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Abstract: Health systems internationally must prepare for a future of genetic/genomic testing to
inform healthcare decision-making while creating research opportunities. High functioning testing
services will require additional considerations and health system conditions beyond traditional
diagnostic testing. Based on a literature review of good practices, key informant interviews, and
expert discussion, this article attempts to synthesize what conditions are necessary, and what good
practice may look like. It is intended to aid policymakers and others designing future systems
of genome-based care and care prevention. These conditions include creating communities of
practice and healthcare system networks; resource planning; across-region informatics; having a
clear entry/exit point for innovation; evaluative function(s); concentrated or coordinated service
models; mechanisms for awareness and care navigation; integrating innovation and healthcare
delivery functions; and revisiting approaches to financing, education and training, regulation, and
data privacy and security. The list of conditions we propose was developed with an emphasis on
describing conditions that would be applicable to any healthcare system, regardless of capacity,
organizational structure, financing, population characteristics, standardization of care processes, or
underlying culture.

Keywords: diagnostic molecular pathology; genetic testing; diagnostic services; technology assess-
ment; biomedical; genetic services; financial support; clinical governance; health technology; health
care innovation

1. Introduction

Clinical decisions are increasingly informed by biomarker-defined subsets of patients,
forming the basis of precision medicine. The measurement of laboratory-based biomarkers
may serve one or more purposes for patients and healthcare providers—including iden-
tifying who has disease or may develop future disease, monitoring health, monitoring
response(s) to therapy, predicting who may most benefit or be harmed by therapy, or
predicting how disease is likely to progress [1]. Increasingly, advanced tests are being used.
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These involve measures of the expression, function and regulation of genes through a direct
examination of genes (through cytogenetics or various genomic tools), or their protein
products (for example by immunohistochemistry). These techniques have already become
a hallmark of decision-making in oncology, given cancer is a genetic disease and may be
amenable to targeted therapy. They are also increasingly playing a role in the identification
of disease, with comprehensive genomic testing approaches demonstrating much higher
diagnostic yields than conventional approaches. A prospective study of 103 children with
suspected underlying genetic disorders led to 18 new diagnoses of disease when using
whole-genome sequencing compared to conventional approaches to diagnosis (i.e., targeted
gene sequencing) [2].

In this rapidly developing field, healthcare system administrators are faced with
decisions regarding what biomarkers and technologies to adopt. These include differ-
ent technical platforms (e.g., single-gene, multi-gene, whole-exome, and whole-genome
sequencing and expression analysis); modalities (tissue, saliva, blood, or urine-based sam-
pling); location (laboratory-based or delivered at point-of-care); provenance (commercially
available in vitro diagnostic tests and services versus in-house/laboratory developed tests);
and timing and sequencing of tests. All of these factors affect clinical utility, including
costs and patient outcomes, and broader health system goals such as caregiver and patient
experiences. They will also influence how care is delivered.

Realising benefits from genome-based testing requires expenditure on equipment,
reagents and informatic tools for their mainstream delivery, and creates added challenges
for healthcare systems and their stewards. These challenges include, but are not limited to:
management costs associated with development of new protocols, implementation, valida-
tion and licensing; the need to revisit clinical and referral pathways, scopes of practice, and
care protocols; the need to revisit use of associated resources, including upstream tissue
sampling and downstream use of targeted therapies; the need to define minimally accept-
able technical standards to allow for collection of samples; the need to revisit associated
human resource requirements, such as laboratory technologists/technicians, bioinformati-
cians, clinical geneticists, and genetic counsellors; enhanced data systems in evaluation
and reporting, that also consider privacy and security. These challenges combined speak to
a need to revisit historical models of technology management, including the governance,
administration, and financing of laboratory services.

Unlike traditional healthcare technologies, genome-based biomarker testing also pro-
vides research opportunities beyond healthcare decision making, and may lead to discov-
eries about the nature of disease or effectiveness of current and future therapies. These
opportunities are being developed in ‘real time’, within routine clinical use, thus blurring
the boundaries between research and standard practice. For example, tests may qualify
patients for clinical trials, which has important clinical, scientific and economic benefits [3].
The value of integrating research into clinical practice was underlined during the COVID-19
pandemic, where rapid research-led development and implementation of testing capacity
was essential for both monitoring the pandemic, and the development of preventive and
therapeutic strategies. Yet, the value of research in healthcare is not integrated into health
technology assessment in most single payer systems [4].

Given the potential for exponential growth of new tests and test approaches, and
the complexity of introducing them, health system planners preparing for a future of
genome-based biomarker testing need to grapple with how these services can be delivered
effectively and efficiently. As the structure, remit and organization of healthcare systems
(and the laboratory functions within them) vary, there are likely to be no one-size-fits-all
solution; however, some necessary conditions will be required to manage these technologies
in a way that benefits patients and is sustainable.

