn

∣∣∣∣ f ′(t)
f (t)

∣∣∣∣, (12)

c(kn) = I( f )−
∫ kn

−kn

( f ′(t))2

f (t)
dt. (13)

Proof. See Appendix B.

The bound in (11) is an improvement of the original bound in [1,2], which contains
terms of the form ε0φ4(kn).

Note that φ(kn) in (8) can be rapidly increasing with kn. For example, as will be shown
later, φ(kn) increases super-exponentially with kn for a random variable contaminated by
Gaussian noise. This implies that, while Bhattacharya’s estimator converges, the rate of
convergence guaranteed by the bound in (11) is extremely slow. A modified bound is
proposed in the subsequent theorem.

Theorem 2. Assume that f (t) is bounded on the interval t ∈ [−kn, kn], i.e.,

sup
|t|≤kn

f (t) ≤ f0, (14)

for some f0 ∈ R. If the assumptions in (8), (9), and (10) hold, then

|I( f )− In| ≤
[
ε1

(
4 + d f (kn) + d fn(kn)

)
+ ε0

(
2 + d fn(kn)

)
ρmax(kn)

]
ψ(ε0, kn) + c(kn), (15)
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where ρmax and c are given by (12) and (13), respectively,

ψ(ε0, kn) = max
(

log( f0 + ε0), log
(

φ(kn)

1− ε0φ(kn)

))
, (16)

and dg(kn) denotes the number of zeros of the derivative of the function g on the interval [−kn, kn],
i.e.,

dg(kn) =
∣∣{t ∈ [−kn, kn] : g′(t) = 0

}∣∣. (17)

Proof. See Appendix C.

Remark 1. Note that ψ in (15) is on the order of log(φ(kn)), which typically increases much more
slowly with kn than φ in (11). As a result, the bound in Theorem 2 can lead to a better bound
on the convergence rate than that in Theorem 1, given appropriate upper bounds on d f and d fn .
Since Gaussian blurring of a univariate density function never creates new maxima, we have that
d fY ≤ d fX , which is a constant. However, to the best of our knowledge, the only known upper bound
on d fn is given by d fn ≤ n [21] (Theorem 2), which is not useful in practice. Despite this drawback,
we include Theorem 2 for the sake of completeness and in the hope that tighter bounds on d fn might
be established in the future.

The main problem in the convergence analysis of the estimator in (2) is that 1/ fn(t) is
only bounded if f (t) > ε0. For distributions with sub-Gaussian tails, this implies that the
interval [−kn, kn], on which this is guaranteed to be the case, grows sub-logarithmically
(compare Theorem 4), causing the required number of samples to grow super-exponentially.
In next section, we propose an estimator that has better guaranteed rates of convergence.

3. The Clipped Bhattacharya Estimator

In order to remedy the slow guaranteed convergence rates of Bhattacharya’s estimator,
we dispense with the tail assumption in (8), but introduce the new assumption that the
unknown true score function ρ(t) = f ′(t)/ f (t) is bounded (in absolute value) by a known
function ρ. This allows us to clip f ′n(t)/ fn(t) and, in turn, 1/ fn(t) without affecting the
consistency of the estimator.

Theorem 3. Assume that there exists a function ρ : R→ R such that

|ρ(t)| ≤ |ρ(t)|, ∀t ∈ R (18)

and let

Ic
n =

∫ kn

−kn
min{|ρn(t)| , |ρ(t)|} | f ′n(t)| dt, (19)

where

ρn(t) =
f ′n(t)
fn(t)

. (20)

Under the assumptions in (9), it holds that

|I( f )− Ic
n| ≤ max

{
4ε1Φ1(kn) + 2ε0Φ2(kn) + c(kn), 3ε1Φ1

max(kn) + ε0Φ2
max(kn)

}
(21)

≤ 4ε1Φ1
max(kn) + 2ε0Φ2

max(kn) + c(kn), (22)

where c(kn) is defined in (13) and

Φm(x) =
∫ x

−x
|ρm(t)| dt, (23)

Φm
max(x) =

∫ x

−x
|ρm(t)| dt. (24)
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In addition, if f (t) is bounded as in (14), then

Φm(kn) ≤ min
{
(2 + d f )ρ

m−1(kn)ψ(0, kn) , Φm
max(kn)

}
, (25)

where ψ and d f are defined in (16) and (17), respectively.

Proof. See Appendix D.

For the upper-bound function ρ(t) in assumption (18), in practice, we can set ρ(kn) =
ρmax(kn) if the latter is available. Although ρmax(kn) also increases with kn, it usually
increases much more slowly than φ(kn). For example, as shown later, ρmax(kn) is linear in
kn in the Gaussian noise case. As a result, better bounds on the convergence rate can be
shown for the clipped estimator.

4. Estimation of the Fisher Information of a Random Variable in Gaussian Noise

This section evaluates the results of Sections 2 and 3 for the important special case of a
random variable contaminated by additive Gaussian noise. To this end, we let fY denote
the PDF of a random variable

Y =
√
snrX + Z, (26)

where snr > 0 is a signal-to-noise-ratio parameter, X is an arbitrary random variable, Z is a
standard Gaussian random variable, and X and Z are independent. We are interested in
estimating the Fisher information of fY. We only make the very mild assumption that X
has a finite second moment, but otherwise, it is allowed to be an arbitrary random variable.
We further assume that snr is known and that Gaussian kernels are used in the density
estimators, i.e.,

K(t) =
1√
2π

e−
t2
2 . (27)

The following lemma provides explicit expressions for the quantities appearing in
Sections 2 and 3 that are needed to evaluate the error bounds for the Bhattacharya and the
clipped estimator.

Lemma 2. Let K be as in (27). Then,

δr,ar ≤ ar ·


1

π
√

e , r = 0

2
e+1

π , r = 1,
(28)

vr =


√

2
π , r = 0√
2

eπ , r = 1,
(29)

ρmax(kn) ≤
√

3snrVar(X) + 3kn, (30)

I( fY) ≤ 1, (31)

φ(t) ≤
√

2πet2+snrE[X2]. (32)

Proof. See Appendix F.

We now bound c(kn). To this end, we need the notion of sub-Gaussian random
variables: A random variable X is said to be α-sub-Gaussian if

E[etX ] ≤ e
α2t2

2 ∀t ∈ R. (33)
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Lemma 3. Suppose that E[X2] < ∞. Then,

c(kn) ≤ inf
v>0

2Γ
1

(1+v)
(

v + 1
2

)
π

1
2(1+v)

(
snrE[X2] + 1

k2
n

) v
1+v

. (34)

In addition, if |X| is α-sub-Gaussian, then

c(kn) ≤ inf
v>0

2Γ
1

(1+v)
(

v + 1
2

)
π

1
2(1+v)

(
2e

α2snr−k2
n

2

) v
1+v

. (35)

Proof. See Appendix G.

4.1. Convergence of Bhattacharya’s Estimator

By combining the results in Lemma 1, Theorem 1, Lemma 2, and Lemma 3, we have
the following theorem.

Theorem 4. Let K be as in (27). Choose the parameters of Bhattacharya’s estimator as follows:
a0 = n−w0 , where w0 ∈

(
0, 1

4

)
, a1 = n−w1 , where w1 ∈

(
0, 1

6

)
, and kn =

√
u log(n), where

u ∈ (0, min(w0, w1)). Then, for nw0−u > c5,

P[|In − I( fY)| ≥ εn] ≤ 2e−c1n1−4w0 + 2e−c2n1−6w1 , (36)

where

εn ≤
n−w1

√
u log(n)

(
4c3 + 12

√
u log(n) + 2c5nu−w1

)
+ c5nu−w0

1− c5nu−w0
+

c4√
u log(n)

, (37)

and where the constants are given by

c1 = π

(
1− 1√

2πe

)2
, (38)

c2 = eπ

(
1−

2
e + 1
√

2π

)2

, (39)

c3 =
√

3snrVar(X), (40)

c4 =
2Γ

1
2
( 3

2
)√

snrE[X2] + 1

π
1
4

, (41)

c5 =
√

2πesnrE[X
2]. (42)

In addition, if |X| is α-sub-Gaussian, then

εn ≤
n−w1

√
u log(n)

(
4c3 + 12

√
u log(n) + 2c5nu−w1

)
+ c5nu−w0

1− c5nu−w0
+ c6n−

u
4 , (43)

where

c6 =
2

3
2 Γ

1
2
( 3

2
)
e

α2snr
4

π
1
4

. (44)

Proof. See Appendix H.

Note that the parameters kn, a0, and a1 are chosen so as to guarantee the convergence of
In( fn) to I( fY) with probability 1. For the details, please refer to the proof in Appendix H.
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The parameters u and w in the above theorem are auxiliary variables that couple the
bandwidth of the kernel density estimators in (3) and (4) with the integration range of the
Fisher information estimator in (2). Choosing them according to Theorem 4 results in a
trade-off between precision, εn, and confidence, i.e., the probability of the estimation error
exceeding εn. On the one hand, small values of u and large values of w result in better
precision (i.e., small εn) at the cost of a lower confidence (i.e., large probability of exceeding
εn). On the other hand, large values of u and small values of w improve the confidence
but deteriorate the precision. In turn, this also affects the convergence rates, meaning that
faster convergence of the precision can be achieved at the expense of a slower convergence
of the confidence and vice versa.

4.2. Convergence of the Clipped Estimator

From the evaluation of Bhattacharya’s estimator in Theorem 4, it is apparent that the
bottleneck term is the truncation parameter kn =

√
u log(n), which results in slow precision

decay of the order εn = O
(

1√
u log(n)

)
. Next, it is shown that the clipped estimator results

in improved precision over Bhattacharya’s estimator. Specifically, the precision will be
shown to decay polynomially in n instead of logarithmically. Another benefit of the clipped
estimator is that its error analysis holds for every n ≥ 1.

By utilizing the results in Lemma 1, Lemma 2, and Lemma 3, we specialize the result
in Theorem 2 to the Gaussian noise case.

Theorem 5. Let K be as in (27). Choose the parameters of the clipped estimator as follows:
a0 = n−w0 , where w0 ∈

(
0, 1

4

)
, a1 = n−w1 , where w1 ∈

(
0, 1

6

)
, and kn = nu, where u ∈(

0, min
(w0

3 , w1
2
))

. Then, for n ≥ 1

P[|Ic
n − I( fY)| ≥ εn] ≤ 2e−c1n1−4w0 + 2e−c2n1−6w1 , (45)

where
εn ≤ 4n3u−w0

(
c2

3n−2u + 3
)
+ 4n2u−w1

(
2c3n−u + 3

)
+ c4n−u, (46)

and the constants c1 to c4 are as in Theorem 4. In addition, if |X| is α-sub-Gaussian, then

εn ≤ 4n3u−w0
(

c2
3n−2u + 3

)
+ 4n2u−w1

(
2c3n−u + 3

)
+ c6e−

n2u
4 , (47)

where c6 is given by (44).