The purpose of this report is to describe the conditions necessary for policymak-
ers and health system planners to enable a state-of-the-art testing service that includes
genome-based testing for acquired and heritable diseases as well as risk assessment to
support preventive and public health interventions. The list of conditions we propose was
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developed with an emphasis on describing conditions that would be applicable to any
healthcare system, regardless of capacity, organizational structure, financing, population
characteristics, standardization of care processes, or underlying culture [5].

2. Materials and Methods

The conditions identified in this report were developed through a mixed-methods
approach. A narrative literature review was conducted based on a purposive sample of
commercially published and grey literature. Searches (See Supplementary Materials for
search strategy) were performed by a medical librarian specialist and relevant information
was identified by a single reviewer (DH). In parallel, conditions were identified using a
conventional content approach and based on semi-structured interviews (n = 18; 30–60 min)
with key informants and performed from a constructivist point of view. All interviews
were conducted by DH with a purposive sample of experts including several of the authors
(VM, DMT, DSS, CI, MM, BSS) as well as representatives from pharmaceutical (n = 6) and
diagnostic (n = 1) companies. Informants were chosen based on differing expertise and
geographic location with some (n = 4) having previously worked with the author.

Interviews were conducted via a recorded video conference call using an interview
guide, and all participants approached agreed to be interviewed. Summary notes from
transcripts were shared back with participants for verification (member checking). An
informal identification of concepts was conducted by one author (DH), and categorized
into themes/conditions.

A preliminary list of conditions identified through interview and the literature review
was then circulated back to all authors for feedback and a moderated face-to-face discussion.
“Effective and efficient” delivery of genome-based diagnostics from testing was defined
as one that would most satisfy the “quadruple aim” of reducing per capita costs while
improving population health outcomes, patient and caregiver experiences, and provider
experiences [6]. These conditions are explained, and grouped according to these aims, and
with examples in the next section.

3. Results

Interviewees (Table 1) described a number of challenges in achieving the quadruple
aim of healthcare within current approached to the implementation and management
of genomic testing. These largely related to care interruptions or wait times due to a
number of underlying factors (resources and finance planning; education; informatics;
and an unclear process for onboarding tests). Other challenges included inappropriate
identification of patients and family members; inequitable care delivery; uncoordinated,
inconsistent, inappropriate or duplicative care; and inefficient, low-value care. These are
grouped by theme in Table 2.

Table 1. Interviewee characteristics.

Participants (n = 18) N, (%)
Female 6 (33)
Primary role

Physician/lab leader 4 (22)
Health care administrator 2 (11)
Health services expert/health economist 4 (22)
Patient representative 1 (6)
Private sector representative 7 (39)

Work environment
Public sector 11(61)
Private sector 7 (39)

Location
Canada 14 (78)
United States 2 (11)
Europe 1 (6)
Other 1 (6)
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Table 2. Thematic analysis of challenges identified along with corresponding enabling conditions.

Quadruple Aim
Domain * Challenge/Theme Identified Key Informant Quote Potential Solution/Condition(s)

to Help Address

Work life of care
providers

Care interruptions and wait
times

“It is a challenge to connect
different streams of planning. A
nimble lab service is highly
dependent on integrated lab
systems and capital planning.
Workforce planning and education
is also critical”

“There is a need to triage the
urgency based on the test
application and clarity about the
prerequisite level of evidence to
apply”

• Resource planning
• Financing approach
• Education and training
• Informatics
• Evaluative function
• Entry/exit point for innovation

Patient and caregiver
experiences

Inappropriate identification of
patients and family members

“There is a need for standards
around governance, security and
patient consent, what we can use
the data for etc. Rule around
commercial interests in data need to
be in place [as well as] some
consideration of investing in the
laboratory function independently
of therapeutic application”

• Service models
• Awareness and care navigation

Inequitable care delivery

“Legislation plays an important role
as well. The Acts give different
provinces different levels of
influence over care coordination”

• Regulation

Health of
populations

Uncoordinated, inconsistent,
inappropriate or duplicative
care

“There is a need to have clear
understanding of what the care
pathway is and an aligned
community of practice”

• Integration of innovation and
healthcare delivery
• Creating communities of
practice and healthcare system
networks

Per capita costs of
healthcare Inefficient, low-value care

“So then we invest in standards,
outcome measures, quality
measures etc. along with a process.
You can’t be too prescriptive
because of the wide utility of
testing”

“Information is also valuable and
must be valued. Currently
information is generated for
medico-legal purposes and yet it
could be generated to generate
revenue and lower care costs”

• Integration of innovation and
healthcare delivery

* Challenges and themes span across some quadruple aim domains, so rows are deliberately misaligned.

From the challenges identified, an initial list of 14 conditions were identified and pared
down to 12. These conditions for testing have been characterized as being part of infrastruc-
ture and planning; operations; or the general, health care environment. The sections below
provide further elaboration of these, with examples. A summary of conditions, along with
a description of issues they are intended to address, and the goals and description of good
practice are in Table 3.
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Table 3. Enabling conditions for state-of-the-art delivery of genome-based testing.