Proof. See Appendix I.

Again, the parameters kn, a0, and a1 are chosen to guarantee the consistency of the
estimator. For further details, please refer to Appendix I.

4.3. Applications to the Estimations of the MMSE

As discussed in the introduction, the Fisher information is often merely a proxy for
the actual quantity of interest. One accuracy measure that is typically of interest is the
MMSE, which is defined as

mmse(X|Y) = E
[
(X−E[X|Y])2

]
. (48)

In additive Gaussian noise, the MMSE can not only be bounded by the Fisher infor-
mation, but both are related via Brown’s identity:

I( fY) = 1− snrmmse(X|Y). (49)
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Based on this relation, we propose the following estimators for the MMSE:

mmsen(X, snr) =
1− In

snr
(50)

and
mmsec

n(X, snr) =
1− Ic

n
snr

. (51)

The results for the estimators of Fisher information in Theorem 4 and Theorem 5 can
be immediately extended to the MMSE estimators as follows.

Proposition 1. Let K be as in (27), and let w0, w1, and n be such that they satisfy the conditions
in Theorem 4. It then holds that

P[|mmsen(X, snr)−mmse(X, snr)| ≥ snrεn] ≤ 2e−c1n1−4w0 + 2e−c2n1−6w1 , (52)

where εn, c1, and c2 are given in Theorem 4.

Proposition 2. Let K be as in (27), and let w0 and w1 be such that they satisfy the conditions in
Theorem 5. It then holds that

P[|mmsec
n(X|Y)−mmse(X|Y)| ≥ snrεn] ≤ 2e−c1n1−4w0 + 2e−c2n1−6w1 , (53)

where εn, c1, and c2 are given in Theorem 5.

4.4. Sample Complexity

Finally, we demonstrate the difference in the bounds on the convergence rates between
Bhattacharya’s estimator and its clipped version by comparing the sample complexity of
the two estimators, that is, the required number of samples to guarantee a given accuracy
with a given confidence. MATLAB implementations of both estimators, as well as the code
used to generate the figures below, can be found in [22].

To this end, we consider the simple example of estimating the density of a Gaussian
random variable in additive Gaussian noise. More precisely, we assume that X and Z in (26)
are independent and identically distributed according to the standard normal distribution
N (0, 1), and that snr = 1. This trivially implies that X is α-sub-Gaussian with α = 1. In
order to make the comparison as fair as possible, the parameters of the kernel estimators,
a0, a1, and kn, are not chosen according to Theorem 4 or Theorem 5, but are calculated by
numerically minimizing the required number of samples; see [22] for details.

Let Perr = P[|In − I( fY)| ≥ εn]. The left-hand plot in Figure 1 shows the corresponding
bounds on the sample complexities of the two estimators with Perr = 0.2 and εn varying
from 0.1 to 0.9. Note that the results with larger εn are not shown because I( fY) ≤ 1,
as shown in Lemma 2. Moreover, the right-hand plot in Figure 1 shows the sample
complexities for εn = 0.5 with Perr varying from 0.1 to 0.9. By inspection, the clipped
estimator reduces the sample complexity by several orders of magnitude; note that the
y-axes scale logarithmically. As discussed before, this does not imply that the clipped
estimator is more accurate in general. However, it does imply that the clipped estimator
provides significantly better worst-case performance, i.e., it requires significantly fewer
samples to guarantee a certain precision or confidence. Finally, note that this improvement
comes at a low cost in terms of complexity and regularity assumptions. The complexity of
both algorithms is almost identical, with the clipped estimator only requiring an additional
evaluation of ρ̄. The regularity conditions are identical for bounded density functions, and
slightly stronger for the clipped estimator for unbounded density functions.



Entropy 2021, 23, 545 10 of 22

Entropy 2021, 1, 0 10 of 22

evaluation of ρ̄. The regularity conditions are identical for bounded density functions, and
slightly stronger for the clipped estimator for unbounded density functions.

0.2 0.4 0.6 0.8

15

20

25

30

εn

lo
g 10

(n
)

Theorem 4
Theorem 5

0.2 0.4 0.6 0.8
14

15

16

17

18

19

20

21

Perr

lo
g 10

(n
)

Theorem 4
Theorem 5

Figure 1. Sample complexity with Gaussian input. Left: number of samples required versus error of
the estimators In and Ic

n given Perr = 0.2. Right: number of samples required versus confidence of
the estimators with given εn = 0.5.

5. Conclusion

This work focused on the estimation of the Fisher information for the location of a
univariate random variable using plug-in estimators based on estimators of the PDF and its
derivative. Two estimators of the Fisher information were considered. The first estimator
is the estimator due to Bhattacharya, for which new, sharper convergence results were
shown. The paper also proposed a second estimator, termed a clipped estimator, which
provides better bounds on the convergence rates. The accuracy bounds on both estimators
were specialized to the practically relevant case of a random variable contaminated by
additive Gaussian noise. Moreover, using special proprieties of the Gaussian noise case,
two estimators for the MMSE were proposed, and their convergence rates were analyzed.
This was done by using Brown’s identity, which connects the Fisher information and the
MMSE. Finally, using a numerical example, it was demonstrated that the proposed clipped
estimator can achieve a significantly lower sample complexity at little or no additional cost.

Figure 1. Sample complexity with Gaussian input. Left: number of samples required versus error of
the estimators In and Ic

n given Perr = 0.2. Right: number of samples required versus confidence of
the estimators with given εn = 0.5.