Issue Goal Description of Good
Practice Policy Example

Infrastructure

Creating communities of
practice and healthcare
system networks

Inequitable care
delivery

� Broad stakeholder
agreement on
appropriate use

� Equitable care

� Engagement across all
stakeholders

The Australian Genomics Health
Alliance, for example, is an
attempt to accelerate and
evaluate the application of
genomic testing in healthcare. It
is a “collaborative research
partnership across more than
80 diagnostic laboratories,
clinical genetics services, and
research and academic
institutions” [7].

Resource planning
Care interruptions,
wait times or
unsustainable care

� Sustainable care
delivery

� Frequent (e.g.,
1–3 years)
reassessment

� Available to all
healthcare
stakeholders

The US Government
Accountability Office conducted
a study forecasting a future
shortfall of genetic counsellors
and medical geneticists in
general, and by geographic
region [8].

Informatics

Uncoordinated or
duplicative care,
inconsistent test
development, poor
information for
evaluation

� Care coordination
� Scientific insight

–clinical discovery
and health system
performance

� Across-region
integration

� Lab information
integrated with
electronic health
record and healthcare
evaluation function

The UK Department of Health &
Social Care committed “£4
billion over a five-year period
(2016-21) in digital technology,
systems and infrastructure, to
provide the health and care
system with the digital capability
and capacity it needs . . . .” [9].

Operations

Entry/exit point for
innovation

Technology creep
and poorly
performing legacy
technology

� Appropriate health
technology
management

� Open application and
evaluation process

� Proposals accepted
from all stakeholders

� Explicit timelines
� Reassessment process

NHS England, has announced its
decision to revisit tests annually,
and considering the co-ordinated
replacement of older tests with
new and emerging approaches,
including considering where
evidence still needs to be
collected to validate the benefit
of moving to [whole-genome
sequencing], and identifying
where alternative genomic
diagnostics, such as gene panels
or microarrays, will continue to
be needed [9].

Evaluative Function Avoid low value
care

� Legitimacy in
decision-making

� Clear signal for
innovators

� Adherence to key
principles in health
technology
assessment including
transparency,
timeliness and
stakeholder
engagement [10]

� Consistent evaluative
framework

An evaluative framework for
genetic testing developed for the
US Department of Defense
recognized the practical need to
triage adoption decisions based
level on urgency through the use
of rapid review and real-world
evaluation of new tests [11].

Service models Inequitable and
inefficient care

� Care coordination � Across-region
coordination

NHS England Genomic
Laboratory Hubs [12] and US
Department of Veteran’s Affairs
dedicated service centres for
testing [13].

Awareness and care
navigation

Confusion or lack of
information
regarding test
availability

� Access to care

� Available, up-to-date
information of test
availability and how
to access

� Additional supports
for care navigation

In France, where testing is more
variable across regions, lists of
different laboratory sites with
contact information are provided
[14].
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Table 3. Cont.

Issue Goal Description of Good
Practice Policy Example

Healthcare Environment

Integration of
Innovation and
Healthcare Delivery

Care lagging behind
pace of care
innovation and
scientific advances

� Maximize care
value

� Private public sector
partnerships, and/or

� Integration of
investigational and
established
technology

UK and Australian
private-public-sector
partnerships [15,16]. In Ontario,
Canada, reflex testing for newly
diagnosed cases of NSCLC
(adenocarcinoma/non-
squamous) uses a panel
consisting of established and
investigational biomarkers [17]

Financing approach
Care interruptions,
wait times or
unsustainable care

� Maximize care
value

� Access to care
� Sustainable care

delivery

� Funds available once
adoption decision
made

� Clear value-based,
funding formula,
amenable to
reassessment

� Funding for test
development,
additional human
resource costs
considered

The US Centers for Medicare
and Medicaid Services (CMS)
have attempted to incentivize
molecular diagnostic innovation
by enabling manufacturer-set
free pricing for FDA-cleared or
approved tests under certain
conditions [18].

Education and Training

Inappropriate care;
medical error; care
lagging behind pace
of care innovation

� High quality
workforce and care
delivery

� Training that
addresses continuing
professional
development,
knowledge transfer
and quality
improvement

� Across-region
educational standards

The Genomics Education
Programme (GEP) in England
plans to develop “genomic
competencies for specialty
training”, human resource
planning, and providing
supports for “curricula
development and medical
revalidatio” [9].

Regulation
Substandard care ,
negligence and legal
liability

� Minimize
preventable harm to
individuals from
poor test quality

� Regulation that
addresses human
resource qualifications
and training,
documentation of
records, quality
control processes, and
proficiency testing
[19–21].

� Across-region analytic
standards

Regulation is typically
addressed through accreditation
processes that conform with the
International Organization for
Standardization (ISO) including
ISO 15189 Medical Laboratories.
Examples include regulation of
clinical genetic testing through
CLIA in the US and Canada

Data privacy and
security

Inappropriate
identification of
patients and family
members

� Minimize
preventable harm to
individuals and
families from testing

� Framework that
addresses privacy and
security concerns
from genetic testing

� Across-region privacy
standards

The Global Alliance for
Genomics & Health, has created
a Framework and “Core
Elements for Responsible Data
Sharing” [22].

3.1. Infrastructure and Planning
3.1.1. Creating Communities of Practice and Healthcare System Networks

A well-established network can serve as a basis for deliberation about what tests must
have priority, how tests may be valued, what care standards should be in place, what
resources will be necessary, how care can be monitored, and other necessary collective
judgements that may vary geographically and over time. There will also need to be broad
agreement on the use of shared resources, such as biobanks and reporting standards.
In regions with more dispersed delivery of care, efforts to create networks may require
tiering: first, there is a need to establish across-region consortia to establish wider care
standards, shared informational resources, educational standards, and ensure the equitable
delivery of services [23]; secondly, there is a need to create strong intraregional consortia
for fully integrated delivery of services (i.e., local communities of practice or “collaborative
communities” [24]).
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Testing is a complex intervention [25] that relies on the timing, expertise, and behaviour
across multiple stakeholders for its effective delivery. At its core is a community of practice
that includes laboratory leaders and healthcare providers who will have the greatest
impact on multidisciplinary decisions in regards to testing, including how and under
what conditions a test should be delivered [26]. Broader members of the community
are those who will be impacted by the consideration and implementation of new testing.
These include the patients, administrators, IT professionals, implementation and genome
scientists, public and private sector innovators and others (scientists, legal and ethics
experts, professional organizations, bioethicists, regulators). As these groups may not be
connected through an organizational structure, strong networks with clear communication
between individuals and programs are required for effective implementation and good
decision-making [24].

Many international jurisdictions have already established networks through transla-
tional research initiatives [27]. In pluralistic or federated health systems such as Sweden
and Canada there has been an emphasis on “bottom-up” approaches to creating regional
capacity that foster the building up of self-selected organizations aligned with a core set of
goals. Some federated jurisdictions, such as Australia, have taken a further “top-down”
approach to creating networks after mapping jurisdiction-wide capacity. The Australian
Genomics Health Alliance, for example, is an attempt to accelerate and evaluate the appli-
cation of genomic testing in healthcare. It is a “collaborative research partnership across
more than 80 diagnostic laboratories, clinical genetics services, and research and academic
institutions” [7].

In more centralized healthcare systems such as England’s National Health Service
(NHS England), where higher level coordination already exists, the emphasis has been on
regional care coordination. Collaboration in England has been facilitated by creating the
NHS England Genomic Medicine Service Alliance, an effort to bring together Genomic
Laboratory Hubs together with “clinical genetic services inclusive of genomic counsellors,
provider organisations across the care continiuum [sic] and with Primary Care Networks,
Cancer Alliances, research and academia and patients and public representatives” [28]. In
parallel, a consortium of academic researchers (a community of approved researchers with
access to the Genomics England Research Environment) was also created as a mechanism
of reaping benefits from scientific spillovers from genomic information.

3.1.2. Resource Planning

Resource management and planning for expected impacts on time, people, facilities,
equipment, supplies, and information technology is an essential activity in any health
system. However, the rapid rate of change of underlying technology and the need for
specialized human resources including those involved in tissue sampling (e.g., biopsy),
analysis (laboratory technologists/technicians, bioinformatic) and post-test counselling
(counsellors and other specialized training) necessitates long-term capital and human re-
source planning. Workforce planning will need to consider the training and credentialling
of highly specialized resources involved with testing. It may also need to consider a plausi-
ble range of scenarios of what services are required and the roles and responsibilities of
those involved [29,30]. For example, the US Government Accountability Office conducted a
study forecasting a future shortfall of genetic counsellors and medical geneticists in general,
and by geographic region [8]. Advances in searchable genomic databases to support clinical
management, alternative models of service delivery, and centralized delivery of services
could greatly reduce the need for these highly specialized human resource requirements in
coming years [23,31,32].

Resource planning for the coming era of genomic medicine will require health system
planners to revisit traditional funding formulas. Laboratory funding based on volume
or a “per-test” approach may not incent its use as it ignores efficiencies that could be
realized with changes in approach to testing type (e.g., multigene assay versus single
gene approaches [33]), modality (e.g., reflex testing or upfront testing versus ordered
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testing or sequential testing [34]) or test timing [35,36]. Additional bioinformatics and
technologist/technician resources also require consideration. In the UK, for example, the
Department of Health & Social Care committed “£4 billion over a five-year period (2016–21)
in digital technology, systems and infrastructure, to provide the health and care system
with the digital capability and capacity it needs . . . .” [9].