5. Conclusions

This work focused on the estimation of the Fisher information for the location of a
univariate random variable using plug-in estimators based on estimators of the PDF and its
derivative. Two estimators of the Fisher information were considered. The first estimator
is the estimator due to Bhattacharya, for which new, sharper convergence results were
shown. The paper also proposed a second estimator, termed a clipped estimator, which
provides better bounds on the convergence rates. The accuracy bounds on both estimators
were specialized to the practically relevant case of a random variable contaminated by
additive Gaussian noise. Moreover, using special proprieties of the Gaussian noise case,
two estimators for the MMSE were proposed, and their convergence rates were analyzed.
This was done by using Brown’s identity, which connects the Fisher information and the
MMSE. Finally, using a numerical example, it was demonstrated that the proposed clipped
estimator can achieve a significantly lower sample complexity at little or no additional cost.
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Appendix A. A Proof of Lemma 1

Our starting point is the following bound due to [3] (p. 1188):

sup
t∈R

∣∣∣E[ f (r)n (t)
]
− f (r)n (t)

∣∣∣ ≤ vr

ar+1
r

sup
t∈R
|Fn(t)− FY(t)|, (A1)

where F is the CDF of f , Fn is the empirical CDF, and vr is defined in (5). Now, let δr,ar be
as in (6), and consider the following sequence of bounds:

P
[

sup
t∈R

∣∣∣ f (r)n (t)− f (r)(t)
∣∣∣ > ε

]
≤ P

[
sup
t∈R

∣∣∣ f (r)n (t)−E[ f (r)n (t)]
∣∣∣ > ε− δr,ar

]
(A2)

≤ P
[

sup
t∈R
|Fn(t)− F(t)| > ar+1

r (ε− δr,ar )

vr

]
(A3)

≤ 2e
−2n a2r+2

r (ε−δr,ar )
2

v2
r , (A4)

where (A2) follows by using the triangle inequality; (A3) follows by using the bound in
(A1); and (A4) follows by using the sharp DKW inequality [20]:

P
[

sup
t∈R
|Fn(t)− F(t)| > ε

]
≤ 2e−2nε2

. (A5)

This concludes the proof.

Appendix B. A Proof of Theorem 1

First, using the triangle inequality, we have that

|I( f )− In| ≤
∣∣∣∣∫ kn

−kn

( f ′n(t))2

fn(t)
− ( f ′(t))2

f (t)
dt
∣∣∣∣+ c(kn). (A6)
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Next, we bound the first term in (A6) :∣∣∣∣∫ kn

−kn

( f ′n(t))2

fn(t)
− ( f ′(t))2

f (t)
dt
∣∣∣∣

=

∣∣∣∣∫ kn

−kn

f (t)( f ′n(t))2 − fn(t)( f ′(t))2

fn(t) f (t)
dt
∣∣∣∣ (A7)

≤
∣∣∣∣∫ kn

−kn

f (t)( f ′n(t))2 − f (t)( f ′(t))2

fn(t) f (t)
dt
∣∣∣∣+ ∣∣∣∣∫ kn

−kn

f (t)( f ′(t))2 − fn(t)( f ′(t))2

fn(t) f (t)
dt
∣∣∣∣ (A8)

=

∣∣∣∣∫ kn

−kn

( f ′n(t))2 − ( f ′(t))2

fn(t)
dt
∣∣∣∣+ ∣∣∣∣∫ kn

−kn

fn(t)− f (t)
fn(t)

( f ′(t))2

f (t)
dt
∣∣∣∣ (A9)

≤ sup
|t|≤kn

| f ′n(t) + f ′(t)|
fn(t)

| fn(t)− f (t)|2kn + sup
|t|≤kn

| fn(t)− f (t)|
fn(t)

∫ kn

−kn

( f ′(t))2

f (t)
dt (A10)

≤ sup
|t|≤kn

| f ′n(t) + f ′(t)|
fn(t)

ε12kn + sup
|t|≤kn

1
fn(t)

ε0 I( f ), (A11)

where the last bound follows from the assumptions in (9). Now, consider the first term
in (A11):

sup
|t|≤kn

| f ′n(t) + f ′(t)|
fn(t)

≤ sup
|t|≤kn

2| f ′(t)|+ ε1

fn(t)
(A12)

≤ sup
|t|≤kn

2| f ′(t)|+ ε1

f (t)− f (t) + fn(t)
(A13)

≤ sup
|t|≤kn

2| f ′(t)|+ ε1

f (t)− ε0
(A14)

= sup
|t|≤kn

2
∣∣∣ f ′(t)

f (t)

∣∣∣+ ε1
f (t)

1− ε0
f (t)

(A15)

≤
2 sup|t|≤kn

∣∣∣ f ′(t)
f (t)

∣∣∣+ ε1φ(kn)

1− ε0φ(kn)
, (A16)

where the bound in (A14) follows from the assumptions in (9) and the properties of φ,
which imply

ε0φ(kn) < 1 ⇒ ε0 < f (t), ∀|t| ≤ kn; (A17)

and the bound in (A16) follows from the definition of φ in (8). Now, consider the second
term in (A11):

sup
|t|≤kn

1
fn(t)

= sup
|t|≤kn

1
f (t)− f (t) + fn(t)

(A18)

≤ sup
|t|≤kn

1
f (t)− ε0

(A19)

= sup
|t|≤kn

1
1− ε0

f (t)

1
f (t)

(A20)

≤ 1
1− ε0φ(kn)

φ(kn), (A21)

where (A20) follows by using similar steps, leading to the bound in (A14), and (A21)
follows from the definition of φ.