3.1.3. Informatics

Traditionally, laboratory information management emphasizes informatics as a tool
for sample tracking and communicating results. For genome-based testing, informatics
is also essential for test development, interpretation, and clinical decision support [37,38].
Ensuring adequate integration of test results into electronic health records will also provide
a key resource for real-world monitoring, disease management, quality assessment and
assurance, and financing [39]. Integration of laboratory information systems with electronic
health record systems is also needed to reduce duplication of testing and as a basis for care
coordination across health professionals or organizations. An increasingly important aspect
of genome-based testing is the ability not only to share information within a healthcare
system, but also to share and access data from other informational sources, including
external databases, peer-reviewed literature and other healthcare systems.

Histopathology represents a major portion of laboratory medicine and involves im-
ages interpreted by human physicians. This area has existed for over a century as an
unquantifiable practice within medicine. In the current digital era, digitization of stained
images represents a major advance in the practice of personalized medicine. As infor-
matics capability continues to expand, health systems may plan for the integration of
digital histomorphologic data and its ongoing analysis into genomics and personalized
medicine [40].

3.2. Operations
3.2.1. Entry/Exit Point for Innovation

The rate of proposals for new tests and testing modalities necessitates a clear process
for the managed adoption and obsolescence of tests [41]. A single point of entry for
considering new tests using an application procedure coupled with an evaluation process
and formulary is one increasingly used approach that allows multiple stakeholders to
engage with the healthcare system [42]. It can also reduce unnecessary testing while
providing a strong signal to public and private sector innovators regarding when and
under what conditions tests will be adopted [43]. This approach is used in the Canadian
provinces of Alberta and Quebec, where an intake form requesting a new test (councils,
strategic clinical networks, physicians, patients, innovators or the public) will lead to an
evidence-assessment and recommendation before a test is placed on a public formulary.

Given the rate of technologic development, healthcare systems will also need to
grapple with timeliness, i.e., how long to adopt tests and when tests should be reassessed.
New test adoption is a healthcare challenge, as many tests must be considered in the
context of other interventions, such as their use as companion diagnostics for new drugs.
Any decision to replace or revise an existing test, such as expanding a multigene panel,
must consider the balance between patient and healthcare provider unmet need with the
inevitable disruption to care protocols, and the speed at which new tests can be replaced.
NHS England, for example, has announced its decision to revisit tests annually, and
considering the coordinated replacement of older tests with new and emerging approaches,
including considering where evidence still needs to be collected to validate the benefit
of moving to [whole-genome sequencing], and identifying where alternative genomic
diagnostics, such as gene panels or microarrays, will continue to be needed [9].

3.2.2. Evaluative Function

Many health systems worldwide have adopted evaluation frameworks for testing
based on the analytic validity, clinical validity, clinical utility, and ethical, legal, and social
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implications (ACCE) approach [44]. While this can be seen as a starting point for evaluation
of tests from a clinical standpoint, the ACCE approach does not consider “context-related
evaluation dimensions (delivery models, economic evaluation, and organizational aspects)”
that will be of interest to policymaking and are a standard part of health technology
assessment (HTA) processes [45]. Even using the ACCE framework, it has been argued
that ‘clinical utility’ is poorly defined; definitions “may focus on a test’s ability to produce
a diagnosis, broader definitions of clinical utility consider health and non-health related,
familial and societal outcomes”. Expanded notions of utility, that consider the wider impact
of a test result on not only the individual patient, but their families and broader society,
may be required to capture benefits to society [46,47].

Many issues related to testing, including availability of evidence and context-driven
performance are part of a broader suite of limitations faced by administrators when eval-
uating diagnostic tests and medical devices [48]. As such, the timing and complexity of
traditional approaches to HTA must be balanced against patient need, in an environment
where test utility and cost is dynamic. Literature-based approaches to estimating test utility
may be limited by enhancements to technology, learning curves [49] or implementation
characteristics that affect performance [50]. This strongly suggests the recommended use of
both pre-market and post-market data to capture impact of learning curve on outcomes [4]
as well as a consideration of costs of implementation when assessing value [51]. Further-
more, and in keeping with key principles for HTA [10], decisions regarding access to testing
must be made in a timely manner. Both of these issues are addressed in an evaluative
framework for genetic testing developed for the US Department of Defense which recog-
nized the practical need to triage adoption decisions based level on urgency through the
use of rapid review and real-world evaluation of new tests [11].

Traditional assumptions and approaches underlying the economic evaluation of deci-
sions for drugs are also challenging to apply [52]. These include the constancy of marginal
benefits and costs, and the divisibility of tests provided [53,54]. Payers should expect
the marginal costs of adding new tests to a panel or going to a whole exome or genome
approach to be quite small relative to other factors such as patient selection, level and type
of implementation (education of providers, equipment, geographic distribution) as well as
downstream costs (e.g., use of targeted therapies) [55].

3.2.3. Service Models

Like many other forms of production, good practices in organizing health services
needs to consider the degree to which the configuration of delivery is concentrated or
dispersed. Dispersed arrangements are more attractive when unit costs do not benefit
from economies of scale—such as with primary care and community pharmacy services—
and coupled with the need for geographic reach [30,32]. In contrast, economies of scale
from advanced testing, coupled with the need for a high degree of standardization and
accountability suggest genome-based testing will benefit from a more concentrated model
of service delivery.

A further consideration will be to what degree a more concentrated model can be
delivered. Service models must first consider care pathways and requisition authority for
testing. Models include requisitions by geneticists, primary care practitioners, medical
specialists, program-based (such as newborn screening) or direct-to-patient and will depend
on the purpose of testing [56]. Genetic testing may be required by independent healthcare
programs that are uniquely organized, such as prenatal, pediatric, infectious disease,
psychiatry, primary care, and oncology. In some cases, a single test (e.g., BRCA) may be
used to assess future risk of disease, prognosis of disease, or predict response to treatment
could have different clinical applications, referral pathways, and healthcare system value.

Point-of-care testing (POC) technology is also increasingly available, which can ex-
pedite decision-making but also challenges a more centralized model of care, and the
standardization and accountability that comes with it. POC devices do not negate the
need for quality control, external quality assessment, provider training, and data sharing
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associated with testing. POC tests also further highlight the need for technology adoption
decisions that consider an entire community of practice—differences in speed of test results
and analytic characteristics will have a downstream impact on patient and healthcare
provider experiences.

Care coordination may be greatly facilitated by already-centralized healthcare envi-
ronments. The NHS England was able to reorganize its existing capacity in 2018, creating
a Genomic Medicine Service through its Genomic Laboratory Hubs, each hosted by an
acute NHS trust and designated a geographic region for coverage [12]. Similarly, the
US Department of Veteran’s Affairs has leveraged its existing capacity to deliver genetic
testing through its oncology program and dedicated service centres across the US toward
non-oncologic indications for testing [13].

In pluralistic or market-based healthcare systems, coordination of care across disparate
organizations is facilitated through the use of care standards linked to incentives. Israel,
for example, has decided to create regional capacity to deliver comprehensive genomic
profiling for non-small cell lung cancer by allowing its separate health management or-
ganizations (Kupot Holim) to use their own validated testing approaches, in accordance
with specific conditions. Spain, has similarly provided overarching guidance to its au-
tonomous health regions regarding the principles that underly the delivery of genetic
tests [57]. Even when designed with best intentions, these approaches may still lead to
regional variation and concerns regarding inequity of access. The Spanish Minister of
Health has recently announced further efforts will be made to make country-wide access to
testing more consistent [58].

3.2.4. Awareness and Care Navigation

Even with necessary test infrastructure and accessibility, healthcare systems must
consider how to communicate to patients and healthcare providers what tests are available
and to who and how these are paid for. Published test formularies are a starting point for
communicating what tests are available and how they can be accessed. In the Canadian
province of Alberta, the addition of tests to a formulary had a stated goal of “streamlin-
ing processes by reducing variation in testing and improving healthcare provider and
patient access to appropriate, equitable and sustainable laboratory test information [59]”. In
countries with pluralistic healthcare systems and lacking a common directory, other infor-
mation can be provided to help care navigation. In France, where testing is more variable
across regions, lists of different laboratory sites with contact information are provided [14].
Similarly, the US NIH has developed a test registry, which “contains information about
laboratories and the tests they offer but does not contain or gather information on genetic
test results” [60].

3.3. Healthcare Environment
3.3.1. Integration of Innovation and Healthcare Delivery Functions

Given the rapid future pace of the introduction of new tests, coupled with the potential
research benefits associated with testing, healthcare systems will need to consider how
the delivery of testing or scientific discovery alongside testing for healthcare decision-
making will be coordinated. This is an inherent challenge with exome- or genome-wide
sequencing, which will invariably reveal genetic variants of strong therapeutic, prognostic,
or diagnostic significance alongside those lacking evidence [61]. Investigational tests can
play an important role in patient care: qualifying patients for clinical trial enrollment, as well
as other research endeavors that further understanding of disease. European guidelines
have addressed this by suggesting the distinction is clear when reporting results [26].
In Ontario, Canada, for example, reflex testing for newly diagnosed cases of NSCLC
(adenocarcinoma/non-squamous) is performed using a panel consisting of more well-
established biomarkers. Targeted treatments are currently available for some of the genes
tested (e.g., EGFR, ALK, KRAS), but not for others (e.g., FGFR1, SMARCA4, PIK3CA) [17].
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Funding tests for “targetable” and “non-targetable” genes together is a pragmatic
solution, and is also facilitated by massive parallel (“next-generation”) sequencing where
additional tests can be added to an assay at negligible cost. It can also allow health systems
to revisit testing regimes with less frequency, and avoid significant change management
costs. In practice, however, funding both “medically necessary” and “investigational”
testing can create a significant conflict for existing insurer frameworks that use evidence and
clinical consensus to determine what biomarkers should be funded [62,63]. This challenge
led one commentator to ask: “do we redefine [testing] to fit the coverage and evidence
framework, or do we redefine the coverage and evidence framework to fit [testing] [63]?”