Combining the bounds in (A6), (A11), (A16), and (A21) concludes the proof.
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Appendix C. A Proof of Theorem 2

Using (9), (14), and (A21), it holds that

| log( fn)| ≤ max
(

log( fn), log
(

1
fn

))
(A22)

≤ max
(

log( f0 + ε0), log
(

φ(kn)

1− ε0φ(kn)

))
(A23)

= ψ(ε0, kn). (A24)

Next, we bound the first term on the right-hand side of (A6). Starting with (A9) above,
it holds that∣∣∣∣∫ kn

−kn

( f ′n(t))2

fn(t)
− ( f ′(t))2

f (t)
dt
∣∣∣∣

≤ ε1

∫ kn

−kn

∣∣∣∣ f ′n(t) + f ′(t)
fn(t)

∣∣∣∣dt + ε0

∫ kn

−kn

∣∣∣∣ ( f ′(t))2

fn(t) f (t)

∣∣∣∣dt (A25)

≤ ε1

∫ kn

−kn

∣∣∣∣ f ′n(t)
fn(t)

∣∣∣∣dt + ε1

∫ kn

−kn

∣∣∣∣ f ′(t)
fn(t)

∣∣∣∣dt + ε0ρmax(kn)
∫ kn

−kn

∣∣∣∣ f ′(t)
fn(t)

∣∣∣∣dt, (A26)

where the inequality in (A25) follows again from (9), and the last bound follows from the
triangle inequality together with the definition of ρmax.

Consider the integral in the first term in (A26):

∫ kn

−kn

∣∣∣∣ f ′n(t)
fn(t)

∣∣∣∣dt

=
∫ kn

−kn
|∇ log( fn(t))|dt (A27)

=
∫ kn

−kn
sign(∇ log( fn(t))) · ∇ log( fn(t))dt (A28)

= sign(∇ log( fn(t))) · log( fn(t))
∣∣∣kn

−kn
−
∫ kn

−kn
log( fn(t))

d
dt

sign(∇ log( fn(t)))dt, (A29)

where the last equality follows from integration by parts. The first term in (A29) can be
upper bounded as

sign(∇ log( fn(t))) · log( fn(t))
∣∣∣kn

−kn
≤ 2ψ(ε0, kn), (A30)

where the inequality in (A30) follows from (A24). The second term in (A29) is given by

−
∫ kn

−kn
log( fn(t))

d
dt

sign(∇ log( fn(t)))dt = − ∑
t∈[−kn ,kn ]: f ′n(t)=0

log( fn(t)) (A31)

≤ d fn(kn)ψ(ε0, kn). (A32)

By substituting (A30) and (A32) into (A29), one obtains

∫ kn

−kn

∣∣∣∣ f ′n(t)
fn(t)

∣∣∣∣dt ≤ (2 + d fn)ψ(ε0, kn). (A33)
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Next, we consider the integral in the second and third terms in (A26):

∫ kn

−kn

∣∣∣∣ f ′(t)
fn(t)

∣∣∣∣dt ≤
∫ kn

−kn

∣∣∣∣ f ′(t)
f (t)− ε0

∣∣∣∣dt (A34)

=
∫ kn

−kn
|∇ log( f (t)− ε0)|dt (A35)

=
∫ kn

−kn
sign(∇ log( f (t)− ε0)) · ∇ log( f (t)− ε0)dt (A36)

= sign(∇ log( f (t)− ε0)) · log( f (t)− ε0)
∣∣∣kn

−kn

−
∫ kn

−kn
log( f (t)− ε0)

d
dt

sign(∇ log( f (t)− ε0))dt (A37)

≤ (2 + d f (kn))max
(

log( f0 − ε0), log
(

φ(kn)

1− ε0φ(kn)

))
(A38)

≤ (2 + d f (kn))ψ(ε0, kn), (A39)

where the inequalities in (A34) follows from the assumptions in (9) and (A17), and the
bound in (A38) follows by using steps similar to those leading to the bound in (A33).

Combining the bounds in (A6), (A26), (A33), and (A38) concludes the proof.

Appendix D. A Proof of Theorem 3

The difficulty in bounding the error of a clipped estimator is in showing that the
clipping is strict enough to avoid gross overestimation, yet permissive enough to avoid
gross underestimation. The proof presented here is based on two auxiliary estimators that
are constructed to under- and overestimate Ic

n( fn) in a controlled manner.
Let

In =
∫ kn

−kn

d f ′n(t)− ε1c2
fn(t) + ε0

dt, (A40)

where d• − εc denotes an “ε-compression” operator, i.e.,

d f (t)− εc =


f (t)− ε, f (t) > ε

0, −ε ≤ f (t) ≤ ε

f (t) + ε, f (t) < −ε.