Proposals to change coverage frameworks have been well described and are intended
to address payer risk through performance-based payment or coverage with evidence de-
velopment [63,64]. While a step forward, these solutions may still be difficult to implement
in practice, given the inherent limitations of using real-world data to establish the clinical
utility of testing [65]. Approaches to circumventing evidence challenges include the use of
standardized outcome measures, cascade testing and data sharing through international
consortia [66].

A separate solution is to create translational research programs that work in parallel
with health systems, or ideally are fully embedded within learning healthcare systems [66].
Many of these already exist today, often facilitated through public-private sector partner-
ships, the majority intended to investigate normal genomic variation by sequencing healthy
participants (i.e., biobanking) [27]. Some also have stated aims of drug discovery and inte-
grating well-established and emerging tests into regular healthcare system delivery. The
Australian government, for example, has created unique partnerships between government,
industry, and academia to conduct clinical trials to establish the clinical utility of compre-
hensive genomic profiling in lung cancer [15], as well as a more recent announcement for
rare disease [16].

3.3.2. Financing Approach

The anticipated rate of entry of new tests also requires a nimble financing approach,
allowing funds to be released for new tests once decisions to reimburse are made. This
may require a shift in thinking for many insurers, who have historically allocated funding
for laboratory services on an annual basis based on test volumes [64]. Unlike traditional
tests, funding formulas for genetic testing must consider the need for additional human
resources associated with development and proficiency testing [67]. Payment models for
care may, in turn, drive laboratory utilization and require re-thinking [64,68].

In the US, the Centers for Medicare and Medicaid Services (CMS) have attempted
to incentivize molecular diagnostic innovation by enabling manufacturer-set free pricing
on the Medicare fee schedule for tests that meet specific Advanced Diagnostic Laboratory
Test (ADLT) criteria. Qualifying tests must be covered under Medicare, provided by a
single laboratory, and either (1) be FDA-cleared or approved, and/or (2) meet three specific
criteria ensuring molecular diagnostic innovation [18].

Some insurers have also established funding for genetic biomarkers predicated on
a “companion” diagnostic paradigm, releasing funds only when companion drugs are
approved. Genome-based biomarkers, however, are increasingly used for multiple drugs or
therapeutic decisions, including decisions not to use older drugs, and to shorten diagnostic
odysseys for conditions with no specific drug therapies [69–72]. In some cases, jurisdictions
have additionally relied on pharmaceutical companies or public sector research grants to
fund these one-drug, one-test dyads. For public insurers, this inevitably creates a situation
where public sector actors are dependent on the private sector (or others) for the delivery
of public services, and yet public actors remain accountable to the public at large. This
“private finance initiative” type of problem means testing health system priorities are
dictated by who is paying, rather than unmet need, equity, or efficiency [73]. In addition to
creating structural inefficiency, these arrangements may be disruptive if funds are quickly
withdrawn: research grant funding may cease or move away with an investigator; or, a
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drug company may change its external funding policies. The same company may also
reasonably not want to pay for tests that aid competition.

3.3.3. Education and Training

Genetic testing through interprofessional teams distributed across centres and pro-
grams introduces new challenges for educating healthcare professionals when creating
system-wide changes. Implementation new genome-based tests will change workflow, and
necessitates training at the intersection of continuing professional development, knowledge
transfer and quality improvement [32,49,74]. This in turn may require new approaches to
teaching including workplace-based assessment and in situ simulation that address the
many contextual requirements of testing that can change ultimately affect test performance,
including “coordination of care, tissue procurement and handover, requisition and report
design, clear workflow within and between services, automatic information exchange
between electronic health systems, and improved communication, with fast feedback loops
between health care practitioners [75]”.

The need for a significant level of education caused by a significant disruption to
organization of services is reflected in the approach proposed by the Genomics Education
Programme (GEP) in England. The Programme “routinely engages with the Medical Royal
Colleges and actively participates in the NHS England and Academy of Medical Royal
Colleges (AoMRC) Genomic Champions Group”. Among other areas of focus, the GEP
plans to develop “genomic competencies for specialty training”, human resource planning,
and providing supports for “curricula development and medical revalidation [9]”. Funding
for each of the Genome Laboratory Hubs also considers the need for education and training.
Some jurisdictions have even funded programs aimed at improving genomic knowledge in
school-aged children [76].