(A41)

Next, consider the estimator

In =
∫ kn

−kn

d f ′n(t)− γ1,n(t)c2
fn(t) + γ0,n(t)

dt, (A42)

where the functions γi,n : R→ [0, εi], i = 0, 1 are chosen as follows: If it holds that

|ρn(t)| ≤ |ρ(t)|, (A43)

then γ0,n(t) = γ1,n(t) = 0. If, on the other hand,

|ρn(t)| > |ρ(t)|, (A44)

then γ0,n(t) and γ1,n(t) are chosen such that

d f ′n(t)− γ1,n(t)c
fn(t) + γ0,n(t)

= ρ(t). (A45)

Note that because ∣∣∣∣ d f ′n(t)− ε1c
fn(t) + ε0

∣∣∣∣ ≤ |ρ(t)| ≤ |ρ(t)|, (A46)
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this is always possible.
In Appendix E, it is shown that the following relations hold between the estimators

defined above:

In ≤ I( f ), (A47)

In ≤ Ic
n, (A48)

Ic
n ≤ In + ε1Φ1

max(kn), (A49)

I( f )− In ≤ 4ε1Φ1(kn) + 2ε0Φ2(kn) + c(kn), (A50)

In − In ≤ 2ε1Φ1
max(kn) + ε0Φ2

max(kn). (A51)

The bound in Theorem 3 can now be obtained by bounding the under- and overesti-
mation errors separately. For Ic

n ≤ I( f ), it holds that

I( f )− Ic
n ≤ I( f )− In (A52)

≤ 4ε1Φ1(kn) + 2ε0Φ2(kn) + c(kn). (A53)

For Ic
n > I( f ), it hold that

Ic
n − I( f ) ≤ In − In + ε1Φ1

max(kn) (A54)

≤ 3ε1Φ1
max(kn) + ε0Φ2

max(kn). (A55)

The bound in (22) follows. Furthermore, following the same steps as those leading to
the bound in (A33), the bound in (25) follows.

Appendix E. A Proof of the Estimator Relations in Theorem 3

The bound in (A47) follows directly from the fact that under the assumptions in (9)

d f ′n(t)− ε1c2
fn(t) + ε0

≤ ( f ′(t))2

f (t)
. (A56)

Analogously, (A48) follows from

d f ′n(t)− ε1c2
fn(t) + ε0

≤ |ρ(t)||d f ′n(t)− ε1c| ≤ |ρ(t)|| f ′n(t)|. (A57)

In order to show (A50), note that under the assumptions in (9), it holds that

|d f ′n(t)− ε1c| ≤ | f ′(t)|, (A58)

( fn(t) + ε0)− f (t) ≤ 2ε0, (A59)

|d f ′n(t)− ε1c − f ′(t)| ≤ 2ε1. (A60)

Hence, in analogy to Theorem 1, the estimation error of In can be written as

I( f )− In =
∫ kn

−kn

( f ′(t))2

f (t)
− d f ′n(t)− ε1c2

fn(t) + ε0
dt + c(kn). (A61)
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Using the same arguments as in the proof of Theorem 1, the integral term on the
right-hand side of (A61) can be bounded by

∫ kn

−kn

( f ′(t))2

f (t)
− d f ′n(t)− ε1c2

fn(t) + ε0
dt

=

∣∣∣∣∫ kn

−kn

d f ′n(t)− ε1c2 f (t)− ( f ′(t))2( fn(t) + ε0)

f (t)( fn(t) + ε0)
dt
∣∣∣∣ (A62)

≤
∣∣∣∣∫ kn

−kn

∣∣d f ′n(t)− ε1c − f ′(t)
∣∣ |d f ′n(t)− ε1c+ f ′(t)|

fn(t) + ε0
dt
∣∣∣∣

+
∫ kn

−kn
| f (t)− ( fn(t) + ε0)|

( f ′(t))2

f (t)( fn(t) + ε0)
dt (A63)

≤ 2ε1

∫ kn

−kn

|d f ′n(t)− ε1c|+ | f ′(t)|
fn(t) + ε0

dt + 2ε0

∫ kn

−kn

( f ′(t))2

f (t)( fn(t) + ε0)
dt (A64)

≤ 2ε1

∫ kn

−kn
2
∣∣∣∣ f ′(t)

f (t)

∣∣∣∣ dt + 2ε0

∫ kn

−kn

∣∣∣∣ f ′(t)
f (t)

∣∣∣∣2 dt (A65)

≤ 4ε1

∫ kn

−kn
|ρ(t)|+ 2ε0

∫ kn

−kn
ρ2(t) dt (A66)

= 4ε1 Φ1(kn) + 2ε0 Φ2(kn). (A67)

Using the same steps, it is not difficult to show (A51), where the factor 2 does not arise
because, in contrast to (A59) and (A60),

d fn(t) + ε0c − d fn(t) + γ0,n(t)c ≤ ε0, (A68)

d f ′n(t)− γ1,n(t)c −
⌈

f ′n(t)− ε1
⌋
≤ ε1, (A69)

and c(kn) does not arise because both estimators are defined on [−kn, kn].
In order to show (A49), first note that for |ρn(t)| ≤ |ρ(t)|, it holds that

d f ′n(t)− γ1,n(t)c2
fn(t) + γ0,n(t)

=
( f ′n(t))2

fn(t)
= |ρn(t)|| f ′n(t)|, (A70)

i.e., In( fn) = Ic
n( fn). Hence, Ic

n( fn) > I( fn) implies |ρn(t)|≥ |ρ(t)| on some region of
[−kn, kn]. On this region, it holds that

d f ′n(t)− γ1,n(t)c2
fn(t) + γ0,n(t)

=
|d f ′n(t)− γ1,n(t)c|

fn(t) + γ0,n(t)
|d f ′n(t)− γ1,n(t)c| (A71)

= |ρ(t)| |d f ′n(t)− γ1,n(t)c|. (A72)

Because
| f ′n(t)| − |d f ′n(t)− γ1,n(t)c| ≤ γ1,n ≤ ε1, (A73)

it follows that

Ic
n( fn)− In( fn) ≤

∫ kn

−kn
|ρ(t)|ε1 dt (A74)

≤ ε1Φ1
max(kn). (A75)
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Appendix F. A Proof of Lemma 2

We begin by bounding vr and δr,ar . First,

v0 =
∫ ∞

−∞
|t|K(t)dt =

√
2
π

, (A76)

v1 =
∫ ∞

−∞

∣∣∣t2 − 1
∣∣∣K(t)dt = 2

√
2

eπ
. (A77)

Second,

δr,ar =
∣∣∣E[ f (r)n (t)]− f (r)Y (t)

∣∣∣ (A78)

=

∣∣∣∣∫ ∞

−∞

1
ar

K
(

t− y
ar

)(
f (r)Y (y)− f (r)Y (t)

)
dy
∣∣∣∣ (A79)

=

∣∣∣∣∫ ∞

−∞
K(y)

(
f (r)Y (t + ary)− f (r)Y (t)

)
dy
∣∣∣∣ (A80)

≤ sup
t∈R

∣∣∣ f (r+1)
Y (t)

∣∣∣ ∫ ∞

−∞
K(y)ar|y|dy (A81)

= ar

√
2
π

sup
t∈R

∣∣∣ f (r+1)
Y (t)

∣∣∣. (A82)

Now, for r = 0, ∣∣∣ f (1)Y (t)
∣∣∣ = ∣∣∣∣E[(t−√snrX)

1√
2π

e−
(t−
√
snrX)2
2

]∣∣∣∣ (A83)

≤ 1√
2π

1√
e

, (A84)

where we have used the bound te−
t2
2 ≤ 1√

e . For r = 1,

∣∣∣ f (2)Y (t)
∣∣∣ = ∣∣∣∣E[((t−√snrX)2 − 1

) 1√
2π

e−
(t−
√
snrX)2
2

]∣∣∣∣ (A85)

≤ 1√
2π

2
e
+

1√
2π

, (A86)

where we have used the bound t2e−
t2
2 ≤ 2

e .
Next, we bound the score function ρY as follows:

|ρY(t)| =
∣∣∣∣ f ′Y(t)

fY(t)

∣∣∣∣ (A87)

=
∣∣√snrE[X|Y = t]− t

∣∣ (A88)

≤
√
snrE[|X||Y = t] + |t| (A89)

≤
√
snr
√
E[X2|Y = t] + |t| (A90)

≤
√

3snrVar(X) + 4t2 + |t| (A91)

≤
√

3snrVar(X) + 3|t|, (A92)
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where the equality in (A88) follows by using the identify f ′Y(t)
fY(t)

=
√
snrE[X|Y = t]− t [23],

the inequality in (A90) follows from Jensen’s inequality, and the inequality in (A91) follows
from the bound in [24] (Proposition 1.2). Using the bound in (A92), it follows that

ρmax(kn) = max
|t|≤kn

|ρ(t)| ≤
√

3snrVar(X) + 3kn. (A93)

Using the relation between the Fisher information and the MMSE, we have that

I( fY) = 1− snrmmse(X, snr) ≤ 1. (A94)

Finally, the function φ is obtained by observing that

fY(t) = E
[

1√
2π

e−
(t−
√
snrX)2
2

]
(A95)

≥ 1√
2π

e−
E[(t−

√
snrX)2]

2 (A96)

≥ 1√
2π

e−(t2+snrE[X2]), (A97)

where we used Jensen’s inequality and the fact that (a + b)2 ≤ 2(a2 + b2). This concludes
the proof.

Appendix G. A Proof of Lemma 3

Choose some v > 0. Then,

c(kn) = E
[
ρ2

Y(Y)1{|Y|≥kn}

]
(A98)

≤ E
1

1+v

[(
ρ2

Y(Y)
)1+v

]
E

v
1+v

[(
1{|Y|≥kn}

) 1+v
v
]

(A99)

= E
1

1+v

[(
ρ2

Y(Y)
)1+v

]
E

v
1+v

[
1{|Y|≥kn}

]
(A100)

= E
1

1+v

[
|ρY(Y)|2(1+v)

]
P

v
1+v [|Y| ≥ kn] (A101)

= E
1

1+v

[
|E[Z|Y]|2(1+v)

]
P

v
1+v [|Y| ≥ kn] (A102)

≤ E
1

1+v

[
|Z|2(1+v)

]
P

v
1+v [|Y| ≥ kn] (A103)

=
2Γ

1
(1+v)

(
v + 1

2

)
π

1
2(1+v)

P
v

1+v [|Y| ≥ kn] (A104)

=
2Γ

1
(1+v)

(
v + 1

2

)
π

1
2(1+v)

(
snrE[|X|2] + 1

k2
n

) v
1+v

, (A105)

where (A99) follows from Hölder’s inequality, (A102) follows by using the identity

ρY(t) =
√
snrE[X|Y = t]− t = −E[Z|Y = t], (A106)

and (A105) follows from Markov’s inequality.
Now, if E[X2] < ∞, then using Markov’s inequality,

P[|Y| ≥ kn] ≤
E[Y2]

k2
n

=
snrE[|X|2] + 1

k2
n

. (A107)
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Moreover, using the Chernoff bound,

P[|Y| ≥ kn] ≤ e−kntE
[
et|Y|

]
(A108)

≤ 2e−knt+ t2
2 E
[
et
√
snr|X|

]
(A109)

= 2e−knt+ t2
2 e

α2snr
2 . (A110)

Therefore,

c(kn) ≤ inf
t>0

inf
v>0

2Γ
1

(1+v)
(

v + 1
2

)
π

1
2(1+v)

2
v

1+v e
v

1+v

(
−knt+ t2

2 + α2snr
2

)
(A111)

≤ inf
v>0

2Γ
1

(1+v)
(

v + 1
2

)
π

1
2(1+v)

2
v

1+v e
v

1+v
α2snr−k2

n
2 . (A112)

This concludes the proof.