3.3.4. Regulation

While some health product regulators, such as the FDA, have begun to test claims
of clinical validity for commercially available tests, these do not address the multitude of
factors that ultimately contribute to test utility and cost-effectiveness. This has heightened
the need for effective systems of regulation to address the numerous factors that contribute
to test quality, including human resource qualifications and training, documentation of
records, quality control processes, and proficiency testing [19–21]. Additional consider-
ation must be given to the training, licensure, registration, and certification of genetic
counsellors [77].

Most jurisdictions recognize that advancing the quality of testing requires regulatory
standards that involve multiple stakeholders, as it is widely recognized unwanted vari-
ation in test performance is largely driven by steps taken before and after analysis [20].
Regulation is typically addressed through accreditation processes that conform with the
International Organization for Standardization (ISO) including ISO 15,189 Medical Labo-
ratories. Examples include regulation of clinical genetic testing through CLIA in the US
and Canada, and through the National Association of Testing Authorities and the Royal
College of Pathologists of Australia (NATA/RCPA) in Australia. In Europe, the CF Net-
work, ERNDIM, GenQA (formally CEQA) and EMQN have more recently harmonized
accreditation standards.

3.3.5. Data Privacy and Security

The proper interpretation of disease-gene relationships, particularly for rare variants,
require significant amounts of information including family histories and shared infor-
mation across laboratories, both locally and internationally. The availability of partial or
complete genomic information, however, may allow individuals to be identified. Testing
also raises ethical issues, such as the duty to warn first-degree relatives who may have a
high chance of carrying a disease-causing gene [61]. As such, data requirements associated
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with genetic testing raise privacy and security concerns that may require revisiting of
historical legislation or policies.

Some of these challenges may be overcome through the adoption of technical solutions
and data standards. Technical solutions include privacy-preserving solutions used in
information systems, such as blockchain, to help avoid de-identification. Data sharing
to community resources, such as the US National Library of Medicine’s ClinVar, is also
strongly encouraged in international guidelines. Frameworks for data sharing have been
bolstered by international efforts, such as the Global Alliance for Genomics & Health, which
has created a Framework and “Core Elements for Responsible Data Sharing” [22]. The
framework emphasizes maximizing data accessibility of data while minimizing harm to
patients and others through a transparent and accountable system.

Data privacy and security concerns may also be addressed through education and
training (see Section 3.3.3). A core competency framework developed by NHS Health
Education England, for example, identified six areas of proficiency for those responsible for
communicating test results. A part of the framework addresses appropriate communication
of genomic results, including understanding “the implications of genomic testing for
insurance, including the UK Code on Genetic Testing and Insurance” [9].

Some genetic tests may also require outsourcing, due to rarity or health system capacity.
Genetic testing opens up the possibility of an output of unprocessed genetic data that
requires interpretation from out-of-country providers. In these situations, health system
administrators will also need to consider what information can or should lawfully be
shared across borders.

4. Discussion

Our effort to capture necessary conditions for state-of-the-art genome-based diagnos-
tics service is intended to aid those who must design policies and processes intended to
capture the value of genome-based testing. While there is much focus on health technology
assessment (HTA) and economic evaluation as a policy response to new technology, we
would suggest appropriate management of health technology goes much further than
HTA [78]. The conditions listed here reflect broader conditions of high performing health
systems that have been previously described [79–82]; these include the need to consider ac-
creditation, regulation, provider training, care coordination, health information technology,
evidence-based policy, and financing as a means to reduce inequity, improve care recipient
and provider satisfaction, while moderating the rate of expenditure.

While many of the conditions for optimal delivery of care could be applied to other dis-
ruptive technologies, the key findings of our review suggest there are some conditions and
good practices that will be strongly emphasized in a high-performing genome-based testing
service. These include across-region informatics associated with testing, a framework that
addresses privacy and security concerns from genetic testing, as well as integration of an
innovation and healthcare delivery function through private public sector partnerships or
the sanctioned use of investigational technology in mainstream healthcare. Improvements
in these areas are significant challenges but necessary ones for a future of learning health
systems [83].

5. Conclusions

We have identified 12 necessary conditions required for policymakers and health care
system planners to achieve optimal experiences for care providers, patients and caregiver
while achieving better outcomes and minimizing per capita health care costs in the coming
era of genomic medicine. As these conditions have been identified through a comprehensive
literature review and key informant interviews with international experts, they should
be applicable to any healthcare system, regardless of capacity, organizational structure,
financing, population characteristics, standardization of care processes, or underlying
culture.
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These conditions also reflect the multifaceted nature of laboratory technology man-
agement as well as the need for additional considerations beyond traditional laboratory
technology. As genome-based testing becomes more prevalent in coming years, we hope
these conditions and accompanying examples of good practice internationally provide some
initial guidance for those who will need to redesign healthcare systems to optimize care.
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