Appendix H. A Proof of Theorem 4

Let

εn =
4ε1knρmax(kn) + 2ε2

1knφ(kn) + ε0φ(kn)

1− ε0φ(kn)
+ c(kn), (A113)

which is obtained from (11) by bounding I( f ) by 1 according to (31). In order to apply the
bounds in Lemma 1 and Theorem 1, the following equalities/inequalities must hold for
r ∈ {0, 1}:

εr > δr,ar , (A114a)

a2r+2
r (εr − δr,ar )

2

v2
r

� 1
n

, (A114b)

lim
n→∞

ε1ρmax(kn) = 0, (A114c)

lim
n→∞

ε2
1knφ(kn) = 0, (A114d)

lim
n→∞

ε0φ(kn) = 0, (A114e)

lim
n→∞

c(kn) = 0. (A114f)

To satisfy (A114), we choose

a0 = ε0 = n−w0 , w0 ∈
(

0, 1
4

)
, (A115)

a1 = ε1 = n−w1 , w1 ∈
(

0, 1
6

)
, (A116)

kn = nu, u ∈ (0, min(w0, w1)). (A117)
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Then, together with the bounds in Lemma 2, the relevant quantities in (A114) are
as follows:

a2
0(ε0 − δ0,a0)

2

v2
0

=
c1

2
n−4w0 , (A118a)

a4
1(ε1 − δ1,a1)

2

v2
1

=
c2

2
n−6w1 , (A118b)

ε1knρmax(kn) ≤
(

c3

√
u log(n) + 3u log(n)

)
n−w1 , (A118c)

ε2
1knφ(kn) ≤ c5

√
u log(n)nu−2w1 , (A118d)

ε0φ(kn) ≤ c5nu−w0 , (A118e)

c(kn) ≤
c4√

u log(n)
, (A118f)

which yields (37). Now, if |X| is α-sub-Gaussian, the bound in (43) can be obtained from
Lemma 3 with v = 1.

Because (9) leads to (11), one obtains

P[|In( fn)− I( fY)| ≥ εn]

≤ P
[

sup
|t|≤kn

| fn(t)− fY(t)| ≥ ε0

]
+ P

[
sup
|t|≤kn

∣∣ f ′n(t)− f ′Y(t)
∣∣ ≥ ε1

]
(A119)

≤ P
[

sup
t∈R
| fn(t)− fY(t)| > ε0

]
+ P

[
sup
t∈R

∣∣ f ′n(t)− f ′Y(t)
∣∣ > ε1

]
(A120)

≤ 2e−nπa2
0

(
ε0−a0

1√
2πe

)2

+ 2e
−neπa4

1

(
ε1−a1

2
e +1√

2π

)2

(A121)

= 2e−π
(

1− 1√
2πe

)2
n1−4w0

+ 2e
−eπ

(
1−

2
e +1√

2π

)2
n1−6w1

(A122)

= 2e−c1n1−4w0 + 2e−c2n1−6w1 , (A123)

where the inequality in (A121) follows from Lemma 1, and the last step follows from (A115),
(A116), and (A117). This concludes the proof.

Appendix I. A Proof of Theorem 5

Let
εn = 4ε1Φ1

max(kn) + 2ε0Φ2
max(kn) + c(kn). (A124)

To apply the bounds in Theorem 3 and Lemma 2, the following equalities/inequalities
must hold for r ∈ {0, 1}:

εr > δr,ar , (A125a)

a2r+2
r (εr − δr,ar )

2

v2
r

� 1
n

, (A125b)

lim
n→∞

ε1Φ1
max(kn) = 0, (A125c)

lim
n→∞

ε0Φ0
max(kn) = 0, (A125d)

lim
n→∞

c(kn) = 0. (A125e)
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To satisfy (A125), we choose

a0 = ε0 = n−w0 , w0 ∈
(

0, 1
4

)
, (A126)

a1 = ε1 = n−w1 , w1 ∈
(

0, 1
6

)
, (A127)

kn = nu, u ∈
(
0, min

(w0
3 , w1

2
))

. (A128)

Then, together with the bounds in Lemma 2, the relevant quantities in (A125) are as
follows:

a2
0(ε0 − δ0,a0)

2

v2
0

=
c1

2
n−4w0 , (A129a)

a4
1(ε1 − δ1,a1)

2

v2
1

=
c2

2
n−6w1 , (A129b)

ε1Φ1
max(kn) = nu−w1(2c3 + 3nu), (A129c)

ε0Φ1
max(kn) = nu−w0

(
2c2

3 + 6n2u
)

, (A129d)

c(kn) ≤ c4n−u, (A129e)

which yields (46). Moreover, if |X| is α-sub-Gaussian, the bound in (47) can be obtained
from Lemma 3.

Following the same steps leading to (A123), we have that

P[|Ic
n( fn)− I( fY)| ≥ εn] ≤ 2e−π

(
1− 1√

2πe

)2
n1−4w

+ 2e
−eπ

(
1−

2
e +1√

2π

)2
n1−6w

(A130)

= 2e−c1n1−4w0 + 2e−c2n1−6w1 . (A131)

This concludes the proof.
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